EXPERIMENTAL AND THEORETICAL STUDY OF THE BINDING OF NATIVE **DNA TO MoS₂ NANOFLAKES**

<u>E. Usenko¹, A. Glamazda^{1,2}, V. Valeev¹, I. Voloshin¹, S. Petrushenko², S. Stepanian¹,</u> L. Adamowicz³, V. Karachevtsev¹

¹B.Verkin Institute for Low Temperature Physics and Engineering of NAS of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine

²V. N. Karazin Kharkiv National University,4 Svobody Sq., Kharkiv, 61022, Ukraine ³Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA e-mail: usenko@ilt.kharkov.ua

Currently, the study of the optical and physicochemical properties of 2D materials is of great interest. Such materials include MoS₂, which is currently considered as a promising candidate for use in the field of nanobiosensing (for the development of sensitive nanobiosensors) and nanomedicine (as a theranostic agent). In the present work, we study whether native DNA would bind to MoS₂ flakes (FLs) at relatively low ionic force (10⁻³ M Na⁺, pH7) using experimental (differential UV spectroscopy and thermal denaturation method) and theoretical (DFT) methods.

The performed analysis of TEM image in Fig. 1a reveals well-defined 2D multilayer lateral FLs, as well as folded edges. A noticeable contrast between one FL and a few flaked aggregates can be observed. As shown in Fig. 1b, the DNA:MoS₂ FL nanocomposites exhibit agglomerated functionalized nanostructures. Polymer covers of MoS₂ FLs blurs their outlines.

Fig.1 . TEM images of a) MoS₂ FLs and b) DNA:MoS₂ FL nanoassemblies.

The spectra (Fig. 2) show that the absorption intensity increases as the MoS₂ FL concentration increases, indicating that there are no the aggregation processes with the MoS₂ FLs concentration. An analysis of our sample gives the average lateral size of MoS₂ FLs are about 125 nm and the number of the MoS₂ layers per FL is about 12.

Fig. 2. Absorption spectra of MoS₂ FLs

100 nm

Fig. 3. Temperature dependence of the hyperchromic coefficient (*h*) of DNA without and with MoS₂ FLs.

DNA melting curves (Fig. 3) maintains the Sshape for the biopolymer in the nanoassembly indicating that the duplex structure of the DNA is preserved.

The weakest interaction is observed for the stacked MoS₂-dMP S complexes in which the adsorbed molecule is only in contact with the surface of the sulfur atoms (IE are about -23.3 kcal/mol). Much stronger interaction is observed for the bonded MoS₂-dMP B complexes where the adsorbed molecule interacts with the edge of the MoS₂ nanolayer fragment (IE -162.5 kcal/mol). An aqueous is environment significantly reduces the interaction energies in all complexes (Table 1). At the same time, in the covalently bonded complexes, the interaction energy exceeds 50 kcal/mol in absolute value when taking into account the aqueous environment. This indicates that the complexes are stable in water. In the dMP complex with a disulfurvacancies V_{2S} defect (MoS₂(V_{2S})-dMP B, Fig. 5) the interaction energy is -100.7 kcal/mol. The interaction energy in the dMP complex with the vacancy complex of Mo and its nearest three disulfur pairs (MoS₂(Mo_s)-dMP B, Fig. 5) is -101.6 kcal/mol.

Fig. 5. Calculated structure of the MoS₂ (pristine layered fragment)–dMP and MoS₂ (defects)–dMP complexes (top view and side view): S – stacked complexes; B – covalently bonded complexes. **Complexes with pristine MoS₂ are numbered** according to their relative stabilities.

Conclusion

Thus, the results obtained indicate the critical role of defects and edge atoms of MoS₂ FLs in their biofunctionalization and can be used in biosensing and elaboration of new drug delivery systems.

- 0.35 - Calcu show	Calculated ZPVE and BSSE corrected interaction energies (IE, kcal/mol) of the deoxyribose monophosphate complexes. The interaction energies calculated with accounting for water environment (using the PCM approac shown in parentheses.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Complex	MoS ₂	Description ^a	IE
[MoS ₂], μ g /ml	MoS ₂ -dMP S1	pristine	stacked	-23.3 (-1.2)
Fig. 4. (a) The melting temperature dependence of DNA (T_m) as a function of [c_{MoS2}]. (b) The	nce The MoS ₂ -dMP S2	pristine	stacked	-22.4 (-0.9)
concentration dependence of hyperchro coefficient (<i>h</i>) of DNA with MoS ₂ FLs.	MoS ₂ -dMP B1	pristine	bonded	-162.5 (-54.2)
An increase in the melting temperature of DNA and a decrease in the hyperchromic coefficient at binding with MoS_2 FLs (Fig.4) indicates the formation of the DNA: MoS_2 FL nanoassemblies due primarily to the covalent interaction of the oxygen atoms of the	MoS ₂ -dMP B2	pristine	bonded	-160.9 (-53.7)
	MoS ₂ (Mo _s)-dMP B	Mo _s	bonded (O-Mo*)	-101.6 (-19.6)
	nt MoS ₂ (V _{2S})-dMP B	V _{2S}	bonded (O-Mo**)	-100.7(-44.3)
phosphate groups of DNA with the MoS ₂ FLs.	^a , Mo* - molybdenum atom replacing a surface sulfur atom in the MoS ₂ fragment. Mo** - inner molybdenum atoms available for interaction after the formation of a V _{2S} vacancy.			