

PREDICTION OF ISOMORPHOUS SUBSTITUTIONS OF STRONTIUM OR BARIUM BY SODIUM AND ACTINIDES FOR THEIR IMMOBILIZATION IN MOLYBDATES WITH **A SCHEELITE-TYPE STRUCTURE**

V International Conference **CONDENSED MATTER & LOW TEMPERATURE PHYSICS 2025** 2th - 6th June 2025 | ONLINE | Kharkiv, Ukraine

Serhii V. RADIO, Eugene I. GET'MAN

Vasyl' Stus Donetsk National University, Vinnytsia, Ukraine vul. 600-richchia, 21, Vinnytsia, 21027, Ukraine e-mail: radio@donnu.edu.ua

Highlights

- Calculated mixing energies, critical decomposition temperatures, substitution limits, and matrix capacities for actinide-containing solid solutions using the crystal-energy theory of isomorphous substitutions.
- Evaluated thermodynamic stability regions of $Sr_{1-x}(Na_{0.5}An_{0.5})_xMoO_4$ and $Ba_{1-x}(Na_{0.5}An_{0.5})_{x}MoO_{4}$ solid solutions, where An = actinides.

Decomposition domes for $Sr_{1-x}(Na_{0.5}An_{0.5})_xMoO_4$ solid solutions

- Found continuous thermodynamic stability for $Sr_{1-x}(Na_{0.5}An_{0.5})_xMoO_4$ solid solutions with actinides from Ac to Pu below 373 K (IAEA disposal conditions).

- Determined isomorphic capacities of SrMoO₄ matrix at 373 K for various actinides.

- Identified that $Ba_{1-x}(Na_{0.5}An_{0.5})_{x}MoO_{4}$ asymmetric solid solutions comply with Goldschmidt's polarity rule and the authors' second polarity rule.

Cation–Tetrahedral Anion Distances in the Na_{0.5}**An**_{0.5}**MoO**₄ **Structures**

Data for calculating the crystal radii of actinide ions r₈(An³⁺) and the interatomic distances between the cation and tetrahedral anion in Na_{0.5}An_{0.5}MoO₄

Ln	Crystal ionic radii of lanthanide ions, Å			Crys lan	tal ionic ra thanide io	$R(Na_{0.5}An_{0.5}MoO_4),$	
	r ₈ (Ln ³⁺)	r ₆ (Ln ³⁺)	r ₈ /r ₆	An	r ₆ (An ³⁺)	r ₈ (An ³⁺)	A
La	1.300	1.172	1.1092	Ac	1.26	1.400	3.905
Ce	1.283	1.15	1.1156	Th	-	-	3.879*
Pr	1.266	1.13	1.1203	Pa	1.18	1.311	3.853
Nd	1.249	1.123	1.1122	U	1.165	1.294	3.843
Pm	1.233	1.110	1.1108	Np	1.15	1.277	3.833
Sm	1.219	1.098	1.1102	Pu	1.14	1.266	3.826
Eu	1.206	1.087	1.1095	Am	1.115	1.239	3.811
Gd	1.193	1.078	1.1067	Cm	1.11	1.233	3.807
Tb	1.180	1.063	1.1101	Bk	1.10	1.222	3.800
Dy	1.167	1.052	1.1093	Cf	1.09	1.211	3.794

**Note:* The interatomic distance for $R(Na_{0.5}Th_{0.5}MoO_4)$ was calculated as the arithmetic mean of the values for $R(Na_{0.5}Ac_{0.5}MoO_4)$ and $R(Na_{0.5}Pa_{0.5}MoO_4)$. Values of r₈(Ln³⁺) and r₆(Ln³⁺) are taken from: Shannon R.D. Revised effective ionic

radii and systematic studies of interatomic distances in halides and chalcogenides. Acta

In each of the $Sr_{1-x}(Na_{0.5}An_{0.5})_xMoO_4$ systems, where An = Ac, Pa, U, Np, Pu, and Th, under disposal conditions below the 373 K isotherm but above the peaks of the decomposition domes, continuous series of solid solutions may be thermodynamically stable. Below the peaks but above the dome lines, two limited solubility regions narrow with decreasing temperature. Below the dome lines, mixtures of two solid solutions are formed based on each system component. In the $Sr_{1-x}(Na_{0.5}An_{0.5})_xMoO_4$ systems where An = Am, Cm, Bk, and Cf, under disposal conditions below 373 K, only limited series of solid solutions can be thermodynamically stable, since the decomposition domes lie above the 373 K isotherm. Due to the low diffusion rates at these temperatures, the solid solutions and solubility regions may persist as metastable phases.

