COMPARISON OF BSA FLUORESCENCE IN SALINE AND PHOSPHATE BUFFER SOLUTIONS UNDER GAMMA-IRRADIATION

Glibitskiy D.M. ^{1*}, Gorobchenko O.A. ², Cheipesh T.A. ³, Roshal A.D. ⁴, Glibitskiy G.M. ¹

¹O. Ya. Usikov Institute for Radiophysics and Electronics, National Academy of Sciences of Ukraine, 12 Academician Proskura Str., Kharkiv, 61085, Ukraine

² Department of Molecular and Medical Biophysics at V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine ³ School of Chemistry at V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine

⁴ Research Institute of Chemistry at V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine dima.glib@gmail.com

Introduction

- Previous work [1]: films formed by desiccation of saline solutions of bovine serum albumin (0.5 mg/ml BSA in 20 mM NaCl).
- Patterns on films and solution spectra change after irradiation.
- In the literature: buffers are typically used.
- Question: does buffer absence affect fluorescence under irradiation?

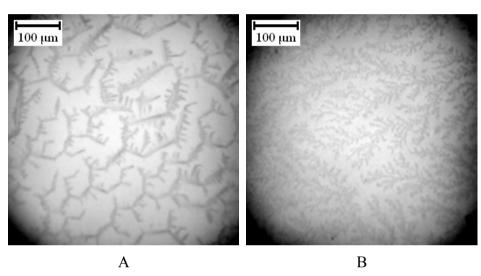


Fig. 1. Example micrographs of films obtained from (A) 0.5 mg/ml BSA \pm 20 mM NaCl solution, and (B) the same solution irradiated with 2000 Gy.

Comparison with BSA irradiation in literature

• Gaber [2]: similar experiments with phosphate buffer (PBS), but different BSA concentration (4 mg/ml BSA).

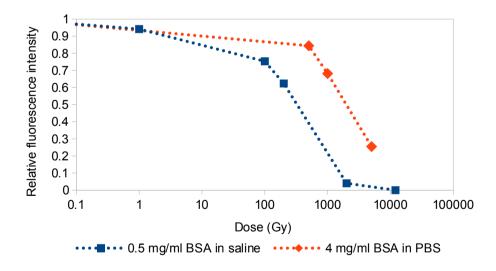


Fig. 2. Comparison of relative fluorescence from our experiments [1] (■) and adapted from Gaber [2] (◆).

• After adjusting for concentration, saline and phosphate data show nearly collinear trends in the logarithmic dose scale.

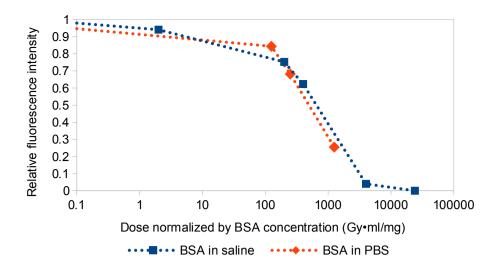


Fig. 3. Comparison of relative fluorescence from our experiments [1] (■) and adapted from Gaber [2] (◆) after adjusting for concentration.

Comparison with HSA irradiation in literature

- Hu et al. [3]: changes in human serum albumin's fluorescence and bityrosine content (indicating aggregation) were observed after 200 Gy (1–50 μ M HSA, phosphate buffer).
- Our DLS measurements of BSA size show similar behavior after 200 Gy, also pointing to aggregation (7.5 μ M BSA, 20 mM NaCl) [1].

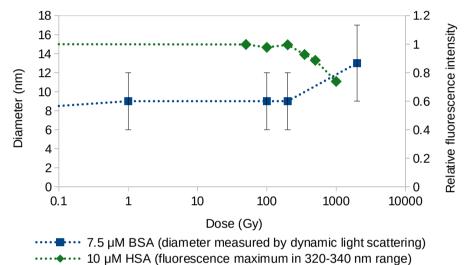


Fig. 4. Comparison of our DLS measurements of BSA size [1] (■) and

relative fluorescence of HSA adapted from Hu et al. [3] (♦).

- Why is BSA fluorescence affected at smaller doses than HSA, but BSA aggregation affected at the same doses as HSA aggregation and fluorescence?
- Hypothesis: external tryptophan residues affected at low doses, internal tryptophan at higher doses.

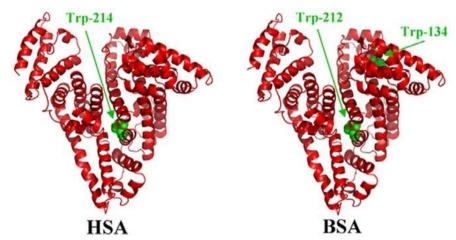


Fig. 5. Illustration of the locations of tryptophan residues in HSA and BSA. Adapted from Zhang et al. [4], licensed under CC BY 4.0.

Conclusions

- Saline is a viable medium for fluorescence studies in BSA irradiation experiments.
- In both BSA and HSA, significant structural disruption begins after \sim 200 Gy.
- Their fluorescence response to γ -irradiation after that point may be similar, but BSA is more sensitive to low doses.

References

- 1. D.M. Glibitskiy et al., Rad. Phys. Chem., 144, 231 (2018).
- 2. M.H. Gaber, J. Biosci. Bioeng., 100, 203 (2005).
- 3. X. Hu et al., J. Biochem. Mol. Toxicol. 30, 525 (2016).
- 4. Y. Zhang et al., PLoS ONE. 8, e59106 (2013).