On relation between statistical ideal and ideal generated by a modulus function

Dmytro Seliutin (Supervisor: Volodymyr Kadets) V.N.Karazin Kharkiv National University

The applicant's Ph.D. research deals with filters and ideals of sets and their applications in mathematical analysis and functional analysis. He authored and co-authored 4 articles [2, 3, 4, 6] related to this subject. The application is based on the last article [6], authored by the applicant solely.

Let Ω be a non-empty set. A non-empty family $\mathfrak{I} \subset 2^{\Omega}$ is called *an ideal* on Ω if \mathfrak{I} satisfies: $\Omega \notin \mathfrak{I}$; if $A, B \in \mathfrak{I}$ then $A \cup B \in \mathfrak{I}$; if $A \in \mathfrak{I}$ and $D \subset A$ then $D \in \mathfrak{I}$. For a subset $A \subset \mathbb{N}$ denote $\alpha_A(n) := |A \cap [1,n]|$, where |M| stands for a number of elements in the set $M \subset \mathbb{N}$. Let $A \subset \mathbb{N}$. The natural density of A is $d(A) := \lim_{n \to \infty} \frac{\alpha_A(n)}{n}$. The ideal of sets $A \subset \mathbb{N}$ having d(A) = 0 is called the statistical ideal. We denote this ideal \mathfrak{I}_s . In [1] authors introduced the following generalization of the natural density. Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ is an unbounded modulus function, that is f(x) = 0 if and only if x = 0; $f(x + y) \leq f(x) + f(y)$ for all $x, y \in \mathbb{R}^+$; $f(x) \leq f(y)$ if $x \leq y$; f is continuous from the right at 0; $\lim_{n \to \infty} f(n) = \infty$. Let f be a modulus function. The quantity $d_f(A) := \lim_{n \to \infty} \frac{f(\alpha_A(n))}{f(n)}$ is called the f-density of $A \subset \mathbb{N}$. The ideal $\mathfrak{I}_f := \{A \subset \mathbb{N} : d_f(A) = 0\}$ is called the f-ideal. The ideal \mathfrak{I}_f appears implicitly in [1] and explicitly in [4]. It is known that $\mathfrak{I}_f \subset \mathfrak{I}_s$. The aim of the paper is to present a complete description of those modulus functions f for which $\mathfrak{I}_f = \mathfrak{I}_s$. In [5] the question of description of those modulus function f compatible if for every $\varepsilon > 0$ there exists $\varepsilon' > 0$ and $n_0(\varepsilon) \in \mathbb{N}$ such that $\frac{f(\varepsilon'n)}{f(n)} < \varepsilon$ for all $n \ge n_0$. [5, Proposition 2.7] says that if f is a compatible function then $\mathfrak{I}_s \subset \mathfrak{I}_f$. Also in [5, Proposition 2.9] the inverse implication was claimed to be also true. Unfortunately, the proof of [5, Proposition 2.9] the applicant gives the promised complete description of those modulus function f for which $\mathfrak{I}_f = \mathfrak{I}_s$, which, in particular, fixes the gap in the proof of the above mentioned result from [5, Proposition 2.9].

Theorem 1. For an unbounded modulus function f the following statements are equivalent: (1) $\mathfrak{I}_s = \mathfrak{I}_f$, (2) $\lim_{t \to \infty} h_f(t) = 0$, and (3) f is compatible.

References

- A. Aizpuru, M. C. Listán-García, F. Rambla-Barreno. Density by moduli and statistical convergence, Quaest. Math., 2014. V.37. No. 4. – P. 525–530.
- [2] V. Kadets, D. Seliutin. On relation between the ideal core and ideal cluster points, J. Math. Anal. Appl. 2020, V.492, no. 1. – article number 124430.
- [3] V. Kadets, D. Seliutin, J. Tryba. Conglomerated filters and statistical measures. J. Math. Anal. Appl. 2022, V. 509, no. 1. – article number 125955.
- [4] V. Kadets, D. Seliutin. Completeness in topological vector spaces and filters on N, arXiv:2106.15192v1 [math.FA]. To appear in Bull. Belg. Math. Soc. Simon Stevin.
- [5] F. Leon-Saavedra, M.C. Listán-García, F.J. Perez Fernández, M.P. Romero de la Rosa. On statistical convergence and strong Cesáro convergence by moduli, J. Inequal. Appl., – 2019. – article number 298, 12 pp.
- [6] D. Seliutin. On relation between statistical ideal and ideal generated by a modulus function, arXiv:2110.02292. Submitted to Visnyk of V.N.Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics.