THE EFFECT OF THE VANADIUM CONTENT ON THE MICROHARDNESS OF CoCrFeNiMnV_x HIGH-ENTROPY ALLOYS IN THE TEMPERATURE RANGE OF 77-293 K <u>H. V. Rusakova¹</u>, L. S. Fomenko¹, S. V. Lubenets¹, M. A. Tikhonovsky², I. P. Kislyak², E. D. Tabachnikova¹, Yi Huang³, and Terence G. Langdon⁴

 ¹B.Verkin Institute for Low Temperature Physics and Engineering of NAS of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine
²National Science Center "Kharkiv Institute of Physics and Technology" of NAS of Ukraine, 1 Akademichna Str., Kharkiv, 61108, Ukraine
³Department of Design and Engineering, Faculty of Science and Technology, Bournemouth University, Poole, Dorset BH12 5BB, UK
⁴Department of Aerospace & Mechanical Engineering, University of Southern California, USA e-mail: <u>rusakova@ilt.kharkov.ua</u>

ABSTRACT

The main purpose of this work was to investigate the micromechanical properties of CoCrFeNiMnV_x (x = 0, 0.25, 0.4, 0.5, 0.75, 0.85, 1.5, 2.0) high-entropy alloys in the coarse-grained state at temperatures of 77-293 K.

Dependences of Vickers microhardness on temperature $H_V(T)$ were obtained for all mentioned alloys except the alloy with x = 2 for the reason of its brittleness. The microhardness of the sigma phase at T = 293 and T = 77 K is about 9.5 GPa and 12.5 GPa, respectively.

1. THE HOMOGENEITY OF THE SAMPLE STRUCTURE

number	size n	mean Ĥ _V [GPa]	deviation s _d [GPa]	of the mean s _e [GPa]	variation ^{sa} सि _v [%]
1	85	5.824	0.716	0.078	12.2
2	75	5.707	0.741	0.086	13.0

The microhardness of the two-phase CoCrFeNiMnV_{0.85} alloy was measured along two parallel straight lines (axis z in Fig. 1). The distance between these lines was about 1.5 mm, and the distance between the indentations was $\Delta z = 0.15$ mm. It is evident from Table 1 and Fig. 1 that the values of average (sample mean) microhardness calculated by 85 prints for line 1 and by 75 prints for line 2 are very close to each other, which is facilitated by the large sample size and indicates the macrohomogeneity of the CoCrFeNiMnV_{0.85} alloy sample.

<u>Table 1</u>. Sample microhardness characteristics of CoCrFeNiMnV_{0.85} HEA, n is the number of measurements of the H_V value.

2. THE INFLUENCE OF TEMPERATURE AND VANADIUM CONTENT ON THE MICROHARDNESS OF ALLOYS CoCrFeNiMnV_x

CoCrFeNiMnV_{0.25} alloy is mainly singlephase with FCC crystal lattice. With temperature decrease from 293 K to 77 K the microhardness of CoCrFeNiMnV_{0.25} alloy monotonically increases by about 45% (Fig. 2a) that indicates the thermally activated character of plastic deformation of the material under the indenter.

The CoCrFeNiMnV_{1.5} alloy is also mainly single-phase one with a tetragonal lattice, and the whole volume of the alloy is mainly intermetallic sigma phase. The value microhardness of of CoCrFeNiMnV_{1.5} alloy increases monotonically by about 32% with temperature decrease from 293 K to 77 K (Fig. 2c).

A completely different behavior of microhardness was observed in the case of the two-phase alloy CoCrFeNiMnV_{0.85}. From Fig. 2b it is evident that in a wide temperature range (150-293 K) the average microhardness remains practically unchanged.

At $x \leq 0.25$ the lattice basically remains FCC, and the microhardness changes slightly with increasing x. However, with a further increase in the vanadium content the formation of a new phase, the intermetallic sigma phase with a tetragonal lattice, takes place. The new hard precipitates act as athermal barriers to the motion of dislocations. A sharp increase in the microhardness, starting from $x \sim 0.5$, is due to an increase in the volume fraction of the sigma phase from ~ 20 % up to approximately 100 % in alloys with x = 1.5-2.

Fig. 2