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Biographical sketch

A.V. Pogorelov was born on March 3, 1919, in Korocha town near
Belgorod (Russia). On his farther's "farm"there was just one cow and
one horse. During the collectivization they were taken from him. Once his
father came to the collective-farm stable and found his horse exhausted,
dying from thirst, while the stableman was drunk. Vasily Stepanovich hit
the stableman, a former pauper. This incident was reported as if a kulak
(rich man) has beaten a peasant, and Vasily Stepanovich was forced to
escape the town, with wife Ekaterina Ivanovna, without even taking the
children. A week later Ekaterina Ivanovna has secretly returned for the
children. This is how A.V. Pogorelov came to Kharkov, where his father
became a construction worker on the building of the tractor factory.
A.V.Pogorelov told me the story of how his parents have su�ered during
the collectivization I have heard from him only in 2000. In my opinion,
these events had a strong in�uence on his life and on the way of his
public behavior. He was always very cautious in expressions and liked to
quote his mother who kept saying: silence is gold. However, he never did
the things contradicting his political views. Several times, he successfully
escaped becoming a member of the Communist Party (which was almost
compulsory for a person of his scale in the USSR). As far as I know,
he never signed any letters of condemnation of dissidents, but, again,
any letters in their support, as well. Several times he was elected to the
Supreme Soviet of Ukraine (although, as he said later, against his will).

The mathematical abilities of A.V. Pogorelov became apparent
already at school. His school nickname was Pascal. He became the wi-
nner of one of the �rst school mathematical competitions organized by
the Kharkov University, and then of several All-Ukrainian Mathemati-
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cal Olympiads. Another talent of A.V.Pogorelov was the painting. The
parents did not know, which profession to choose for him. His mother
asked the son's mathematics teacher for advice. He had a look at the
paintings and said that the boy has brilliant abilities, but in the time
of industrialization the painting will not give the resource for life. This
advice determined their choice. In 1937, Aleksei Vasilyevich became a
student of the Department of Mathematics at the Faculty of Physics and
Mathematics of the Kharkov University.

His passion to mathematics immediately drew the attention of the
teachers. Professor P.A. Solovjev gave him the book by T. Bonnezen and
V. Fenchel "Theory of convex bodies". From that moment and for the
rest of his life, geometry became the main interest of Aleksei Vasilyevich.
His study was interrupted by the War. He was conscripted and sent to
study at the Air Force Zhukovski Academy. But he still thinks about
geometry. In August 1943, in a letter to Professor Ya.P. Blank he says:
"Very much I regret, that I left in Kharkov the abstracts of Bonnezen
and Fenchel on the convex bodies. There are many interesting problems
in geometry "in the large"... Do you have any interesting problem of
geometry "in the large"or of geometry in general in mind?"

After graduation from the Academy in 1945, A.V. Pogorelov starts
his work as a designer engineer at the Central Aero-Hydrodynamic Insti-
tute. But the desire to �nish his university education (he �nished four
out of �ve years) and to work in geometry brings him to Moscow Uni-
versity. A.V. Pogorelov asks academician I.G. Petrovsky, the head of the
Department of Mechanics and Mathematics, whether he can �nish his
education. When Petrovski learnt that Aleksei Vasilyevich has already
graduated from the Zhukovski Academy, he decided that there was no
need in the formal completion of the university. When A.V. Pogorelov
expressed his interest in geometry, I.G. Petrovski advised him to contact
V.F. Kagan. V.F. Kagan asked, what area of geometry was Aleksei
Vasilyevich interested in, and the answer was: convex geometry. Kagan
said that this is not his �eld of expertise and suggested to contact
A.D. Aleksandrov who was in Moscow at that time preparing to a mount
climbing expedition at the B.N. Delone apartment (A.D. Aleksandrov
was a Master of Sports on mount climbing, and B.N.Delone was the
pioneer of Soviet mount climbing).

The �rst audition lasted for ten minutes. Sitting on a backpack,
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A.D. Aleksandrov asked Aleksei Vasilyevich the following question: is
it true, that on a closed convex surface of the Gauss curvature K ≤ 1,
any geodesic segment of lengths at most π is minimizing? It took A.V.
a year to answer this question (in a�rmative) and to publish the result
in 1946. The multidimensional generalization of his theorem is a well-
known theorem of Riemannian geometry, which was proved in 1959 by
W. Klingenberg: on a complete simply connected Riemannian manifold
M2n of sectional curvature satisfying 0 < Kσ ≤ λ, a geodesic of the
length ≤ π/

√
λ is minimizing. In the odd-dimensional case, one needs

a two-sided bound for the curvature to obtain the same result, namely
0 < 1

4
λ ≤ Kσ ≤ λ (and the inequality cannot be improved).

Few years ago, I asked Aleksei Vasilyevich, why the Soviet mathemati-
cians at that time showed not much interest to the global Riemanni-
an geometry. He answered: "We had enough interesting problems to
think about". However, as V.A. Toponogov told me later, the �rst
person who appreciated his comparison theorem for triangles in a Ri-
emannian space was A.V. Pogorelov (in my opinion, it would be more
correct to call this theorem the Aleksandrov-Toponogov theorem, since
A.D. Aleksandrov discovered and proved it for general convex surfaces in
the three-dimensional Euclidean space).

Aleksei Vasilyevich became a postgraduate-in-correspondence at
Moscow State University under the supervision of professor N.V. E�mov.
Having read the manuscript of the A.D. Aleksandrov's book "Intrinsic
geometry of convex surfaces he starts his work in the geometry of general
convex surfaces.

One of the main roles of a supervisor, in the opinion of N.V. E�-
mov, was to inspire a post-graduate student to solving di�cult and
challenging problems. I gave numerous talks both at the N.V. E�mov's
and the A.V.Pogorelov's seminars. They were very di�erent by style.
The N.V.E�mov's seminar was long gathered, then the talk lasted for
two hours or more, and the talk was always praised very warmly, so it
was almost impossible to understand the real value of the result. A.V.
always started on time, very punctually. The report lasted for at most an
hour. A.V. did not like to go through the details of the proof(probably
because in many cases, after the theorem was stated, he could prove it
immediately).

In the estimation of the results he was strict and even severe. For
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example, in 1968, three applicants for the Doctor degree presented their
theses at the Pogorelov's seminar in Kharkov. He supported only one of
them, V.A. Toponogov, and rejected the other two, who went to Novosibi-
rsk to A.D. Aleksandrov. All three theses were later successfully defended.

A.V. praised rarely, but when he did � that meant that the result
was really good. He had a very fast thinking, an enormous geometric
intuition, and grasped the essence of the result very fast. Many seminar
participants were afraid to ask questions not to look foolish.

In 1947, A.V. Pogorelov defended his Candidate thesis. The main
result of his thesis was the following theorem: every general closed convex
surface possesses three closed quasi-geodesics. This theorem generalizes
the Lusternik - Shnirelman theorem on the existence of three closed
geodesic on a closed regular convex surface (a quasi-geodesic is a generali-
zation of a geodesics; both the left and the right "turns"of a quasi-
geodesic are nonnegative; for instance, the union of two generatrices of a
round cone dividing the cone angle in two halves is a quasi-geodesic).

After defending his Candidate thesis, A.V. discharges from the mili-
tary service and moves to Kharkov (probably, this was not an easy thing
to do at that time: he was discharges by the same Order of the Defence
Minister, as the son of M.M. Litvinov, the former Soviet Minister for
Foreign A�airs). In one year, he defends his Doctor Thesis on the unique
determination of a convex surface of bounded relative curvature. Soon
after that, he proves the theorem on the unique determination in the
most general settings.

Until 1970, A.V. Pogorelov lectured at Kharkov University. Based on
this lecture notes, he published a series of brilliant textbooks on analytic
and di�erential geometry and the foundation of geometry. Sometimes,
during routine lectures, he was thinking about his research. Anecdote
says that on one of such lectures re�ecting on something completely
di�erent he started improvising and became lost. Then he opened the
textbook with the words: "What does the author say on the topic? Oh,
yes, it is obvious . . . ". In contrast, when lecturing on a topic interesting
to him, A.V. Pogorelov was very enthusiastic and inspired (I remember
one of his topology courses for the 4th year students). But perhaps the
best of his lecturing brilliance was seen when he was presenting his own
results. His talks were real �ne art performances. In his opinion, one of
the most valuable qualities of a mathematical result is its beauty and
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naturalness. That is why he usually omitted technicalities, and for the
sake of simplicity and beauty was ready to sacri�ce the generality.

A.V. Pogorelov was the author of one of the most popular school
textbooks in geometry. This began as follows. He was a member of the
commission on the school education whose head was A.N. Kolmogorov.
A.V. disagreed with the textbook written by A.N.Kolmogorov and
his coauthors and wrote his own manual for teachers on elementary
geometry, in which he built the whole school geometry course starti-
ng with a set of natural and intuitive axioms. The manual was publi-
shed in 1969 and formed a basis for his school textbook. A.V. used to
say: "My textbook is the Kiselyov's improved textbook"("Elementary
geometry"by A.P. Kiselyov is probably the most well-known Russian-
language school geometry textbook; it was �rst published in 1892, with
the last edition in 2002; many generations of students studied the Ki-
selyov's "Geometry"). The �rst version of the A.V. Pogorelov's textbook
sparked sharp criticism from A.D. Aleksandrov whom Pogorelov deeply
respected. This criticism was based on implementing the axiomatic
approach as early as in year six at school: "What is the point to prove
'obvious' statements (from the student's point of view)?". After reworki-
ng of the textbook, these disagreements were resolved, and they remained
in strong friendship till the last days of A.D. Aleksandrov.

Aleksei Vasilyevich was a person of the highest decency. When a �ve
year contract with the "Prosvescheniye"Publisher was coming to an end,
another publisher o�ered a very tempting contract to him. He refused on
the unique ground that it will be unfair to the editor of the textbook.
It should be noted that the money for the school textbook republishing
were the main source of his living in the middle of the 90th.

A.V. Pogorelov told me that I.G. Petrovsky invited him to the Moscow
University, I.M. Vinogradov invited to Moscow Mathematical Institute,
A.D. Aleksandrov invited to Leningrad several times. He even spent
one year (1955-1956) in Leningrad, but then returned to Kharkov. He
preferred to stay in Kharkov, far from the fuss and noise of the capitals.
In Kharkov he proved his theorems, and to Moscow and Leningrad he
went to shine.

Aleksei Vasilyevich Pogorelov was a person blessed by an incredible
natural talent combined with a constant tireless labor.

Alexander Borisenko
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Part I. GEOMETRY

Action of the Monge-Ampere operator on
polynomials

Yu. Aminov1

1B.Verkin Institute for Low Temperature Physics and Engineering of

National Academy of Sciences of Ukraine, Kharkiv, 61103, Ukraine

We consider the Monge-Ampere equation of the simplest kind

∇22z = zxxzyy − z2
xy = f(x, y)

with given polynomial f(x, y) in right hand part.It is natural question
to construct solution z(x, y) also in the form of some polynomial. The
di�culties at the solution of this problem begin for polynomial f of the
4-th degree.

The space of all uniform polynomials of the 4-th degree can be consi-
dered as Euclidean Space E5. Under action of the operator∇22 it passages
into itself.

We obtain necessary and at some cases su�cient conditions on the uni-
form polynomials f of the 4-th degree for existence of the solution z(x, y)
at the form of uniform polynomial of the 4-th degree. We �nd invariant
hypersurfaces in the space E5 for the operator ∇22in form of generalized
cone and quadric, constructed closed chains of polynomials ∇22zi = zi+1

and proved, that such chain lies on some invariant hypersurface.
The polynomial z is a stable point of ∇22 if ∇22z = z. We proved

that the polynomial degree of a stable point can be only 4. The space of
general polynomials (not only uniform) of the degree 4 can be considered
as Euclidean space E15. We �nd the set of all polynomial stable points of
∇22 and proved that this set is some 4-dimensional submanifold in E15.

The work is a development of the articles [1, 2]

1. Yu. Aminov, Polynomial solutions of the Monge-Ampere equation.
Sbornik: Mathematics, 205:11 (2014), 1529-1563.

2. Yu. Aminov, K. Arslan, B. Bayram, B. Bulca, C. Murathan, G. Öztürk On the

solution of the Monge-Ampere equation ZxxZyy − z2xy = f(x, y) with quadratic

right side, Zh. Mat. Fiz. Anal. Geom. 7:3 (2011), 203-211.
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On PL-embeddings of S2 into E4

D.V. Bolotov1

1B.Verkin Institute for Low Temperature Physics and Engineering of

National Academy of Sciences of Ukraine, Kharkiv, 61103, Ukraine

The following question was posed by Yu.B. Zelinsky [1]:
Question: Does there exist a 2-convex embedding of the two-

dimensional sphere S2 into the four-dimensional Euclidean space E4?
Recall that the embedding i : C → En is called m - convex if through

each point x ∈ En \ i(C) passes the m -dimensional plane π such that
i(C) ∩ π = ∅. Note that the ordinary notion of convexity corresponds to
the case of m = n− 1.

