Carmichael numbers for GL(m)

Eugene Karolinsky, Dmytro Seliutin

We propose a generalisation of Carmichael numbers, where the multiplicative group $\mathbb{G}_m = \operatorname{GL}(1)$ is replaced by $\operatorname{GL}(m)$ for $m \geq 2$. Our construction is based on the analogue of Fermat's little theorem for $\operatorname{GL}(m)$. We prove basic properties of these families of numbers and give some examples.

Let us recall basic information about Carmichael numbers.

Definition 1. A composite number $n \in \mathbb{N}$ is called *Carmichael* if $a^{n-1} = 1$ for any $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Theorem 1. (Korselt's criterion)

Let $n \in \mathbb{N}$ be a composite number. The following are equivalent:

- 1) n is a Carmichael number,
- 2) n is squarefree and if p|n, then p-1|n-1.

Now we pass to Carmichael numbers for GL(m), where m > 1. Let us introduce some notation:

$$D_m(n) = \prod_{k=1}^m \Phi_k(n),$$
$$\nabla_m(n) = \prod_{p|n} p^{\lceil \log_p m \rceil - 1},$$
$$K_m(n) = n \nabla_m(n) D_m(n),$$

where p is a prime number, $\Phi_k(x)$ kth cyclotomic polynomial.

Definition 2. A composite number $n \in \mathbb{N}$ is called an *m*-Carmichael number if $A^{K_m(n)} = I$ for all $A \in \mathrm{GL}(m, \mathbb{Z}/n\mathbb{Z})$.

Theorem 2. Let $n \in \mathbb{N}$ be a composite number. The following are equivalent:

- 1) n is an m-Carmichael number,
- 2) if p|n, then $D_m(p)|K_m(n)$.

Theorem 3. If $n \in \mathbb{N}$ is a nontrivial prime power (i.e. $n = p^k$, where k > 1 and p is a prime number), then n is an m-Carmichael number for all m > 1.