Implicit linear difference equations over residue class rings

M. Heneralov
V. N. Karazin Kharkiv National University, Ukraine
E-mail: me2001.com@gmail.com

Let $\mathbb{Z}_{m}=\mathbb{Z} / m \mathbb{Z}$ be a residue class ring modulo $m=p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}$, where p_{1}, \ldots, p_{r} are pairwise disctinct primes and k_{1}, \ldots, k_{r} are natural numbers. Let $A, B, F_{n} \in \mathbb{Z}_{m}$ $\left(n \in \mathbb{Z}_{+}=\{0,1,2, \ldots\}\right)$. Consider the linear difference equation

$$
\begin{equation*}
B X_{n+1}=A X_{n}+F_{n}, \quad n \in \mathbb{Z}_{+}, \tag{1}
\end{equation*}
$$

over \mathbb{Z}_{m}. If B is non-invertible, this equation is said to be implicit.
The elements $a, b, f_{n} \in\{0, \ldots, m-1\}$ are representatives of the residue classes $A, B, F_{n} \in \mathbb{Z}_{m}$, respectively. Denote the following greatest common divisor: $d=$ $\operatorname{gcd}(a, b, m)$ and introduce $N=\prod_{j: p_{j} \nmid b} p_{j}^{k_{j}}\left(\right.$ if $p_{j} \mid b$ for all $j=1, \ldots, r$, then $N=1$).

Theorem 1. The following assertions hold.

1. The equation (1) has finitely many solutions if and only if $d=1$. Moreover, the amount of these solutions is equal to N.
2. The equation (1) has no solutions if and only if $d \nmid f_{n}$ for some $n \in \mathbb{Z}_{+}$.
3. The equation (1) has infinitely many solutions if and only if $d \neq 1$ and $d \mid f_{n}$ for all $n \in \mathbb{Z}_{+}$.

Corollary 1. Equation (1) has a unique solution if and only if $d=1$ and $N=1$. In particular, the homogeneous equation

$$
\begin{equation*}
B X_{n+1}=A X_{n}, \quad n \in \mathbb{Z}_{+} \tag{2}
\end{equation*}
$$

has only trivial solution if and only if $d=1$ and $N=1$.
Corollary 2. The equation (1) has a unique solution if and only if B is nilpotent and A is an invertible element of the ring \mathbb{Z}_{m}.

Corollary 3. If the homogeneous equation (2) has only trivial solution, then for any sequence $\left\{F_{n}\right\}_{n=0}^{\infty}$ Equation (1) has a unique solution.

We also proved the theorem about solvability of the initial problem $X_{0}=Y_{0} \in \mathbb{Z}_{m}$ for Equation (1).