Previously, we proved that there is no 2-convex C2 -smooth embeddi-
ng of S2 in E4 [2]. We partially generalize this result to the class of
piecewise linear (PL) embeddings, i.e. embeddings whose image is a
polyhedron in E4 that homeomorphic to the two-dimensional sphere.

We proved the following theorem:
Theorem. There is no 2-convex PL - embedding of S2 into E4 such

that each vertex is incident with no more than 5 edges.

1. Yu.B. Zelinskii Convexity. Selected topics. Kiev: Institute of mathematics NASU,
2012. (in Russian)

2. D.V. Bolotov On embeddings S2 into E4, Reports of NASU, 11 (2013), 19�22.

(in Russian)

Bounded harmonic functions on negatively
curved manifolds

A. Borb�ely1

1Department of Mathematics, Kuwait University, Safat, 13060, Kuwait

The existence of non-constant bounded harmonic functions on simply
connected manifolds with negative curvature bounded away from zero
is still an unsolved problem. In this talk we review the known result
and methods. We will focus on a construction of a manifold where the
Dirichlet problem is not solvable but still the manifold supports a lot of
bounded non-trivial harmonic functions. It will be shown that this is not
a unique phenomena, but a large class of manifolds of this type supports
non-constant harmonic functions.
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On cylindricity of submanifolds of nonnegative
Ricci curvature in a Minkowski space

A.A. Borisenko1, Y. Nikolayevsky2

1Department of Di�erential Equations and Geometry,

B.Verkin Institute for Low Temperature Physics and Engineering of

National Academy of Sciences of Ukraine, Kharkiv, 61103, Ukraine
2Department of Mathematics and Statistics,

La Trobe University, Melbourne, 3086, Australia

By the Splitting Theorem of Cheeger-Gromoll, a complete Riemanni-
an manifold Mn of non-negative Ricci curvature which contains a line (a
complete geodesic every arc of which minimises the distance between its
endpoints) is the Riemannian product Nn−1 ×R (under the assumption
of non-negativity of the sectional curvature, the same result was proved
by Toponogov). The counterpart of this result in submanifold geometry
is as follows: a complete Riemannian submanifold Mn ⊂ Rn+p of non-
negative Ricci curvature which contains a line (of Rn+p) is the cylinder
Nn−1 × R ⊂ Rn+p−1 × R. Similar results, under certain assumptions on
the index of relative nullity and the type (these are two integer a�ne
invariants of a point of the submanifold) have been established by Bori-
senko.

A direct translation of these results to the Finsler settings by replaci-
ng the Euclidean ambient space Rn+p by a Minkowski space Mn+p and
the Ricci curvature, by the Ricci curvature of the induced Finsler metric
on the submanifold Mn ⊂Mn+p, most likely, does not work. The reason
for that is the fact that in Finsler geometry, the connection between
the Ricci (or the �ag) curvature of a submanifold and its shape is much
weaker than that in Riemannian geometry. For example, we constructed
a (locally) strictly saddle surface of positive �ag curvature in a three-
dimensional Minkowski space; moreover, by Burago-Ivanov, any two-
dimensional Finsler metric admits a locally saddle isometric immersion
in a four-dimensional Minkowski space.

One may impose some restrictions on the ambient Minkowski space:
by the result of Borisenko, a submanifold of non-negative Ricci curvature
in a Randers space which contains a line must be a cylinder; similar
conclusion holds under certain assumptions on the index of relative nulli-
ty.

We consider submanifolds of non-negative Ricci curvature in arbitrary
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Minkowski spaces which contain a line or whose relative nullity index
is positive. For hypersurfaces, submanifolds of codimension two or of
dimension two, we prove that such a submanifold is a cylinder, under
certain conditions on the type (the inertia of the pencil of the second
fundamental forms).

Complete classi�cation of simple closed geodesics on
regular tetrahedra in Lobachevsky space

A. Borisenko1, D. Sukhorebska1

1B.Verkin Institute for Low Temperature Physics and Engineering of

National Academy of Sciences of Ukraine, Kharkiv, 61103, Ukraine

We described all simple closed geodesics on regular tetrahedra in
three-dimensional Lobachevsky space.

Properties of closed geodesics on the regular tetrahedron in the
hyperbolic space di�er from one in Euclidean space. Moreover, the full
classi�cation of closed geodesics on regular tetrahedrons in Euclidean
space follows from the the regular triangular tiling of the Euclidean
plane [1]. In general it is impossible to make a triangular tiling of the
Lobachevsky plane by regular triangles.

Theorem 1. On a regular tetrahedron in Lobachevsky space for any
coprime integers (p, q), 0 ≤ p < q, there exists unique, up to the rigid
motion of the tetrahedron, simple closed geodesic of type (p, q). The
geodesics of type (p, q) exhaust all simple closed geodesics on a regular
tetrahedron in Lobachevsky space.

The simple closed geodesic of type (p, q) has p points on each of
two opposite edges of the tetrahedron, q points on each of another two
opposite edges, and there are (p + q) points on each edges of the third
pair of opposite edges.

Theorem 2. Let N(L, α) be a number of simple closed geodesics of
length not greater than L on a regular tetraedron with plane angles of
the faces equal to α in Lobachevsky space. Then there exists a function
c(α) such that

N(L, α) = c(α)L2 +O(L lnL),

where O(L lnL) ≤ CL lnL as L→ +∞, c(α) > 0 when 0 < α < π
3
and

lim
α→π

3

c(α) = +∞; lim
α→0

c(α) =
27

32(ln 3)2π2
.
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1. D. B. Fuchs, E. Fuchs, Closed geodesics on regular polyhedra, Mosc. Math. J., 7:2
(2007), 265�279.

2. V. Yu. Protasov, Closed geodesics on the surface of a simplex, Sbornik:
Mathematics, 198:2 (2007), 243-260.

3. I. Rivin, Simple curves on surfaces, Geometriae Dedicata, 87:1-3 (2001), 345-360.

4. M. Mirzakhani, Growth of the number of simple closed geodesics on hyperbolic

surfaces, Annals of Mathematics, 168 (2008), 97-125.

On the reverse isoperimetric problem for uniformly
convex bodies

K. Drach1

1Jacobs University Bremen, 28759 Bremen, Germany

In this talk we will present results on the reverse isoperimetric problem
for uniformly convex bodies. A convex body K is said to be uniformly
convex if it is convex and the principal curvatures along the boundary
∂K are uniformly bounded, in viscosity sense, by some positive constant
λ either from above (λ-concave bodies), or from below (λ-convex bodies).

The reverse isoperimetric problem consists of �nding a body of least
volume among all bodies of given surface area. This is in contrast to
the classical isoperimetric problem, when the volume is being maximized
instead. For general sets with well-de�ned volume and surface area the
reverse isoperimetric problem is boring. However, for uniformly convex
bodies it has a non-trivial solution.

We will start with an overview of some earlier results on the reverse
isoperimetric problem for λ-convex and λ-concave bodies (obtained joi-
ntly with Alexander Borisenko) and then, in the main part of the talk,
we will focus on the most recent (and currently the most comprehensive)
result � the bratwurst theorem � and its generalization.

The Bratwurst Theorem. For any n > 1, the λ-sausage body, that is
the convex hull of two balls of radius 1/λ, is the unique volume minimizer
among all λ-concave bodies of given surface area in Rn+1.

The main part of the talk is based on joint work with Roman Chernov
(Jacobs University) and Kateryna Tatarko (University of Alberta).
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Metrics of constant positive curvature with conic
singularities

A. Eremenko1

1Purdue University,West Lafayette,USA

Let S be a compact Riemann surface. We discuss conformal metrics
of constant curvature 1 on S with �nitely many conic singularities. The
question is how many such metrics exist for given S with prescribed
singularities and prescribed angles at the singularities. A survey of known
results and some new results on this question will be given.

On m-convex hypersurfaces

N.V. Filimonenkova1

1Peter the Great St.Petersburg Polytechnic University, St.Petersburg 195251, Russia

Let Γ ⊂ Rn be a C2-hypersurface, 1 6 p 6 n−1. The p-curvature of Γ
is the p-order elementary symmetric function of the principal curvatures,
i.e., the p-trace of curvature matrix. The hypersurface Γ ∈ Rn is
m-convex if its p-curvatures, p = 1, 2, . . . ,m, are positive.

The notion of m-convexity is a generalization of the classic convexity.
It appeared in the late 20th century as a result of a successful application
of G�arding cones in the theory of fully nonlinear di�erential equations
in partial derivatives, [1]. Namely, the solvability condition of the Diri-
chlet problem for m-Hessian equation in a bounded domain Ω ⊂ Rn is
expressed in terms of the (m− 1)-convexity of ∂Ω.

The systematic study of m-convex hypersurfaces is just at the begi-
nning. The most complete overview of accumulated facts and methods
is available in the paper [2]. In [3] we study the m-convexity of multidi-
mensional paraboloids and hyperboloids.

This talk is about current studies, examples and applications of m-
convex hypersurfaces.

The work was supported by the RFBR grant 18-01-00472.

1. L. Ca�arelly, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second
order elliptic equations III. Functions of the eigenvalues of the Hessian, Acta
Math. 155 (1985), 261-301.

2. N.M. Ivochkina, N.V. Filimonenkova, Di�erential geometry in the theory of
Hessian operators, arXiv:1904.04157 (2019).

3. N.V. Filimonenkova, P.A. Bakusov, Analysis of m-convexity of multydimensional
paraboloids and hyperboloids, Matematicheskoe Prosveshchenie. Third series., 21
(2017), 64-86.
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Around model �exors
V. Gorkavyy1

1B. Verkin Institute for Low Temperature Physics and Engineering of

National Academy of Sciences of Ukraine, Kharkiv, 61103, Ukraine

A non-�exible polyhedron P is called a model �exor, if its physi-
cal models behave like physical models of �exible polyhedra so that
they admit deformations with almost unobservable / invisible changes
in forms and sizes of faces but with essential changes in dihedral angles
between faces [1]. The model �exibility may be simulated either by conti-
nuous deformations which preserve the combinatorial structure but sli-
ghtly variate the sizes of faces, or by continuous isometric deformations
which modify the combinatorial structure of polyhedra [2]-[5].

We will illustrate how both kinds of deformations may be used to
simulate the model �exibility for some particular families of polyhedra
(Alexandrov-Vladimirova star-like bipyramids, Milka birosettes, Jessen
orthogonal icosahedron, Goldberg siamese dipyramids, Wunderlich anti-
prisms, etc).

1. A. Milka, Linear bendings of right convex polyhedra, Matematicheskaya �zika,
analiz, geometriya, 1 (1994), 116-130.

2. A. Milka, Linear bendings of star-like bipyramids, European Journal of Combi-
natorics, 31 (2010), 1050-1064.

3. V. Gorkavyy, D. Kalinin, On the model �exibility of the Jessen orthogonal
icosahedron, Contributions to Algebra and Geometry, 57 (2016), 607-622.

4. V. Gorkavyy, A. Milka, Birosettes are model �exors, Ukrainian Mathematical
Journal, 70 (2018), 1022-1041.

5. V. Gorkavyy, I. Fesenko, On the model �exibility of Siamese dipyramids, Journal

of Geometry, 110:1 (2019), 7:1-7:18.

Automorphisms of the Kronrod-Reeb graph of

Morse functions on the sphere
A. Kravchenko1, S. Maksymenko2

1 Taras Shevchenko National University of Kyiv, Ukraine
2 Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Let M be a compact two-dimensional manifold and, f ∈ C∞MR
is Morse's function and Γf its Kronrod-Reeb's graph. We denote the
O(f) = {f ◦ h | h ∈ D(M)} orbit of f with respect to the natural
right action of the group of di�eomorphisms D(M) on C∞MR, and
S(f) = {h ∈ D(M) | f ◦h = f} is the stabilizer of this function. It is easy
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to show that each h ∈ S(f) induces an automorphism of the graph Γf .
Let also S

′
(f) = S(f) ∩Did(M) � be a subgroup of Did(M), consisting

of di�eomorphisms preserving f and isotopic to identical mappings and
Gf be the group of automorphisms of the Kronrod-Reeb graph induced
by di�eomorphisms belonging to S

′
(f). This group is the key ingredient

for calculating the homotopy type of the orbit O(f).
In the previous article, the authors describe the structure of groups

Gf for Morse functions on all orientational surfaces, except for sphere and
torus. In this paper we study the case M = S2. In this situation Γf is
always a tree, and therefore all elements of the group Gf have a common
�xed Fix(Gf) subtree, which can be even from one point. The main result
is to calculate the groups Gf for all Morse functions f : S2 → R in which
Fix(Gf is not the point.
Theorem 1. Let f ∈ C∞(S2,R) be Morse function on a sphere. Suppose
that all elements of the group Gf have a common �xed edge E. Let
x ∈ E be an arbitrary point and A and B is the closure of the connected
components S2 \ p−1(x). Then A and B-double discs are invariant with
respect to S ′id(f), the restriction of f |A, f |B are Morse functions and we
have the following isomorphism:

φ : Gf → Gf|A ×Gf|B ,

is determined by the formula φ(γ) = (γ|ΓA ; γ|ΓB).

1. E. A. Kudryavtseva. On the homotopy type of spaces of Morse functions on
surfaces. Mat. Sb., 204(1):79-118, 2013.

2. S. Maksymenko and B. Feshchenko. Smooth functions on 2-torus whose kronrod-
reeb graph contains a cycle. Methods Funct. Anal. Topology, 21(1):22-40, 2015.

3. S. Maksymenko and A. Kravchenko. Automorphisms of Kronrod-Reeb graphs of
morse functions on compact surfaces. 2018.

4. S. Maksymenko. Deformations of functions on surfaces by isotopic to the identity
di�eomorphisms. 2013.

5. Stephen Smale. Di�eomorphisms of the 2-sphere. Proc. Amer. Math. Soc.,

10:621-626, 1959.

About Aleksandrov's estimates
N.Krylov1

1University of Minnesota, Minneapolis, USA

We give a brief overview of the role of Aleksandrov's estimates and
Pororelov's ideas in our research.
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Conformally �at metrics of limited curvature and
convex subsets of space of Lobachevsky

M.V. Kurkina1, E.D. Rodionov2, V.V. Slavsky1

1Ugra State University, Khanty-Mansiysk, Russia
2Altai State University, Barnaul, Russia

Let S2 ⊂ R3 the two-dimensional single sphere in a three-dimensional
Euclidean space scentry in origin of coordinates. For S2 the conformal
and �at metrics of a look is set ds2 = exp(−2σ(x))dx2, x ∈ S2. Curvature
of a metrics of ds2 it is calculated on a formula

K = exp(2σ) (1−4σ) ,

where 4σ - Laplace's operator concerning a sphere metrics. The metrics
by means of logarithmic potential is restored through curvature

σ(z) =

∫
S2

ln |z − t|2dtK +
1

4π

∫
S2

σ(t)dt+ ln(4)− 1. (1)

1. Yu. Reshetnyak Two-dimensional manifolds of bounded curvature, Geometry IV:
Non-Regular Riemannian Geometry. ï¨� Berlin, Springer-Verlag, 1993. P. 3-163,
245-250. (Encyclopaedia of Math. Sci.; 70).

2. E. Rodionov, V. Slavsky, Polar transform of conformally �at metrics, Siberian
Adv. Math., 28:2 (2018), 101ï¨�114

3. M. Kurkina, E. Rodionov, V. Slavsky, Numerical methods of interpolation for
the solution of some problems of the convex geometry in Lobachevsky's space,
J. Math. Sci., 203:4 (2014). 516ï¨�526.

4. V. Slavsky, Conformal-�at metrics of limited curvature on n to the-dimensional
sphere, Researches on geometry "in general"and mathematical to the analysis.
Novosibirsk, Academy of Sciences of the USSR. Institute of mathematics; 9
(1987). 183-196.

First Betti numbers of orbits of Morse functions on
surfaces

I. Kuznietsova1, Yu. Soroka1

1Institute of Mathematics of National Academy of Sciences of Ukraine,

Kyiv, Ukraine

Let G be a minimal class of groups satisfying the following conditions:
1) 1 ∈ G; 2) if A,B ∈ G, then A × B ∈ G; 3) if A ∈ G and n ≥ 1, then
the wreath product A on Z ∈ G.
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It is easy to see that every group G ∈ G can be written as a word
in the alphabet A = {1,Z, (, ) ,×, o2, o3, o4, . . . }. We will call such word a
presentation of the group G in the alphabet A.

Theorem. Let G ∈ G, ω be an arbitrary presentation of G in the
alphabet A, and β1(ω) be the number of symbols Z in the presentation
ω. Then there are the following isomorphisms for the center and the
commutator subgroup of G:

Z(G) ∼= G/[G,G] ∼= Zβ1(ω).

In particular, the number β1(ω) depends only on the group G.
The groups from the class G appear as fundamental groups of orbits

of Morse functions on surfaces. Let M be a compact surface and D be
the group of C∞-di�eomorphisms of M . There is a natural right acti-
on of the group D on the space of smooth functions C∞(M,R). Let
O(f) = {f ◦ h |h ∈ D} be the orbit of f under the above action. Let
Of (f) denote the path component of f in O(f).

Homotopy types of stabilizers and orbits of Morse functions were
calculated in a series of papers by Sergiy Maksymenko [2] and Elena
Kudryavtseva [1]. As a consequence of Theorem 1 we get the following.

Corollary. Let M be a connected compact oriented surface distinct
from S2 and T 2, f be a Morse function on M, G = π1Of (f) ∈ G, ω be an
arbitrary presentation of G in the alphabet A, and β1(ω) be the number
of symbols Z in the presentation ω. Then the �rst integral homology
group H1(O(f),Z) of O(f) is a free abelian group of rank β1(ω):

H1(O(f),Z) ' Zβ1(ω).

In particular, β1(ω) is the �rst Betti number of O(f).

1. E. Kudryavtseva, The topology of spaces of Morse functions on surfaces, Math.
Notes 92 (2012), no. 1-2, 219�236, Translation of Mat. Zametki 92 (2012), no.
2, 241�261.

2. S.I. Maksymenko, Homotopy types of stabilizers and orbits of Morse functions

on surfaces, Ann. Global Anal. Geom. 29 (2006), no. 3, 241�285.
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Are log-concave measures better than log-concave
with symmetry?

G. Livshyts1

1Georgia Institute of Technology, Atlanta, USA

In the recent years, a number of conjectures has appeared, concerning
the improvement of the inequalities of isoperimetric type under additional
assumptions of symmetry; this includes the B-conjecture, the Gardner-
Zvavitch conjecture of 2007, the Log-Brunn-Minkowski conjecture of
2011, and some variants. The conjecture of Gardner and Zvavitch, also
known as dimensional Brunn-Minkowski conjecture, states that even
log-concave measures in ⊂ Rn are in fact 1

n
- concave with respect to

the addition of symmetric convex sets. In this talk we shall prove that
the standard Gaussian measure enjoys 1

2n
concavity with respect to

centered convex sets. The improvements to the case of general log-concave
measures shall be discussed as well: under certain assumption on the
hessian of the potential, we show that an even log-concave measure is
indeed better-than-log-concave with respect to the addition of symmetric
convex sets. The methods of proof are variational, and the tools come
from di�erential geometry and PDE. This is a joint work with A. Kolesni-
kov.

Di�eomorphisms preserving Morse-Bott functions

S.I. Maksymenko1

1 Topology Laboratory, Institute of Mathematics of National Academy of Sciences of

Ukraine, Kyiv, 01004 Ukraine

Let M be a smooth compact manifold and P be either the real
line or the circle. Notice also that there is a natural right action
ν : C∞(M,P ) × D(M) → C∞(M,P ), de�ned by ν(f, h) = f ◦ h of the
groups of di�emorphisms D(M) of M on the space C∞(M,P ) of smooth
maps M → P . For f ∈ C∞(M,P ) and a subset X ⊂M let

S(f) = {h ∈ D(M) | f ◦ h = f}, S(f,X) = S(f) ∩ D(M,X)

be the stabilizers of f with respect to the above action of D(M) and the
induced action of D(M,X). Let also Sid(f) and Sid(f,X) be the identity
path components of the corresponding stabilizers.
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Theorem.[1] Let f : M → P be a Morse-Bott map of smooth compact
manifold M , so the set Σf of critical points of f is a disjoint uni-
on of smooth mutually disjoint closed submanifolds C1, . . . , Ck. Let also
X ⊂M \ Σf be a closed (possibly empty) subset. Then the maps

ρ : S(f,X)→ D(Σf ), ρ(h) = h|Σf ,

ρ0 : Sid(f,X)→ Did(Σf ) ≡
k∏
i=1

Did(Ci), ρ0(h) = (h|C1 , . . . , h|Ck),

are locally trivial �brations over their images, and the map ρ0 is surjecti-
ve.

This result can be regarded as a variant of the well know result Cerf
and Palais on local triviality of restrictions to critical submanifolds of
Morse-Bott function f for f -preserving di�eomorphisms.

1. Olexandra Khohliyk, Sergiy Maksymenko, Di�eomorphisms preserving Morse-

Bott functions, arXiv:1808.03582

Di�eomorphisms of the solid torus preserving

a codimension one Morse-Bott foliation with

one singular circle

S.I. Maksymenko1, O.O. Khohliyk2

1 Topology Laboratory, Institute of Mathematics of National Academy of Sciences of

Ukraine, Kyiv, 01004 Ukraine
2 Department of Geometry, Topology and Dynamic Systems, Taras Shevchenko

National University of Kyiv, Kyiv, 03127 Ukraine

Let

T = D2 × S1 = {(x, y, w) ∈ R2 × C | x2 + y2 ≤ 1, |w| = 1}

be a solid torus, Cr = {z ∈ D2 | |z| = r} ⊂ D2, r ∈ [0, 1] and

FT = {Cr × S1}r∈[0,1]

be a foliation on T into 2-tori parallel to the boundary and one singular
circle C0 × S1, which is the central circle of the torus T .

Denote by D(FT , ∂T ) the group of di�eomorphisms of T , which leave
each leaf of the foliation FT invariant and �xed on T .

Theorem.The group D(FT , ∂T ) is contractible.
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Solutions To Overdetermined Problems On
Riemannian Manifolds

I. A. Minlend1,2

1Cheikh Anta Diop University, Dakar, Senegal
2African Institute for Mathematical Sciences - Senegal, Dakar, Senegal

We consider a Riemannian manifold of dimension greater or equal to
two. An overdetermined problem can be de�ned as a second order parti-
al di�eren- tial equation on a regular domain for which, both Dirichlet
and Neumann boundary conditions are imposed. In the particular case
when the boundary data are all con- stant functions, the corresponding
problem is called Serrin's overdetermined problem. Moreover, a regular
domain where Serrin's overdetermiend problem is solvable is called a
Serrin domain.

In this talk, we prove the existence of a family of Serrin domains
in any smooth and compact Riemannian manifolds. These domains are
obtained by perturbing a small geodesic ball centered at a point of the
manifold. Moreover, provided the man- ifold has a non degenerate critical
point of the scalar curvature, the family made of boundaries of the Serrin
domains constructed constitute a smooth foliation of a neighborhood of
this critical point. In the last part of the talk, we also show that Serrin
domains are Cheeger sets.

The volume preserving mean curvature �ow in the
sphere and the Lagrangian mean curvature �ow in C2

V. Miquel1
1Department of Mathematics, University of Valencia, Valencia, Spain

I shall start with the second problem, giving account of a joint result
with I. Castro and A. Lerma which studies the evolution, under mean
curvature �ow, of a Lagrangian surface in C2 contained in a sphere S3.
We shall see that it is related with the volume preserving mean curvature
�ow of Hopf tori in S3 and will introduce to the possible motions by the
mean curvature �ow of general tori in S3 which are near the Cli�ord
torus. This last part is a joint work (in progress) with M. C. Domingo-
Juan.
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Algebraic nonintegrability of magnetic billiards on
the sphere and hyperbolic plane

A. Mironov1

1Novosibirsk State University, Novosibirsk, Russia

We consider billiard ball motion in a convex domain on a constant
curvature surface in�uenced by the constant magnetic �eld. We examine
the existence of integral of motion which is polynomial in velocities. We
prove that if such an integral exists then the boundary curve of the
domain determines an algebraic curve in C3 which must be nonsingular.
Using this fact we deduce that for any domain di�erent from round disc
for all but �nitely many values of the magnitude of the magnetic �eld
billiard motion does not have Polynomial in velocities integral of motion.
Results were obtained with Misha Bialy, Tel Aviv University.

Hypersurfaces Of Spinc Manifolds With Special
Spinor Fields

R. Nakad1

1Notre Dame University-Louaiz�e, Faculty of natural and applied sciences,

department of mathematics and statistics

In this talk, we prove that every totally umbilical hypersurfaceM ≥ 4
of a Riemannian Spinc manifold carrying a parallel or a real Killing spi-
nor is either a totally geodesic hypersurface or an extrinsic hypersphere.
As applications, we prove that there are no extrinsic hyperspheres in
complete manifolds with holonomy G2 or Spin(7) and in some special
Sasakian manifolds. This is joint work with Nadine Grosse (University of
Freiburg, Germany).

