HIGH TEMPERATURE SUPERCONDUCTIVITY OF HIGHLY COMPRESSED MATERIALS

<u>K. Shimizu</u>¹, M. Einaga¹, M. Sakata¹, Y. Nakamoto¹, T. Ishikawa¹, H. Nakao¹, M. Eremets², A. Drozdov², I. Troyan², N. Hirao³, Y. Ohishi³

¹KYOKUGEN, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan ²Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55020 Mainz, Germany ³SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan e-mail: shimizu@stec.es.osaka-u.ac.jp

High pressure is one of useful tools for studying material properties such as superconductivity. But, most of superconductors show a negative pressure dependence on the transition temperature, T_c . In my presentation, some superconducting examples in pure elements and simple compounds that show the positive dependence and relatively high value in their T_c by highly compressed conditions are reviewed.

It has been already revealed that not a few elements that are not the superconductor at ambient pressure became superconductive under combination of low temperature and high pressure. We found that some elements exhibit relatively high- T_c at high pressure. Most of the maximum T_c is recorded at ambient pressure, but the lest of them show rather higher temperature at pressure. In general, a lighter element has a possibility to show a higher T_c according to the conventional BCS theory. The most important example is metallic hydrogen, for which the appearance of superconductivity at room temperature is predicted theoretically². However, experimental realization of metallic hydrogen has not yet been attained, at least by static compression using a diamond-anvil cell (DAC). The highest T_c in elements was found in compressed calcium² with 30 K at very high pressure exceeding 200 GPa.

Superconductivity exceeding 200 K was recently reported in the highly compressed hydrogen sulfide³. We performed the in-situ crystal structure analysis of the superconductor at the low temperature and high pressure by using the synchrotron x-ray in SPring-8. H₂S and D₂S were compressed to 150 GPa in DAC with same process with the resistance measurements³, and cooled down to 10 K in the cryostat. The collected x-ray diffraction data showed good agreement with the theoretically predicted structures of *R*3m and *I*m-3m^{4,5}. No structural difference was observed between at 10 K and room temperature.

This work was supported by JSPS KAKENHI Grant Number 26000006.

- [1] C. F. Richardson and N. W. Ashcroft, Phys. Rev. Lett. 78, 118 (1997).
- [2] M. Sakata et al., Phys. Rev. B 83, 220512 (2011).
- [3] A. Drozdov et al., Nature 525, 73 (2015).
- [4] D. Duan et al., Sci. Rep. 4, 6968 (2014).
- [5] M. Einaga et al., Nature Phys. 12, 835 (2016).