

Spectroscopic markers of phenothiazine drug adsorption on mesoporous anatase TiO₂

Gavrilko T.A.^{1,2*}, Shymanovska V.V.¹, Manuilov E.V.¹, Chaika M.², Drozd M.²

¹Institute of Physics, National Academy of Sciences of Ukraine, 46 Prospect Nauki, 03028, Kiev, Ukraine, ²Institute of Low Temperatures and Structure Research, Polish Academy of Sciences, 2 Okolna Str., 50422 Wrocalw, Poland

Our interest

- > PTZ is nitrogen and sulfur-containing heterocyclic compound with unique non-planar butterfly molecular structure;
- > PTZ is an efficient therapeutic agent used to treat a variety of psychiatric conditions;
- > PTZ play a very important part in chemotherapy;

PTZ is water-insoluble so to improve its formulations and applicability one has to use other means of drug delivery.

- > One of the ways for targeted delivery and controlled release of therapeutic agents is to use nanomaterials.
- TiO₂ nanoparticles are recognized as multifunctional platform for biomedical applications due to their potent antibacterial activity, biocompatibility, and low cost.

$S(C_6H_4)_2NH$

Our objective

To identify spectroscopic markers of PTZ interaction with TiO2 surface for the understanding of nature of their interaction.

PTZ adsorption on mesoporous anatase TiO₂

- Synthesis of mesoporous anatase TiO₂ particles (thermal hydrolysis of titanium tetrachloride (TiCl₄) hydrochloric acid solution followed by annealing in air at 200 °C for 5 h).
- Mechanical milling of dry anatase TiO₂ with PTZ (5 wt%) in anatase TiO₂ with PTZ (5 wt%) in anatase agate mortar; storage in dark for 48 hours.
- Or: soaking of dry TiO₂ powder with PTZ solution in acetor (1mg/1ml) at room temperature;
- different concentrations.

Spectroscopy methods

- > FTIR spectroscopy (380-4000cm⁻¹, Bruker IFS-88, 64 scans, 2cm⁻¹ resolution);
- > FT-Raman spectroscopy (80-4000 cm-1, Bruker IFS-88, FRA attachment, 520 scans, 2 cm⁻¹ resolution)
- ➤ Photoluminescence (PL) (400–700 nm, Edinburgh Instruments FLS1000 grating spectrometer, λ_{ex} =266 nm of diode-pumped laser).

FTIR spectroscopy

Fig. 2. Fragments of FTIR absorption spectra of PTZ (1) and dry-milled PTZ-TiO₂ (2) in PTZ fingerprint regions. Evidence of non-covalent molecular interactions.

PL spectra of pure PTZ and TiO₂

Fig. 1. PL emission from anatase TiO2 and PTZ at excitation with λex=250 and 375 nm (both above the band gap \sim 3.2 eV). The observed TiO₂ emission bands are due to annihilation of self-trapped excitons (387 nm) and emission from oxygen dafacts present on the surface (Scheme 1) [1].

0.02

FT-Raman spectroscopy

region of characteristic PTZ vibrations bands

PL emission in anatase TiO₂

- ✓ Two bands are observed with maxima at λ =395 nm (green emission, G-PL) and λ =508 nm (red emission, R-PL);
- ✓ G-PL is observed at the excitation with $\lambda = 250$ nm;
- ✓ R-PL band is better seen at the excitation with $\lambda = 375$ nm;

Both PTZ and TiO₂ emissions are quenched after PTZ is bonded to the surface of TiO₂ particles evidencing effective energy transfer from excited PTZ molecules to TiO₂

PL of PTZ-TiO₂ composite

- ✓ No PTZ fluoreescence is observed in the PL spectra of PTZ-TiO₂ composite;
- ✓ Both G-PL and R-PL bands of TiO₂ are present;
- ✓ G-PL emission faded with PTZ addition;
- ✓ The intensity of R-PL increased with an increase of PTZ concentration.

1200 Fig. 3. FT-Raman spectra of PTZ and PTZ-TiO₂ composite (dry-milled)

Scheme 2. Possible mechanism of PTZ molecule interaction with TiO2 surface via covalent nitrogen (or sulfur) coordination, forming a direct bond to the titanium.

Conclusions

- ✓ Fluorescence quenching upon PTZ bonding to TiO₂ surface evidences resonance energy transfer from excited PTZ molecules to TiO₂
- ✓ FT-IR and FT-Raman spectroscopic markers (shift of characteristic CNC and CSC) vibration bands) indicate coordination bonding of PTZ molecules to Ti atoms.
- ✓ Loading PTZ on mesoporous TiO₂ from acetone solution requires less drug.

References

[1] O.F. Isaieva, V.V. Naumov, V.V. Shymanovska, E.G. Gule, G.Yu. Rudko, Book of Abstracts of XXIV Galyna Puchkovska International School-Seminar "Spectroscopy of Molecules and Crystals", August 25-30, 2019, Odesa, Ukraine p. 147. [2] H. Tang, H. Berger, P.E. Schmid, F. Levy, Solid State Communications 87 (1993) 847.