Recent results on homogeneous geodesics and
geodesic orbit spaces

Yu.G. Nikonorov1

1Southern Mathematical Institute of the Vladikavkaz Scienti�c Center of the

Russian Academy of Sciences, Vladikavkaz, Russia

Let (M, g) be a Riemannian manifold and let γ : R → M be a
geodesic in (M, g). The geodesic γ is called homogeneous if γ(R) is
an orbit of an 1-parameter subgroup of Isom(M, g), the full isometry
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group of (M, g). A Riemannian manifold (M, g) is called a manifold with
homogeneous geodesics or a geodesic orbit manifold if every geodesic
γ of M is homogeneous. These de�nitions are naturally generalized
to the case when all isometries are taken from a given Lie subgroup
G ⊂ Isom(M, g), that acts transitively on M . In this case we get the
notions of G-homogeneous geodesics and G-homogeneous geodesic orbit
spaces. This terminology was introduced in [6] by O. Kowalski and
L. Vanhecke, who initiated a systematic study of such spaces. We refer
to [6], [1], [4], and [8] for expositions on general properties of geodesic
orbit Riemannian manifolds and historical surveys.

This talk is devoted to recent results related to geodesic orbit spaces
and homogeneous geodesics.

1. A. Arvanitoyeorgos, Homogeneous manifolds whose geodesics are orbits. Recent
results and some open problems, Irish Math. Soc. Bulletin, 79, (2017), 5-29.

2. V.N. Berestovskii, Yu.G. Nikonorov, On homogeneous geodesics and weakly
symmetric spaces, Ann. Glob. Anal. Geom. (2018), DOI: 10.1007/s10455-018-
9641-1.

3. Z. Chen, Yu.G. Nikonorov, Geodesic orbit Riemannian spaces with two isotropy
summands. I, Geom. Dedicata (2019), DOI: 10.1007/s10711-019-00432-6.

4. Z. Du�sek, Homogeneous geodesics and g.o. manifolds, Note Mat., 38(1), (2018)
1-15.

5. C. Gordon, Yu.G. Nikonorov, Geodesic orbit Riemannian structures on Rn, J.
Geom. Phys., 134, (2018) 235-243.

6. O. Kowalski, L. Vanhecke, Riemannian manifolds with homogeneous geodesics,
Boll. Unione Mat. Ital. Ser. B, 5(1), (1991) 189-246.

7. Y. Nikolayevsky, Yu.G. Nikonorov, On invariant Riemannian metrics on Ledger-
Obata spaces, Manuscripta Math., 158(3-4), (2019) 353-370.

8. Yu.G. Nikonorov, On the structure of geodesic orbit Riemannian spaces, Ann.
Glob. Anal. Geom., 52(3), (2017) 289-311.

Solutions of the Ermakov-Milne-Pinney Equation
and Invariant Constant Mean Curvature Surfaces

A. P�ampano1

1University of the Basque Country, Faculty of Science and Technology,

Department of Mathematics, 48940 Bilbao, Spain

Nonlinear di�erential equations have been of an increasing interest in
Di�erential Geometry and Physics during the last decades. One of the



28 Geometry, Di�erential Equations and Analysis

simplest examples is the today called Ermakov-Milne-Pinney (EMP, for
short) equation, that is, the second order di�erential equation

x′′(t) + q(t)x(t) =
c

x3(t)
,

c being a constant, [3], [4].
On the other hand, constant mean curvature (CMC) surfaces have

played a prominent role in Analysis and Di�erential Geometry. In parti-
cular, invariant CMC surfaces have rich symmetry which makes them
ideal for modeling physical systems.

In this talk, we are going to show a correspondence between soluti-
ons of the EMP equation with constant coe�cients and invariant CMC
surfaces of both Riemannian and Lorentzian 3-space forms, [1]. Moreover,
we are also going to prove that, after a suitable manipulation, the EMP
equation with constant coe�cients represents the Euler-Lagrange equati-
on of the variational problem

Θµ(γ) =

∫
γ

√
κ− µ ds

acting on an adequate space of curves, where κ denotes the curvature of
the curve, [1]. This variational problem is an extension of a Blaschke's
curvature energy and, as it turns out, it characterizes the pro�le curves
of invariant CMC surfaces, [2].

1. J. Arroyo, O. J. Garay and A. P�ampano, Constant mean curvature invariant
surfaces and extremals of curvature energies, J. Math. Anal. App., 462, (2018)
1644-1668.

2. W. Blaschke, Vorlesungen uber Di�erentialgeometrie und Geometrische
Grundlagen von Einsteins Relativitatstheorie I: Elementare Di�erennti-
algeometrie, Springer, (1930).

3. V.P. Ermakov, Second-order di�erential equations. Conditions of complete
integrability, Univ. Isz. Kiev Series III, 9, (1980) 1-25.

4. E. Pinney, The nonlinear di�erential equation y”+p(x)y′+ cy3 = 0, Proc. A. M.
S., 1, (1950).
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In�nitesimal conformal transformations of the second
degree in the Riemannian space of the second

approximation

S.M. Pokas'1, A.V. Krutoholova1

1Odesa I. I. Mechnikov National University, Odesa, Ukraine

We consider a Riemannian space Vn, related to an arbitrary system of
coordinates {x1, x2, . . . , xn}. In the neighborhood of arbitrary �xed point

M0(xn0 ), we construct the second approximation space Ṽ 2
n (yh; g̃ij(y)) by

de�ning its metric tensor g̃ij(y) as follows:

g̃ij(y) = g
◦
ij +

1

3
R
◦
iαβjy

αyβ,

where g
◦
ij = gij(M0), R

◦
iαβj = Riαβj(M0).

In the space Ṽ 2
n , we consider the following in�nitesimal conformal

transformations
y′h = yh + ξ̃h(y)δt (1)

De�nition 1. The transformations (1) are called transformations of
the second degree [2], if the displacement vector ξh(y) is of the following
form

ξ̃h(y) = ah + ah·ly
l + ah·l1l2y

l1yl2 ,

where ah, ah·l, a
h
·l1l2 are some constants.

We treat the generalized Killing equations [1], namely

∇(iξ̃j) = ψ(y)g̃ij, and get the following result.

Theorem 1. Let Ṽ 2
n be a space of second approximation for the Ri-

emannian space (Vn, K) of constant curvature K 6= 0. Then there exist
the in�nitesimal conformal transformations of the second degree with di-

splacement vector ξ̃h(y) of the form

ξ̃h(y) = ah + ah·ly
l − K

3
aly

lyh,

where ah·l satis�es the condition aα· (ig
◦

æ)α = 0, and ah· is an arbitrary

constant.

1. L.P. Eisenhart, Continuous transformation groups, FLPH, Moscow, 1947.

2. S.M. Pokas, In�nitely small conformal transformations in the Riemannian space
of the second approximation, Proc. of the Intern. Geom. Center, Vol. 7, 2 (2014),
36-50.
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One integral inequality for curvatures of
closed curves in Rn

R. Posylaieva1, V. Gorkavyy2

1Kharkiv National University of Civil Engineering and Architecture, Ukraine
2B. Verkin Institute for Low Temperature Physics and Engineering of

National Academy of Sciences of Ukraine, Kharkiv, 61123, Ukraine

Let γ be an arbitrary smooth closed curve in Rn, n ≥ 4. Suppose that
γ has nowhere vanishing curvatures k1, k2, ..., kj for some 2 ≤ j ≤ n− 1.
Then the following inequality holds true [1]-[3]:∫

γ

√
k2
j−1 + k2

j + k2
j+1 ds > 2π. (1)

Consequently, a smooth closed curve in Rn with nowhere vanishing
curvatures k1, k2, ..., kn−1 satisfy a series of n− 2 integral inequalities.

The inequality (1) is proved to be sharp in the case of any odd j.
Moreover, the sharpness is provided by curves of constant curvatures if
n is even or by their slight modi�cations if n is odd [2].

As for the case of an even j, the problem of the sharpness of (1) still
remains unsolved.

We start to explore the problem by considering the inequality∫
γ

√
k2

1 + k2
2 + k2

3 ds > 2π

for smooth closed curves with nowhere vanishing curvatures k1, k2 in
R4.

The main result states that for curves with constant curvatures
k1 > 0, k2 > 0, k3 in R4, as well as for their speci�c modi�cations,
the following sharp estimate holds true:∫

γ

√
k2

1 + k2
2 + k2

3 ds ≥ 2
√

5π.

It is conjectured that the same estimate holds for smooth closed curves
with arbitrary curvatures k1 > 0, k2 > 0, k3 in R4.

1. Yu.A. Aminov, Di�erential geometry and topology of curves. CRC Press, London,
2001.

2. V. Gorkavyy, One integral inequality for closed curves in Euclidean space,
C. R. Acad. Sci. Paris, 321 (1995), 1587-1591.
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3. V. Gorkavyy, R. Posylaieva, On the optimality of one integral inequality for closed

curves in R4, arxiv:1811.11056 (2018), 7 pp.

On illumination of the boundary of a convex body in
En, n = 4, 5, 6

A. Prymak1, V. Shepelska1

1University of Manitoba, Winnipeg, MB, R3T 2N2, Canada

Let Hn be the minimal number of smaller homothetic copies of an
n-dimensional convex body required to cover the whole body. Equi-
valently, Hn can be de�ned via illumination of the boundary of a
convex body by external light sources. It is a simple observation that
for an n-cube (or n-parallelotope) exactly 2n smaller copies are needed,
so Hn ≥ 2n. The Levi-Hadwiger-Gohber-Markus's conjecture is that
Hn = 2n with equality attained only for n-parallelotopes. One can refer
to [1] for a recent survey.

The best known upper bound in three-dimensional case is H3 ≤ 16
and is due to Papadoperakis [3]. The method is based on the reducti-
on of the illumination problem for a general convex body to that of
covering speci�c sets of relatively simple structure by certain rectangular
parallelotopes. We use Papadoperakis' approach to improve by a factor
of approximately three the best previously known upper bounds on Hn

for n = 4, 5, 6. In particular, we show H4 ≤ 96 where the previous bound
was H4 ≤ 296 (obtained in [2]).

In the 4-dimensional case we also obtain a precise solution of two
related covering problems. Namely, the smallest number of rectangular
parallelotopes with sides parallel to the coordinate axes and the sum of
dimensions strictly less than 1 (or ≤ 1) that is needed to cover the union
of all 2-dimensional faces of the 4-dimensional unit cube is 89 (or 88,
respectively).

1. K. Bezdek, M.A. Khan, The geometry of homothetic covering and illumination,
Discrete geometry and symmetry, Springer Proc. Math. Stat., 234, Springer,
Cham, 2018, 1-30.

2. M. Lassak, Covering the boundary of a convex set by tiles, Proc. Amer. Math.
Soc., 104 (1988), no. 1, 269-272.

3. I. Papadoperakis, An estimate for the problem of illumination of the boundary

of a convex body in E3, Geom. Dedicata, 75 (1999), no. 3, 275-285.
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Manifolds and surfaces with locally Euclidean
metrics

I.Kh. Sabitov1

1Lomonosov Moscow State University, 119991 Moscow, Russia

The metric of a Riemannian manifold Mn is called locally Euclidean
(l.E.) if any its point has a neighbourhood isometric to a ball in Rn with
the standart Euclidean metric. The world of l.E. metrics is rather vast,
f.e. the metric of any polyhedron with removed vertices is l.E. one.

In the theory of l.E. metrics there are many questions to be studied.
F.e.

1) How to check is a given metric

ds2 = gijdu
iduj (1)

l.E. if the coe�cients gij are not su�ciently smooth?
2) How to �nd an existing isometry to a ball in Rn if it is known that

the metric (1) is l.E. one?
3) What are properties of an isometry to R ∗ n from a l.E. Mn (what

is class of smoothness about, is it an immersion, or embedding and so
on).

4) The questions of isometric immersions and embeddings of a domain
with l.E. metric in a Eulidean space of a greater dimension.

5) Properties of submanifolds with l.E. metrics.
6) Bendings of polyhedra as surfaces with l.E. metrics.
7) Monge-Amp�ere types di�erential equations with zero right sides

(local and global propeties).
We can't give answers to all these questions nevertheless there are

some at least partial results many of which are presented in [1], [2], [3],
[4].

The work of author is supported by Grant of Scienti�c Schools, project
No. 6222.2018.1.