Solid Solutions of Ba _{1-x} (Na _{0.5} An _{0.5}) _x MoO ₄ Systems								
An	$\begin{array}{c} R(Na_{0.5}An_{0.5}MoO_4), \\ \text{\AA} \end{array}$	$\Delta R/R_1$	Q _R , J/mol	T _{cr} , K	Isomorphic capacity (x) for BaMoO ₄			
<u>Ac</u>	3.905	0.0432	13974	834	≤ 0.01264			
Th		0.0502	19236	1148	≤ 0.00218			
<u>Pa</u>	3.853	0.0572	24499	1462	≤ 0.00040			
<u>U</u>	3.843	0.0600	26957	1609	≤ 0.00018			
<u>Np</u>	3.833	0.0628	29531	1763	≤ 0.00008			
<u>Pu</u>	3.826	0.0647	31345	1871	≤ 0.00005			
<u>Am</u>	3.811	0.0689	35547	2122	≤ 0.00002			
<u>Cm</u>	3.807	0.0700	36691	2191	≤ 0.00001			
<u>Bk</u>	3.800	0.0720	38817	2318	≤ 0.00001			
<u>Cf</u>	3.794	0.0737	40672	2429	≤ 0.00001			

Cryst. 1976. Vol. A32, No. 5. P. 751–767. https://doi.org/10.1107/S0567739476001551

Mixing Energies and Critical Decomposition (Stability) Temperatures of $Sr_{1-x}(Na_{0.5}An_{0.5})_xMoO_4$ Solid Solutions

Data for calculating mixing energies, critical decomposition temperatures, and isomorphic capacity of $Sr_{1-x}(Na_{0.5}An_{0.5})_xMoO_4$ solid solution matrices towards actinoids

An	$R(Na_{0.5}An_{0.5}MoO_4),$	$\Delta R/R_1$	$Q_{\rm R'}$	$T_{\rm cr}, {\rm K}$	Isomorphic capacity (x)
	A		J/11101	(x - 0.5)	
Ac	3.905	0.0054	217	13	< 1.0
Th	_	-	1436	86	< 1.0
Pa	3.853	0.0189	2656	158	< 1.0
U	3.843	0.0216	3469	207	< 1.0
Np	3.833	0.0243	4391	262	< 1.0
Pu	3.826	0.0261	5065	302	< 1.0
Am	3.811	0.0302	6782	404	≤ 0.265
Cm	3.807	0.0312	7238	432	≤ 0.197
Bk	3.800	0.0331	8121	485	≤ 0.124
Cf	3.794	0.0348	9005	537	≤ 0.083
Es				605	
Fm				663	
Md				721	
No				779	

Substitution Limits and Thermodynamic Stability of $Sr_{1-r}(Na_{0.5}An_{0.5})$, MoO₄ Solid Solutions

very high critical decomposition temperatures of 834-2429 K for The $Ba_{1-x}(Na_{0.5}An_{0.5})_{x}MoO_{4}$ solid solutions indicate that under the IAEA-recommended waste disposal conditions, they will either be metastable or decompose into limited series of solid solutions based on components whose substitution limits and thermodynamic stability regions can be estimated from the decomposition domes. At the same time, the isomorphic capacity of $BaMoO_4$ for actinides lies within the range of 0.00001–0.01264 (see Table), suggesting that using $BaMoO_4$ for actinide waste immobilization is not advisable.

CONCLUSIONS

1. Within the framework of the crystal-energy theory of isomorphous substitutions, under the regular solution approximation, the mixing energies (interaction parameters), critical decomposition (stability) temperatures, limits of isomorphous substitutions, thermodynamic stability regions, and isomorphic capacities of SrMoO₄ matrices for actinides were calculated.

thermodynamic stability diagram was constructed 2. Α for the $Sr_{1-x}(Na_{0.5}An_{0.5})_{x}MoO_{4}$ system, along with decomposition domes of solid solutions over the concentration range from x = 0 to x = 1.0 in increments of x = 0.05. These allow for determining the decomposition temperatures for a given composition, equilibrium substitution limits at a given temperature, thermodynamic stability regions, and assessing the isomorphic capacities of matrices for actinides.

Critical decomposition temperatures of $Sr_{1-x}(Na_{0.5}An_{0.5})_{x}MoO_{4}$ (a) and $Sr_{1-r}(Na_{0.5}Ln_{0.5})_{r}MoO_{4}$ (b) solid solutions for actinides and lanthanides

3. Under the temperature conditions recommended by the IAEA for radioactive waste disposal (373 K and below), a continuous series of solid solutions $Sr_{1-x}(Na_{0.5}An_{0.5})_{x}MoO_{4}$ containing actinides from Ac to Pu are thermodynamically stable. Solid solutions with heavier actinides (Am-No) may decompose or become metastable under these conditions.

4. Lanthanides from La to Gd may serve as imitators of actinides in the $Sr_{1-x}(Na_{0.5}An_{0.5})_{x}MoO_{4}$ system since the critical decomposition temperatures of the corresponding solid solutions differ insignificantly (~100-200 K) from those with actinides.

5. For the $Ba_{1-x}(Na_{0.5}An_{0.5})_{x}MoO_{4}$ systems, mixing energies, critical decomposition temperatures, and substitution limits were calculated, and the thermodynamic stability of the solid solutions was assessed. Asymmetric decomposition domes were presented, and these solid solutions were shown to follow Goldschmidt's polarity rule and the second polarity rule for decomposition temperatures previously proposed by the authors.