Implicit linear difference equations over residue class rings

M. HENERALOV

V. N. Karazin Kharkiv National University, Ukraine E-mail: me2001.com@gmail.com

Let $\mathbb{Z}_m = \mathbb{Z}/m\mathbb{Z}$ be a residue class ring modulo $m = p_1^{k_1} \dots p_r^{k_r}$, where p_1, \dots, p_r are pairwise disctinct primes and k_1, \dots, k_r are natural numbers. Let $A, B, F_n \in \mathbb{Z}_m$ $(n \in \mathbb{Z}_+ = \{0, 1, 2, \dots\})$. Consider the linear difference equation

$$BX_{n+1} = AX_n + F_n, \quad n \in \mathbb{Z}_+,\tag{1}$$

over \mathbb{Z}_m . If B is non-invertible, this equation is said to be implicit.

The elements $a, b, f_n \in \{0, ..., m-1\}$ are representatives of the residue classes $A, B, F_n \in \mathbb{Z}_m$, respectively. Denote the following greatest common divisor: $d = \gcd(a, b, m)$ and introduce $N = \prod_{j: p_j \nmid b} p_j^{k_j}$ (if $p_j \mid b$ for all j = 1, ..., r, then N = 1).

Theorem 1. The following assertions hold.

- 1. The equation (1) has finitely many solutions if and only if d = 1. Moreover, the amount of these solutions is equal to N.
- 2. The equation (1) has no solutions if and only if $d \nmid f_n$ for some $n \in \mathbb{Z}_+$.
- 3. The equation (1) has infinitely many solutions if and only if $d \neq 1$ and $d \mid f_n$ for all $n \in \mathbb{Z}_+$.

Corollary 1. Equation (1) has a unique solution if and only if d = 1 and N = 1. In particular, the homogeneous equation

$$BX_{n+1} = AX_n, \quad n \in \mathbb{Z}_+ \tag{2}$$

has only trivial solution if and only if d = 1 and N = 1.

Corollary 2. The equation (1) has a unique solution if and only if B is nilpotent and A is an invertible element of the ring \mathbb{Z}_m .

Corollary 3. If the homogeneous equation (2) has only trivial solution, then for any sequence $\{F_n\}_{n=0}^{\infty}$ Equation (1) has a unique solution.

We also proved the theorem about solvability of the initial problem $X_0 = Y_0 \in \mathbb{Z}_m$ for Equation (1).