1. I.Kh. Sabitov, Isometric Immersions and Embeddings of Locally Euclidean metri-
cs. Reviews in Mathematics and Mathematical Physics, vol 13, Part 1, Cambridge
Scienti�c Publishers, Cambridge, 2009.

2. M.I. Stogrin, Isometric embeddings of Plato polyhedra. Uspekhi mat. nauk, 62:2
(2007), 183-184.

3. I.Kh. Sabitov, On exterior curvature and exterior structure of C1-smooth normal
developable surfaces. Math. Notes, 87:6 (2010), 900-906.
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4. I.Kh. Sabitov, Solutions of trivial Monge-Amp�ere equation with isolated singular

points. Siberian Electronic Mathematical Reports, 13 (2016), 740-743.

Gr�unbaum's inequality for projections and sections

M. Stephen1

Tel Aviv University, Tel Aviv, Israel

Let K ⊂ Rn be a convex body. The centroid of K is given by

g(K) :=
1

voln(K)

∫
K

x dx ∈ Rn.

We will assume throughout that the centroid of K is at the origin.
Gr�unbaum [1] proved that, for every ξ ∈ Sn−1,

voln(K ∩ ξ+) ≥
(

n

n+ 1

)n
voln(K).

Here, ξ+ := {x ∈ Rn : 〈x, ξ〉 ≥ 0}. Note that there is equality when K
is a cone and ξ is chosen to be the inward pointing unit normal at the
cone's base.

I will discuss recent extensions of Gr�unbaum's inequality to orthogonal
projections [3] and sections [2] of convex bodies. For every k-dimensional
subspace E and every ξ ∈ Sn−1 ∩ E, we proved the following:

volk((K|E) ∩ ξ+) ≥
(

k

n+ 1

)k
volk(K|E)

and volk(K ∩ E ∩ ξ+) ≥
(

k

n+ 1

)k
volk(K ∩ E).

Here, ·|E denotes the orthogonal projection onto E.

1. B. Gr�unbaum, Partitions of mass-distributions and of convex bodies by
hyperplanes, Paci�c J. Math. 10 (1960) 1257�1261.

2. S. Myroshnychenko, Stephen M., Zhang N., Gr�unbaum's inequality for sections,
J. Func. Anal. 275 (2018) 2516�2537.

3. M. Stephen, N. Zhang, Gr�unbaum's inequality for projections, J. Func. Anal. 272
(2017) 2628�2640.
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Helical tractrices and pseudo-spherical submanifolds
in Rn

K. Stiepanova1, V. Gorkavyy2

1S. Kuznets Kharkiv National University of Economics, Kharkiv, 61166, Ukraine
2B. Verkin Institute for Low Temperature Physics and Engineering of, Ukraine

National Academy of Sciences, Kharkiv, 61123, Ukraine

The classical theory of pseudo-spherical submanifolds and their
Bianchi-B�acklund transformations deals with n-dimensional submani-
folds in (2n− 1)-dimensional spaces of constant curvatures, see [1]-[2]. In
[3] Yu. Aminov and A. Sym settled the problem asking for generalizati-
ons of the classical theory to the case of pseudo-spherical submanifolds
with arbitrary codimension. A survey of results concerning this problem
may be found in [4].

Particularly, we are interested in searching for submanifolds with arbi-
trary dimension and codimension, which may be viewed as analogues /
generalizations of the classical Beltrami and Dini surfaces in R3.

The pseudo-spherical submanifolds in Rn that admit Bianchi transfor-
mations degenerated to curves and hence inherit features of the Beltrami
surface, were completely described in [5]. As well, the pseudo-spherical
submanifolds in Rn that admit B�acklund transformations degenerated
to straight lines and hence inherit features of the Dini surfaces, were
completely described in [6].

For constructing submanifolds in Rn that admit B�acklund transfor-
mations degenerated to curves di�erent from straight lines, we propose
to use helical tractrices. By de�nition, a smooth oriented curve γ in Rn

is called a helical tractrix if the endpoints of unit segments tangent to γ
form a curve of constant curvatures in Rn.

It is conjectured that submanifolds in Rn obtained by particular
skew rotations of helical tractrices have constant negative sectional
curvature and inherit basic features of the Dini surfaces concerning their
B�acklund transformations. We provide arguments partially con�rming
this conjecture.

1. Yu.A. Aminov, Geometry of submanifolds. CRC Press, London, 2001.
2. K. Tenenblat, Transformations of manifolds and applications to di�erential

equations. Longman, Harlow, 1998.
3. Yu. Aminov, A. Sym, On Bianchi and Backlund transformations of surfaces in

E4, Math. Phys., Anal., Geom., 3 (2000), 505-512.
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4. V. Gorkavyy, Generalization of the Bianchi-B�acklund Transformation of Pseudo-
Spherical Surfaces, J. of Math. Sciences, 207 (2015), 467-484.

5. V. Gorkavyy, O. Nevmerzhitska, Pseudo-spherical submanifolds with a degenerate
Bianchi transformation, Res. in Math., 60 (2011), 103-116.

6. V. Gorkavyy, O. Nevmerzhitska, Degenerate B�acklund transformation, Ukrainian

Mathematical Journal, 68 (2016), 41-56.

A Steiner formula in the Lp Brunn Minkowski theory

K. Tatarko1, E. Werner2

1University of Alberta, Edmonton, Canada
2Case Western Reserve University, Cleveland, USA

The classical Steiner formula is one of the central parts of Brunn
Minkowski theory. It expresses the volume of the parallel body K + tBn

2

of a convex body K with Euclidean ball Bn
2 as a polynomial in parameter

t, where the intrinsic volumes arise as the coe�cients of this polynomial.
The Lp Brunn Minkowski theory is an extension of the classical Brunn

Minkowski theory which was initiated by Lutwak in [1] and rapidly
evolved over the past years. It centers around the study of a�ne invari-
ants associated with convex bodies. One of the main objects in the Lp
Brunn Minkowski theory is the Lp a�ne surface area

asp(K) =

∫
∂K

Hn−1(x)
p

n+p

〈x, ν(x)〉
n(p−1)
n+p

dHn−1(x),

where ν(x) denotes the outer unit normal at x ∈ ∂K, the boundary of
K, Hn−1(x) is the Gauss curvature at x and Hn−1 is the standard surface
area measure on ∂K.

In this talk we present an analogue of the classical Steiner formula for
the Lp a�ne surface area of a Minkowski outer parallel body for any real
parameter p. This new Steiner type formula includes the classical Steiner
formula and the Steiner formula from the dual Lp Brunn Minkowski
theory as special cases.We introduce the coe�cients in our new Steiner
type formula which we call Lp quermassintegrals and also observe some
of their properties.

1. E. Lutwak, The Brunn-Minkowski-Firey theory II. A�ne and geominimal surface

areas, Adv. Math. 118 (2) (1996), 244-294.
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Isomorphisms of Sobolev spaces on Riemannian
manifolds and quasiconformal mappings

S. Vodopyanov1

1Sobolev Institute of Mathematics, Novosibirsk, Russia

We prove that a measurable mapping of domains on Riemannian
manifolds induces, by the composition rule, an isomorphism of Sobolev
spaces with the �rst weak derivatives, whose summability index is equal
to (di�erent from) the topological dimension of the manifold, if and
only if it coincides almost everywhere with some quasiconformal (quasii-
sometric) mapping.

Projective classi�cation of points of a submanifold
F 3 ⊂ E6.

A. Yampolsky1

1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

A�ne classi�cation of points of submanifolds F n ⊂ En+m in the
Euclidean space was given by A.Borisenko [1]. It was proved that the
necessary condition for the number of a�ne classes to be �nite is

m
(
n(n+1)

2
−m

)
≤ n2 − 1. It follows that in case F 3 ⊂ E6 there are

in�nitely many classes of a�nely equivalent points. We prove that one
can distinguish a �nite number of classes of points in this case too, but
with respect to wider (projective) group of transformations. The classi-
�cation is based on the notion of indicatrix of normal curvature and the
projective classi�cation of Steiner surfaces [2].

Normal curvature of a submanifold (F n, g) ⊂ En+m at q ∈ F n

in direction X ∈ TqF
n with respect to ξ ∈ T⊥q F

n is a number

kξ(q,X) =
Bξ(X,X)

g(X,X)

∣∣∣
q
, where Bξ(X,X) is a second fundamental form of

the submanifold with respect to unit normal ξ. If X varies all over the
unit sphere Sn ⊂ TqF

n, then kξ(q,X) : Sn−1 → TqF
n de�nes the a�ne

mapping for each �xed ξ. The image of the mapping kξ(q) is called by
indicatrix of the normal curvature at q ∈ F n with respect to ξ ∈ T⊥q F n.
The indicatrix can be considered as the a�ne projection of a projective
immersion ind : RP n−1 → RPm given by

ind(X1 : X2 : . . . : Xn) = (B1(X,X) : . . . : Bm(X,X) : g(X,X)),
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where B1, . . . , Bn are the second fundamental forms with respect to some
normal frame.

De�nition 1 The points of a regular submanifold F n ⊂ En+m are
said to be projectively equivalent if their normal curvature indicatrices
are the same up to projective transformations GL(n) × GL(m + 1) of
RP n−1 ×RPm acting over their projective images.

Denote by ν = dim(span(B1, . . . , Bn) the point-wise codimension and
de�ne extended point-wise codimension by µ = dim(span(B1, . . . , Bn, g)).
De�ne a point-wise indicatrix index as a pair (ν, µ).

Theorem 1 There are 10 projective classes of points of a submanifold
F 3 ⊂ E6 in accordance to the values of point-wise index (ν, µ) and the
type of normal curvature indicatrix, namely

Index Type of indicatrix
(3,4) • Rome surface • Cross-cap • Cross-cup • T-surface
(3,3) a part of plane which do not pass trough the origin
(2,3) a part of plane which pass trough the origin
(2,2) a straight line segment which do not pass trough the origin
(1,2) a straight line segment which pass trough the origin
(1,1) a point which do not coincide with the origin
(0,1) a point which coincide with the origin

The non-degenerate indicatrices of index (3,4) belong to the class of Stei-
ner surfaces. The plots (as well as parametric and other equations) of
Stainer surfaces can be found on A. Co�man web-page [3].

The author thanks professor A.Borisenko for valuable discussions,
remarks and suggestions.

1. A. Borisenko. A�ne classi�cation of points of multidimensional surfaces. Sib.
Mat. Zhurnal, May-June 1990, V.31, No. 3, pp. 19 - 29 (Russian); Sib Math J
(1990) 31: 379. https://doi.org/10.1007/BF00970344 (Eng. Transl).

2. A. Co�man, A. Schwartz, and C. Stanton, The algebra and geometry of Stei-
ner and other quadratically parametrizable surfaces, Computer Aided Geometric
Design (3) 13 (April 1996), 257-286.

3. http://users.pfw.edu/Co�manA/steinersurface.html
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On Gruenbaum-type inequalities and their
applications

V. Yaskin1

1University of Alberta, Edmonton, Canada

Let K be a convex body in Rn. According to an old result of
Gruenbaum, if K is cut by a hyperplane passing through its centroid,
then the volumes of the two resulting pieces cannot be too small (they are
larger than 1/e times the volume of K). We will discuss recent generali-
zations of Gruenbaum's result to projections and sections of convex bodi-
es, as well as their applications.
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Part II. DIFFERENTIAL EQUATIONS
AND ANALYSIS

On the Correlation Functions of the Characteristic

Polynomials of the Non-Hermitian Random
Matrices with Independent Entries

Ie. Afanasiev1

1B. Verkin Institute for Low Temperature Physics and Engineering of the National

Academy of Sciences of Ukraine, 61103 Kharkiv, Ukraine

The talk is concerned with the non-Hermitian random matrices which
entries are independent identically distributed complex random variables.
One of the most interesting questions about these matrices is the local
statistics of their eigenvalues. It was established in [1] that the k-point
correlation function converges in vague topology to that for Complex
Ginibre Ensemble if the �rst four moments of the entries are the same
as in the Gaussian case. There is a hope to reduce the restrictions on
the third and the fourth moments using the supersymmetry approach
(SUSY).

In the present talk we consider the correlation functions of the
characteristic polynomials. Although formally not in the realm of local
eigenvalue statistics, the correlation functions of the characteristic
polynomials are similar to the spectral correlation functions from the
SUSY point of view; and are also of independent interest.

The main result is that the correlation functions of the characteri-
stic polynomials behave like those for Complex Ginibre Ensemble up to
a factor depending only on the forth absolute moment of the common
probability law of the matrix entries.

1. T. Tao, V. Vu., Random matrices: universality of local spectral statistics of non-

Hermitian matrices, Ann. Probab., 43(2) (2015), 782-874.
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Theoretically investigating the loss of stability and
supercritical behaviour of a thin-walled shell

D. Y. Bobyliev1

1Kryvyi Rih State Pedagogical University, 50086, Kryvyi Rih, Ukraine

The loss of stability of the original form of equilibrium under the
in�uence of external forces is the main cause of the destruction of shell
structures made of modern structural materials. The destruction at the
same time occurs suddenly and almost instantly, which, as a rule, is
accompanied by large human victims. To date, developed a large number
of various options for the theory of shells,

At the moment when the shell loses stability, along with the main
form of equilibrium of the middle surface, another form of equilibrium
appears, in�nitely close to the main one. It is the in�nitesimal deviations
of the middle surface of the shell from the basic form of equilibrium that
correspond to the real critical load causing a loss of stability of the shell.

In the classical formulation of shell stability problems, the radial di-
splacements and, which contradicts the stability equations, are assigned
to the critical load in accordance with the critical load. Nevertheless,
to date, it is believed that the load found as a result of this decision is
critical. She received the name of the upper critical load.

When studying the stability of shells, we use dynamic and static stabi-
lity criteria [1, 2]. The stability equations for shells are derived from the
nonlinear equations of the theory of shells using the static Euler criterion.
The equations of stability of the shells and the corresponding boundary
conditions determine the deviations of the middle surface of the shell from
the basic form of equilibrium at the moment of loss of stability, linking
among themselves in�nitesimal displacements, deformations and force
factors. There is a paradoxical situation. The equations of the mechanics
of a deformable solid, which provide the highest accuracy in the mechani-
cs of shells, are derived by discarding small quantities of a higher order
of smallness.

The paper proposes a method for constructing a physically consistent
theory of the stability of shells, which allows for the determination of
real critical forces to use theoretical material on the stability of shells,
accumulated over a century of development of the theory of stability.
Using this method, the calculated formulas are obtained for an isotropic
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cylindrical shell of medium length when loaded with axial forces, lateral
and all-round pressure.

1. E.I. Grigolyuk, V.V. Kabanov, Ustoychivost' obolochek. Nauka, Moskva, 1978.
(in Rus.)

2. A.V. Pogorelov, Poterya ustoychivosti tsilindricheskikh obolochek, Dokl. AN

SSSR, 245:2, (1979) 330-332. (in Rus.)

On reachability and controllability problems for the
heat equation controlled by the Neumann boundary

condition on a half-axis
L.V. Fardigola1,2, K.S. Khalina1

1B. Verkin Institute for Low Temperature Physics and Engineering of the National

Academy of Sciences of Ukraine, 61103 Kharkiv, Ukraine
2V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

Consider the control system on a half-axis

wt = wxx, x ∈ (0,+∞), t ∈ (0, T ), (1)

wx(0, ·) = u, t ∈ (0, T ), (2)

w(·, 0) = w0, x ∈ (0,+∞), (3)

where T > 0 is given, u ∈ L∞(0, T ) is a control, the state w(·, t),
t ∈ (0, T ), and the initial state w0 belong to the space H1(0,+∞) of the
Sobolev type. We consider the steering condition w(·, T ) = wT , x > 0 for
this system, where wT ∈ H1(0,+∞).

A state wT ∈ H1(0,+∞) is called reachable from a state
w0 ∈ H1(0,+∞) in a given time T if there exists a control u ∈ L∞(0, T )
such that there exists a unique solution w to system (1)�(3) and
w(·, T ) = wT .

A state wT ∈ H1(0,+∞) is called approximately reachable from a
state w0 ∈ H1(0,+∞) in a given time T if there exists a sequence
{un}∞n=1 ⊂ L∞(0, T ) such that there exists a unique solution wn to system
(1)�(3) with u = un and ‖wT − wn(·, T )‖ → 0 as n→∞.

For wT ∈ H1(0,+∞) necessary and su�cient conditions of reachabi-
lity from the origin are obtained in a given time T in the case |u| ≤ L on
(0, T ), where L > 0 is a given constant. Under these conditions, using the



42 Geometry, Di�erential Equations and Analysis

Markov power moment problem, it is constructed a sequence {un}∞n=1 of
bang-o�-bang controls, un(t) ∈ {−1, 0, 1}, t ∈ (0, T ), solving the approxi-
mate reachability problem from the origin.

A state w0 ∈ H1(0,+∞) is called approximately controllable in a
given time T if for any wT ∈ H1(0,+∞) and for any ε > 0 there exists
a control uε ∈ L∞(0, T ) such that for the solution wε to system (1)�(3)
with u = uε we have ‖wT − wε(·, T )‖ < ε.

It is shown that each state w0 ∈ H1(0,+∞) is approximately
controllable in a given time T . The controls solving the approximate
controllability problems are constructed explicitly.

These results are illustrated by examples.
Note, that the same problems were considered in [1] for the heat

equation controlled by the Dirichlet boundary condition on a half-axis.

1. L. Fardigola, K. Khalina, Reachability and Controllability Problems for the Heat

Equation on a Half-Axis, J. Math. Phys., An., Geom., 15 (2019), 57-78.

One-point initial problem for a nonhomogeneous

linear di�erential-di�erence equation in
a Banach space

S.L. Gefter1, A.L. Piven'1
1V. N. Karazin Kharkiv National University, Kharkiv, 61022, Ukraine

Let A be a bounded linear operator with a spectral radius r(A) on a
complex Banach space X and h ∈ C, h 6= 0. The operator Bruwier series
is called a following formal operator series

F (z) =
∞∑
n=0

(n!)−1(z + nh)nAn, z ∈ C.

Theorem 1. Let r(A)|h| < 1/e. Then the operator Bruwier seri-
es F (z) is an entire operator-function of an exponential type less than
|h|−1. Moreover, the operator family U(z) = F (z)(F (0))−1, z ∈ C
forms uniformly continuous group with the in�nitesimal generator
T = AF (h)(F (0))−1, which satis�es the operator equation T = AehT .
Consequently, F (z) = ezTF (0), z ∈ C.
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Now, we consider an initial problem

u′(z) = Au(z + h) + f(z), u(0) = u0, (1)

where f : C→ X be an entire vector-valued function.
Theorem 2. Let |h|r(A)eσ|h|+1 < 1 and f(z) be an entire vector-

valued function of exponential type σ. Then for any u0 ∈ X there exists
a unique solution of the initial problem (1) in the class of entire vector-
valued functions of exponential type less than σ + 1

|h| ,

u(z) = U(z)

u0 −
∞∑
m=0

Am
mh∫
0

(mh− ζ)m

m!
f(ζ)dζ

+

+
∞∑
n=0

An
z+nh∫
0

(z + nh− ζ)n

n!
f(ζ)dζ.

We also present some results about existence and uniqueness of a
solution of an one-point problem for the implicit equation
Bu′(z) = Au(z + h) + f(z) with closed operators A and B.

Some approximate solutions of the Bryan-Pidduck
equation

V.D. Gordevskyy1, O.O. Hukalov2

1V.N.Karazin Kharkiv National University, 61022, Kharkiv, Ukraine
2B. Verkin Institute for Low Temperature Physics and Engineering of the National

Academy of Sciences of Ukraine, 61103 Kharkiv, Ukraine

The Boltzmann equation for the model of rough spheres (or the Bryan-
Pidduck equation) has the form [1]:

D(f) = Q(f, f); (1)

D(f) ≡ ∂f

∂t
+

(
V,
∂f

∂x

)
, (2)

Q(f, f) ≡ d2

2

∫
R3

dV1

∫
R3

dω1

∫
Σ

dαB(V − V1, α)

·
[
f(t, V ∗1 , x, ω

∗
1)f(t, V ∗, x, ω∗)− f(t, V, x, ω)f(t, V1, x, ω1)

]
. (3)
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The solution to this equation will be look for in the next form:

f(t, V, x, ω) =
∞∑
i=1

ϕi(t, x)Mi(V, ω), (4)

where Mi(V, ω) are the exact solutions of the Bryan-Pidduck equation

D(Mi) = Q(Mi,Mi) = 0

and the coe�cient functions ϕi(t, x) are non-negative functions, smooth
on R4.

As a value of the deviation between the parts of equation (1) we will
consider a uniform-integral error of the form:

∆ = sup
(t,x)∈R4

∫
R3

dV

∫
R3

dω
∣∣∣D(f)−Q(f, f)

∣∣∣. (5)

In the paper [2], a several cases of coe�cient functions ϕi(t, x) were
obtained for which the deviation (5) can be done arbitrarily small. This is
possible thanks to a special selection of hydrodynamic �ow parameters.

1. S. Chapman and T.G. Cowling, The mathematical theory of non-uniform gases.
Cambridge Univ. Press, Cambridge, 1952.

2. O.O. Hukalov, V.D. Gordevskyy, In�nite-modal approximate solutions of the

Bryan-Pidduck equation, Matematychni Studii, 1, (2018), 95-108.

Hardy Spaces of Fuchsian Groups in the Upper
Half-plane

A. Kheifets1, P. Yuditskii2
1University of Massahusetts Lowell, USA

2Johannes Kepler University, Linz, Austria

We establish exact conditions for non triviality of all subspaces of the
Hardy space (with respect to the Lebesgue measure) in the upper half
plane, that consist of the character automorphic functions with respect
to the action of a discrete subgroup of SL2(R). Such spaces are the
natural objects in the context of the spectral theory of almost periodic di-
�erential operators. It is parallel to the celebrated Widom - Pommerenke
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characterization for Hardy spaces (with respect to the harmonic measure)
with the following modi�cation: the Green function of the group is substi-
tuted with the Martin function and also the Martin measure must be a
pure point one.

The time-optimal control problem and a vector
moment min-problem

V.I. Korobov 1

1V.N. Karazin Kharkiv National University, Kharkiv, 61022, Ukraine

Our talk deals with the time-optimal control problem [1].
As was shown in [2], a controllability problem for a linear system can

be reduced to the abstract moment L-problem [3]. It turned out that
an analytic solution of the linear time-optimal problem for systems with
a one-dimensional control can be obtained by reducing to the Markov
moment min-problem proposed in [4]-[6].

In the talk, a vector moment min-problem is introduced, which is used
for solving the linear time-optimal problem for systems with a multi-
dimensional control.

1. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, & E. Mishchenko The
mathematical theory of optimal processes, Gosudarstv. Izdat. Fiz.-Mat. Lit.,
Moscow 1961, 391 pp. (Russian); translated by Interscience, New York, 1962.

2. N.N. Krasovsky Theory of Control of Motion, Moscow, 1968 (Russian).
3. M.G. Krein L-problem in abstract linear normalize space. Article IV in the book

Akhiezer N. I., Krein M. G. Some Questions in the Theory of Moments. Kharkov,
GONTY, 1938 (Russian); translated by American Mathematical Soc., Providence
1962, 265 pp.

4. V.I. Korobov and G.M. Sklyar The Markov moment problem on a minimally
possible segment, Dokl. Akad. Nauk SSSR, Vol. 308, No. 3 (1989), 525-528
(Russian); translated in Soviet Math. Dokl. Vol. 40, no. 2 (1990), 334�337.

5. V.I. Korobov and G.M. Sklyar The Markov moment min-problem and time opti-
mality, (Russian) Sibirsk. Mat. Zn., Vol. 32, No. 1(1991), 60-71; translated in
Siberian Math. J., Vol. 32, No. 1 (1991), 46-55.

6. V.I. Korobov and G.M. Sklyar Time-optimality and the power moment problem,

(Russian) Math. Sb.(N.S.), Vol. 134 (176), No. 2 (1987), 186-206; translated

in Math. USSR-Sb., Vol. 62, No. 1 (1989), 185-206.
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The envelope for family of ellipsoids in the
controllability function method

V.I. Korobov 1, T.V. Revina1

1V.N. Karazin Kharkiv National University, Kharkiv, 61022, Ukraine

Consider the system
ẋ = A0x+ b0u, (1)

where x ∈ Rn is a state, u is a scalar control satisfying the constraint
|u| ≤ 1. Here the superdiagonal elements of the matrix A0 are equal to 1
and the other elements are equal to zero; the last element of the vector
b0 is equal to 1 and the other elements are equal to zero.

The approach presented in the talk is based on the controllability
function method proposed by V.I. Korobov in 1979. In [1], a control u(x)
solving the feedback synthesis problem for system (1) was given. This
control satis�es the conditions: 1) |u(x)| ≤ 1; 2) the trajectory x(t) of
the closed system ẋ = A0x + b0u(x) starting from an arbitrary initial
point x(0) ∈ Rn ends at the origin in a �nite time.

In the controllability function method, the angle between the motion
direction and the decrease direction of the controllability function is not
less than the corresponding angle in the dynamic programming method
and is not greater than the angle in the Lyapunov function method [1,
p. 10]. The main advantage of the controllability function method is the
�niteness of the motion time.

For example, in the case n = 2, control system (1) takes the form(
ẋ1

ẋ2

)
=

(
x2

u

)
, (2)

i.e., we consider the feedback synthesis problem for the motion of a cart.
Let a1 < −4.5. The controllability function Θ = Θ(x1, x2) is de�ned for
x 6= 0 as the unique positive solution of the equation

(4 + a1)Θ4

a1(3 + a1)
− a1x

2
1 + 4Θx1x2 + Θ2x2

2 = 0. (3)

Let

u(x) =
a1x1

Θ2(x1, x2)
− 3x1

Θ(x1, x2)
. (4)
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Then the trajectory of the closed system starting from an initial poi-
nt x(0) = x0 ∈ R2 ends at the point x(T ) = 0 in the �nite time
T = T (x0) = Θ(x0).

We analyze the envelope for one-parametric family (3) at Θ = 1 for
system (2). It is close to the curve describing all points from which we
may steer to the origin due to the Pontryagin maximum principle [2] for
the time t = 1.

1. V.I. Korobov The method of controllability function, R&C Dynamics, M.-Izhevsk,
2007 (Russian).

2. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, & E. Mishchenko The

mathematical theory of optimal processes, Interscience, New York, 1962.

Rigorous theory of 1d turbulence

S. Kuksin1

1University Paris 7, Paris, France

My talk is a review of the results on the turbulence in the 1d vi-
scous Burgers equation on a circle, obtained in theses of my former PhD
students Andrey Biryuk and Alexandre Boritchev, based on my earlier
work on other nonlinear PDEs. The results were next developed in their
papers, in my LN on this topic, and were put to the �nal form, which I
will present, in a MS of my joint book with A.Boritchev. Namely, I will
talk about the Burgers equations on a circle, perturbed by a random force
which is smooth in x and white in time t, and explain that Sobolev norms
of its solutions admit upper and lower estimates, which are asymptoti-
cally sharp as the viscosity goes to zero. This assertions allows to derive
for solutions of the equation results, which are rigorous analogies of the
main predictions of the Kolmogorov theory of turbulence. They were
non-rigorously obtained by physicists Aurell-Frisch-Lutsko-Vergassola in
1992.
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On some applications of atomic functions and their
generalizations

V.O. Makarichev1, I.V. Brysina1

National Aerospace University �KhAI�, Kharkiv 61070, Ukraine

On some applications of atomic functions and
their generalizations

The function is called atomic if it is a solution with a compact support
of the linear functional di�erential equation with constant coe�cients and
linear transformations of the argument [1]. Generalized Fup-functions,
which were constructed in [2], naturally generalize atomic functions.

Consider the function f(x) ∈ L2(R) such that
1) suppf(x) = [−1, 1];
2) f(x) ≥ 0 for any x ∈ [−1, 1];
3) f(−x) = f(x);

4)
∞∫
−∞

f(x)dx = 1.

Denote by F (t) the Fourier transform of this function.
The function

fN,m(x) =
1

2π

∞∫
−∞

eitx
(

sin(t/N)

t/N

)m+1

F (t/N)dt,

where N > 0 and m = 2, 3, 4, . . . is called a generalized Fup-function.
It was shown in [1, 3] that spaces of linear combinations of shifts

of atomic functions and generalized Fup-functions have good approxi-
mation properties. In terms of the Kolmogorov width, these spaces are
asymptotically extremal for approximation of classes of periodic di-
�erentiable functions. This means that atomic functions and generali-
zed Fup-functions are as good constructive tool as classic trigonometric
polynomials.

In this talk, we introduce the system of non-stationary smooth
wavelets with a compact support constructed using generalized
Fup-functions and also present the results of a comparison of this
system with a trigonometric functions using the example of lossy image
compression.
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1. V.A. Rvachev, Compactly supported solutions of the functional-di�erential equati-
ons and their applications, Russ. Math. Surv., 45 (1990) 87-120.

2. I.V. Brysina, V.A. Makarichev, On the asymptotics of the generalized Fup-
functions, Adv. Pure. Appl. Math., 5 (2014), 131-138.

3. I.V. Brysina, V.A. Makarichev, Approximation properties of the generalized
Fup-functions, Visnyk of V. N. Karazin Kharkiv National University, Ser.
"Mathematics, Applied Mathematics and Mechanics 84 (2016), 61-92.

Couplings of symmetric operators with possibly
unequal and in�nite de�ciency indices

V.I. Mogilevskii1

Poltava National V.G. Korolenko Pedagogical University, 36000 Poltava, Ukraine

We extend the known results on couplings of symmetric operators
Aj, j ∈ {1, 2}, in the sense of A.V. Shtraus to the case of operators
Aj with arbitrary (possibly unequal and in�nite) de�ciency indices. In
particular, we generalize to this case the coupling method based on the
theory of boundary triplets for symmetric operators. This enables us to
obtain the abstract Titchmarsh formula, which gives the representation of
the Weyl function of the coupling in terms of Weyl functions of boundary
triplets for A∗1 and A∗2. In applications to di�erential operators on R
this formula turns into the classical Titchmarsh formula, which gives a
representation of the characteristic matrix Ω(·) in terms of Titchmarsh-
Weyl functions on semiaxes R+ and R−. Moreover, by using the coupling

method we parameterize all Naimark exit space extensions Ã = Ã∗ of
the second kind of a densely de�ned symmetric operator A with �nite
possibly unequal de�ciency indices.

Solvability of a boundary value problem for a
fourth-order mixed type equation

Zh.A. Otarova1

1 Karakalpak state university, Nukus, 230112, Uzbekistan

In a rectangular domain, we study the boundary value problem for
a fourth-order mixed di�erential equation of mixed type containing a
wave operator and the product of the inverse and direct heat conduction
operators.
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Lu ≡
{
uxx − utt = f1 (x, t) , ∈ Ω+,
uxxxx − utt = f2 (x, t) , ∈ Ω−,

(1)

where f1 (x, t) , f2 (x, t) - are the speci�ed functions. In the
Ω = {(x, t) : 0 < x < p, −T1 < t < T2 } , area where Ω+ = Ω∩(t > 0),
Ω− = Ω ∩ (t < 0), the boundary problem is investigated. Reference to
equation (1).

Problem 1. Find a function u (x, t) , such that:
1) is continuous in Ω, together with its derivatives given in the

boundary conditions;
2) is a regular solution of equation (1) in Ω+ ∪ Ω−;
3) satis�es the boundary conditions:

u (0, t) = u (p, t) = 0, −T1 ≤ t ≤ T2,

uxx (0, t) = uxx (p, t) = 0 , −T1 ≤ t ≤ 0,

u (x, T2) = 0, 0 ≤ x ≤ p,

u (x,−T1) = 0, 0 ≤ x ≤ p,

4) satis�es the gluing condition

ut (x,+0) = ut (x,−0) , 0 < x < p.

De�nition 1 A function u (x, t) ∈ V (Ω), where

V (Ω) =
{
u (x, t) : u ∈ C

(
Ω
)
, uxx, utt ∈ C (Ω+) ,

uxx ∈ C
(
Ω−
)
, uxxxx, utt ∈ C (Ω−) , ut ∈ C (Ω)

}
,

is called a regular solution of problem 1, for, f (x, t) ∈ C (Ω) if it satis�es
equation (1) in Ω.

De�nition 2 A function u (x, t) ∈ L2 (Ω) is called a strong solution
of problem 1 forf (x, t) ∈ L2 (Ω)if there is a sequence {uk} , k = 1, 2, ...
regular solutions such that ‖uk − u‖

L2(Ω)
→ 0, ‖Luk − f‖

L2(Ω)
→ 0 for

k →∞.
Theorem Let the numbers p and T2 be such that for n = 1, 2...

Nn(T ) 6= 0, where

Nn (T ) ≡
∣∣∣∣(1− e−2n

2π2

p2
T1

)
· cos nπ

p
T2 + nπ

p

(
1 + e

−2n
2π2

p2
T1

)
· sin nπ

p
T2

∣∣∣∣ ,
then if there is a regular solution to problem 1, then it is unique.
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On the persistence probability for Kac polynomials,
random matrices and random walks

M. Poplavskyi1

King's College London, London, WC2R 2LS, UK

A natural quantity that characterizes a given real stochastic process
X(t) is its persistence probability, i.e. the probability that a process
doesn't change the sign up to time t. For most of the systems this probabi-
lity decays as a power law in the limit of large time, and corresponding
power is called persistence constant of a process. Problem of calculating
persistence constants for various models have experienced some recent
attention due to applications in �nances, theoretical physics as well as to
other questions in pure probability.

Our main goal is to �nd persistence constant for a family of Kac
polynomials that can be de�ned as

θ = − lim
n→∞

logP [K2n (x) 6= 0, x ∈ [0, 1]]

log n
,

where the polynomial K2n is given by

KN (z) =
N∑
k=0

akz
k, ak are N (0, 1) i.i.d. random variables.

It was argued by P. Forrester that eigenvalues of rank-one truncated
random orthogonal matrices and random roots of Kac polynomial have
identical statistical properties. By studying corresponding RMT problem
we show

Theorem 1 Let M2n be a top left minor of size 2n × 2n of orthogonal
matrix chosen uniformly at random (with respect to Haar measure) from
orthogonal group O (2n+ `). Then in the limit of large n and �xed `

− lim
n→∞

logP [M2n has no real eigenvalues]

2 log n
= θ (`) , with θ (1) =

3

16
.

Contrary to the above indirect calculation of persistent constant for
Kac polynomials we use yet another stochastic model tightly connected
with Kac polynomials. It was shown in a seminal paper by A. Dembo,
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B. Poonen, Q.-M. Shao, O. Zeitouni that Gaussian Stationary Process
(GSP) Xt with mean zero and covariance E [XtXs] = sech t−s

2
has the

same persistence constant

θ = − lim
T→∞

1

T
logP [Xt > 0, t ∈ [0, T ]] .

By using Pfa�an structure of zero crossings of Xt and connection to the
problem of �nding expected exit time from a strip for a RW we prove

Theorem 2 P [Xt > 0, t ∈ [0, T ]] = C1e−
3T
16 (1 + o (T−1)) , T →∞.

The talk is based on results obtained in collaboration with M.Gebert
(UC Davis, USA) and G. Schehr (Paris-Sud University, France).

Nested ellipsoids

T.V. Revina1, H.A. Samoilenko1

1V. N. Karazin Kharkiv National University, 61022, Svobody Sq. 4, Kharkiv,

Ukraine

Let us consider the feedback synthesis for the motion of a cart(
ẋ1

ẋ2

)
=

(
x2

u

)
. (1)

Here t ≥ 0, (x1, x2) ∈ R2 is a state; u is a scalar control, |u| ≤ 1. The
controllability function method was advanced by V.I. Korobov in 1979.
In [1] a control u(x) solving the feedback synthesis problem for system
(1) was given.

De�nition 1. The feedback synthesis problem lies in �nding a control
of the form u = u(x), x ∈ R2 such that: 1) |u(x)| ≤ 1;
2) the trajectory x(t) of the closed-loop system(

ẋ1

ẋ2

)
=

(
x2

u(x)

)
. (2)

starting at an arbitrary initial point x0 ∈ R2, ends at the origin at some
�nite time T (x0).

Let us underline some di�culties related to solving this problem.
1. Since there exist in�nitely many trajectories passing through the origin
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(note that the time of motion is �nite), the right-hand side of equation
(2) cannot satisfy the Lipschitz condition in a neighborhood of the origin
according to the existence and uniqueness theorem for smooth di�erential
equations.
2. The control must satisfy the preassigned constraint.

Theorem 1. [1] Let ν ≥ 1. The controllability function Θ = Θ(x1, x2)
is de�ned for x 6= 0 as a unique positive solution of the equation

2Θ4 = x2
1(ν + 2)3(ν + 3) + 2x1x2Θ(ν + 2)2(ν + 3) + 2x2

2Θ2(ν + 2)2, (3)

Let

u(x1, x2) = −x1(2 + ν)(3 + ν)

2Θ2
− x2(2 + ν)

Θ
(4)

Then the trajectory of the closed-loop system starting from an initi-
al point x(0) = x0 ∈ R2 ends at the point x(T ) = 0 at a �nite time
T = T (x0) such that T (x0) = Θ(x0).

We analyze one-parametric family (3) at Θ = 1 for the system (1).
Proved numerically that when value of parameter ν ≥ 1 increases the
family of ellipsoids are nested.

1. V.I. Korobov, The method of controllability function, R&C Dynamics, M.-

Izhevsk, 2007 (Russian).

On global behavior of Orlicz-Sobolev classes in terms
of prime ends

E.A. Sevost'yanov1,2

1Zhytomyr Ivan Franko State University
2Institute of Applied Mathematics and Mechanics of NAS of Ukraine, Slov'yans'k

An end of a domain D is an equivalence class of chains of cross-cuts
of D. We say that an end K is a prime end if K contains a chain of
cross-cuts {σm}, such that lim

m→∞
M(Γ(C, σm, D)) = 0 for some conti-

nuum C in D, where M is the modulus of the family Γ(C, σm, D).
We say that the boundary of a domain D in Rn is locally quasi-
conformal if every point x0 ∈ ∂D has a neighborhood U that admit
a conformal mapping ϕ onto the unit ball Bn ⊂ Rn such that ϕ(∂D∩U)
is the intersection of Bn and a coordinate hyperplane. We say that a
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bounded domain D in Rn is regular if D can be mapped quasiconformally
onto a bounded domain with a locally quasiconformal boundary. If
DP is the completion of a regular domain D by its prime ends and
g0 is a quasiconformal mapping of a domain D0 with locally quasi-
conformal boundary onto D, then this mapping naturally determines
the metric ρ0(p1, p2) =

∣∣g̃0
−1(p1)− g̃0

−1(p2)
∣∣, where g̃0 is the extension

of g0 onto D0. Let ϕ : [0,∞) → [0,∞) be a nondecreasing function,

x = (x1, . . . , xn), f(x) = (f1(x), . . . , fn(x)), |∇f(x)| =

√
n∑
i=1

n∑
j=1

(
∂fi
∂xj

)2

.

Now we write f ∈ W 1,ϕ
loc (D), if fi ∈ W 1,1

loc for each i = 1, . . . , n, and∫
G

ϕ (|∇f(x)|) dm(x) < ∞ for every domain G ⊂ D with a compact

closure G ⊂ D. Let D be a domain in Rn, n ≥ 2, and f : D → Rn be a
continuous mapping. A mapping f : D → Rn is said to be discrete if the
preimage f −1 (y) of every point y ∈ Rn consists of isolated points, and
open if the image of every open set U ⊂ D is open in Rn. A mapping
f is closed if the image of every closed set U ⊂ D is closed in f(D).

Set l (f ′(x)) := min
|h|=1
|f ′(x)h|, J(x, f) := det f ′(x), KI,α(x, f) = |J(x,f)|

l(f ′(x))α

if J(x, f) 6= 0, KI,α(x, f) = 1 if f ′(x) = 0 and KI,α(x, f) =∞ otherwise.
For a given number α > 1, domains D, D ′ ⊂ Rn, a non-degenerate conti-
nuum A ⊂ D, a number δ > 0 and a Lebesgue measurable function Q(x)

denote by FA,δϕ,Q,α(D,D ′) the family of all homeomorphisms f ∈ W 1,ϕ
loc ofD

ontoD ′ such thatKI,α(x, f) 6 Q(x) and diam f(A) := sup
x,y∈f(A)

|x−y| > δ.

The following statement holds.
Theorem. Let n > 3, α > 1, let D be a regular domain in

Rn, and let D ′ be a domain in Rn that has a locally quasiconformal
boundary. Suppose that the boundary of the domain D ′ is strongly accessi-
ble with respect to α-modulus and Q ∈ L1

loc(Rn). Suppose also that
ϕ : (0,∞)→ [0,∞) is a non-decreasing function satisfying the Calderon

condition
∞∫
1

(
t

ϕ(t)

) 1
n−2

dt < ∞. If Q ∈ FMO(D) for every x0 ∈ D, then

f ∈ FA,δϕ,Q,α(D,D ′) has a continuous extension of f : DP → D ′P , while

the family FA,δϕ,Q,α(DP , D ′P ) of all extended mappings is equicontinuous

in DP .
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Surfaces of maximal singularity for homogeneous
control systems

G.M. Sklyar1, S.Yu. Ignatovich2

1University of Szczecin, Szczecin 70-451, Poland
2V. N. Karazin Kharkiv National University, Kharkiv 61022, Ukraine

We consider the class of nonlinear systems that are linear with respect
to controls and homogeneous at the origin. At a point di�erent from
the origin such a system may be non-homogeneous, so its homogeneous
approximation is of interest. The homogeneous approximation problem
attracts a great attention during several decades [1]�[6]. Roughly speaki-
ng, the approximation property means that, after some change of vari-
ables in the initial system, the trajectories of the initial system and of
the approximating system with the same control are close.

We describe the set of points where a homogeneous approximation coi-
ncides with the initial system; the question was proposed by I. Zelenko [9].
For a regular system, this set is a neighborhood of the origin, but for non-
regular systems the picture is much more complicated.As the main tool,
we use the free algebra approach proposed in our previous papers [7, 8].

1. A.A. Agrachev, R.V. Gamkrelidze, A.V. Sarychev, Local invariants of smooth
control systems, Acta Appl. Math. 14 (1989), 191-237.

2. A.A. Agrachev, A. Marigo, Nonholonomic tangent spaces: intrinsic constructions
and rigid dimensions, Electr. Res. Ann. Amer. Math. Soc. 9 (2003), 111-120.

3. A. Bella��che, The tangent space in sub-Riemannian geometry, in: Sub-
Riemannian geometry, Progr. Math. 144 (1996), 1-78.

4. Y. Chitour, F. Jean, R. Long, A global steering method for nonholonomic systems,
J. of Di�erential Equations 254 (2013), 1903-1956.

5. P.E. Crouch, Solvable approximations to control systems, SIAM J. Control Opti-
miz. 22 (1984), 40-54.

6. H. Hermes, Nilpotent approximations of control systems and distributions, SIAM
J. Control Optimiz. 24 (1986), 731-736.

7. G.M. Sklyar, S.Yu. Ignatovich, Approximation of time-optimal control problems
via nonlinear power moment min-problems, SIAM J. Control Optim., 42 (2003),
1325-1346.

8. G.M. Sklyar, S.Yu. Ignatovich, Free algebras and noncommutative power series
in the analysis of nonlinear control systems: an application to approximation
problems, Dissertationes Math., 504 (2014), 1-88.

9. I. Zelenko, B. Doubrov, Unpublished manuscript (2019).
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Pointwise potential estimates of solutions to
high-order quasilinear elliptic equations

I.I. Skrypnik1,2, M.V. Voitovych1

1Institute of Applied Mathematics and Mechanics of the National Academy of

Sciences of Ukraine, Sloviansk 84116, Ukraine
2Vasyl' Stus Donetsk National University, Vinnytsia 21021, Ukraine

Let Ω be a bounded open set of Rn, n > 3, f ∈ L1(Ω). We consider
quasilinear 2m-order (m > 2) partial di�erential equations of the form:∑

|α|6m
(−1)|α|DαAα(x,∇mu) = f(x), x ∈ Ω,

where ∇mu = {Dαu : |α| 6 m}.
We assume that the coe�cients {Aα}|α|6m are Carath�eodory functions

such that for some constants K > 0, p > 1, for any
ξ = {ξα ∈ R : |α| 6 m} and for a.e. x ∈ Ω, the following inequaliti-
es hold:∑
|α|6m

|Aα(x, ξ)| 6 K
∑

16|α|6m

|ξα|p−1,
∑
|α|=m

Aα(x, ξ)ξα > K−1
∑
|α|=m

|ξα|p.

Let n = mp, u ∈ Wm,p(Ω) be an arbitrary generalized (in the sense of
distributions) solution of the given equation, x0 be a Lebesgue point of
the function u, and let B2R(x0) be an open ball with center x0 and radius
2R < 2. Then the main result of our report is the following estimate:

|u(x0)| 6 C

(
R−n

∫
BR(x0)

|u|p dx
)1/p

+ C
∑

16|α|6m−1

( ∫
BR(x0)

|Dαu|n/|α| dx
)|α|/n

+ CWf
m,p(x0; 2R),

(6)

where Wf
m,p(x0; 2R) =

2R∫
0

( ∫
Br(x0)

|f |dx
)1/(p−1)

r−1dr is the Wol�-type

potential of f , and the constant C > 0 depends only on n, m and K.
The proof of inequality (6) is based on the development of Ki-

lpel�ainen�Mal�y method proposed in [1] for the p-Laplace equation
−∆pu = f and modi�ed in [2] for 2m-order equations with m-(p, q)
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growth and coercivity conditions in the case n > q > mp. We use esti-
mate (6) at an arbitrary Lebesgue point x0 ∈ Ω of the solution u to
prove its local boundedness, and then continuity in Ω, provided that
lim
ρ→0

supx∈Ω Wf
m,p(x; ρ) = 0.

Acknowledgements. The research of the �rst author was supported
by grants of Ministry of Education and Science of Ukraine (project
numbers are 0118U003138, 0119U100421).

1. T. Kilpel�ainen, J. Mal�y, The Wiener test and potential estimates for quasilinear
elliptic equations, Acta Math., 172 (1994), no. 1, 137�161.

2. M.V. Voitovych, Pointwise estimates of solutions to 2m-order quasilinear elliptic

equations with m-(p, q) growth via Wol� potentials, Nonlinear Anal., 181 (2019),
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Laplacian eigenfunctions with a level set having
in�nitely many connected components

M. Sodin1

1Tel Aviv University

We construct a Riemannian metric on the 2-dimensional torus, such
that for in�nitely many eigenvalues of the Laplace-Beltrami operator,
the corresponding eigenfunction has a level set with in�nitely many
connected components (i.e., a linear combination of two eigenfunctions
may have in�nitely many nodal domains).

The talk is based on a joint work with Lev Buhovsky and Alexander
Logunov.

Propagation of singularities for solutions of
quasilinear parabolic equations with absorption term

Ye.A. Yevgenieva1

1Institute of Applied Mathematics and Mechanics of NAS of Ukraine, Sloviansk

84116, Donetsk region, Ukraine

In the cylindrical domain Q = (0, T )×Ω, 0 < T <∞, where Ω ⊂ Rn

is a bounded domain such that ∂Ω ∈ C2 the following problem for a
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quasilinear parabolic equation is considered:

(|u|q−1u)t −∆p(u) = −b(t, x)|u|λ−1u, λ > p > q > 0,

u =∞ on (0, T )× ∂Ω,

u =∞ on {0} × Ω,

(7)

Here b(t, x) (the absorption potential) is a continuous function in
[0, T ]× Ω such that the following conditions holds:

b(t, x) > 0 in [0, T )× Ω, b(t, x) = 0 on {T} × Ω, (8)

a1(t)g1(d(x)) ≤ b(t, x) ≤ a2(t)g2(d(x)) ∀ (t, x) ∈ [0, T )× Ω, (9)

where g1(s) ≤ g2(s) are arbitrary nondecreasing positive functions for all
s > 0.

In the paper [1] the precise estimate of a pro�le of an arbitrary large
solution of problem (7) has been obtained under the mentioned conditions
(8)�(9) and the additional condition p > q. In the case when p = q the
analogous results were obtained in [2, 3].

In the paper [4] the linear case was studied (p = q = 1) and the
estimate of solution were obtained, this result was extended for nonlinear
case in [3].

Investigation in [4] was carried out by comparison with auto-similar
solutions, and in [1, 2, 3] a method of energy estimates was used.

1. Yevgenieva Ye.A. Propagation of singularities for large solutions of quasilinear
parabolic equations, Journal of Mathematical Physics, Analysis and Geometry,
15(1) (2019), 131�144.

2. A.E. Shishkov, Ye.A. Yevgenieva Localized peaking regimes for quasi-
linear parabolic equations, Mathematische Nachrichten, to appear,
DOI:10.1002/mana.201700436

3. Ye.A. Yevgenieva Quasilinear parabolic equations with degenerate absorption
potential, Ukrainian Mathematical Bulletin, 15 (2018), No 4 (in Ukrainian).

4. Y. Du, R. Peng and P. Pola�cik , The parabolic logistic equation with blow-up initial
and boundary values, Journal D'Analyse Mathematique, 118 (2012), 297�316.
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On the truncated two-dimensional moment problem

S.M. Zagorodnyuk1

1V.N. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine

We discuss the truncated two-dimensional moment problem with
rectangular data. Namely, we consider the following problem:
to �nd a non-negative measure µ(δ), δ ∈ B(R2), such that∫

R2

xm1 x
n
2dµ = sm,n, 0 ≤ m ≤M, 0 ≤ n ≤ N,

where {sm,n}0≤m≤M, 0≤n≤N is a prescribed sequence of real numbers;
M,N ∈ Z+.

For some cases of small size truncations explicit numerical conditions
for the solvability of the moment problem are given. In all these cases
some solutions of the moment problem can be constructed.

1. S. Zagorodnyuk, On the truncated two-dimensional moment problem, Adv. Oper.

Theory, 3 no. 2 (2018), 63-74.
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