

ON THE FEATURES OF MULTI-CHARGED meso-PORPHYRINS BINDING TO NUCLEIC ACIDS Olga Ryazanova

B. Verkin Institute for Low Temperature Physics and Engineering of NAS of Ukraine, 47 Nauky Ave., 61103, Kharkiv, Ukraine

The porphyrins are macrocyclic compounds with unique spectroscopic and photophysical properties, a high anticancer and biological activity. They are widely used as probes for the structure and dynamics of nucleic acids, as photosensitizers in anticancer photodynamic therapy, anti-viral and antimicrobial agents, as a carrier of antisense oligonucleotides for their delivery, stabilizers of G-quadruplexes.

Binding of two multicharged cationic meso-porphyrins to synthetic double-stranded polynucleotides of different base composition and secondary structure including DNA (Bform), RNA (A-form), and DNA·RNA hybrids (A-form) has been studied in neutral aqueous buffered solutions without and with low and near-physioplogical NaCl content in a wide range of molar phosphate-to-dye ratios, P/D, using various spectroscopic techniques. The types of the porphyrin binding to the polynucleotide depending on P/D ratio were determined, and the spectroscopic properties and features of the complexes formed were established.

Water-soluble	cationic porphyrins	Double-stranded polynucleotides			Most widely used spectroscopic techniques			
	$\bigoplus_{N=1}^{CH_3} \mathbf{TMPyP^{3+}}$	Parameter	A-form (<i>ds</i> -RNA and DNA·RNA hybrids)	B-form (ds-DNA)	Absorption spectroscopy: registration of changes in the intensity (hypochromism (H) or hyperchromism), shape and position of the porphyrin absorption bands maximum (mainly, in the Soret band).			
$\begin{array}{c} CH_{3}-N \\ \oplus \end{array} \\ HN \\ $	$\begin{array}{c} CH_{3} - N \\ \oplus \end{array} \\ HN \\ $				Polarized Fluorescence Spectroscopy: registration of changes in the shape, position and intensity of the porphyrin emission band, as well as of its fluorescence polarization degree. Fluorimetric titration: the dye sample was added with increasing amounts of the			
 extended planar structure with highly-conjugated electronic system selective accumulation in tumor cells 					concentrated polymer stock solution containing the same porphyrin content, whereupon fluorescence intensities and polarization degree were measured versus molar phosphate-to- dye ratio, <i>P/D</i> . For example, $C_{dye} = 10 \ \mu M$, $\lambda_{exc} = 500 \ nm$, $\lambda_{obs} = 680 \ nm$.			
• high extinction coefficient in its red region where the		Helix sense	Right-handed	Right-handed	Resonance Light Scattering (RLS) is a highly sensitive and selective method for studyin chromophore arrays with strong electronic coupling between chromophores. It was			
transparency of tissues to light increases considerably • photosonsitizer for PDT of concer		Diameter	23 Å (2.3 nm)	20 Å (2.0 nm)				
•cationic group facilitate their binding to nucleic acids		Helix rotation on per base pair	32.7 °	34.3°	proposed in 1993 by R.F. Pasternak [Pasternack et al., J. Am. Chem. Soc. 1993 Vol. 115, P. 5393- 5200, // D.F. Pasternack et al. Science 1005 Vol. 2(0 D. 025, 0201, as an officient tool for studying			
•G-quadruplex binding ligands and stabilizers		Base pair tilt to axis	+20°	-6°	the aggregation of norphyrin dyes. It gives an information on the size shape and			
• human telomerase inhibition $IC_{50} = 6.5 \ \mu M$		turn)	28.6 Å (2.86 nm)	34 Å (3.4 nm)	aggregation number of supramolecular aggregates of organic dyes (including			
•side chain give the possibility to conjugate the dye with		Helix rise per base pair	2.6 Å (0.26 nm)	3.4 Å (0.34 nm)	heteroaggregates) and does not require additional devices. RLS experiments are usually			
other one		Base pairs per turn	11 Anti	10.5 Anti	performed at wavelengths away from absorption bands, but for species that aggregate,			
Soret Band		Sugar nucker	Allu C3'-endo	C2'-endo	enhancements in light scattering of several orders of magnitude can be observed at			
ε	Pornhyrin	Major groove	Narrow and Deen	Wide and Deen	wavelengths characteristic of these species. For example, $\lambda_{av} = \lambda_{ab} = 500$ nm.			

POPRHYRIN - DNA(RNA) BINDING MODES AND THEIR FINGERPRINTS High P/D ratios

Low P/D ratios

- dye aggregates
- bisignate ICD band in the Soret region (near 440 nm)

\bullet DISIGNALE IV D DAHLI HI LHE SOLEL LEGION (HEAL 440 HHI)	TMPyP ³⁺ + poly(G)·poly(C)	<i>Appl Fluoresc.</i> 4(3) (2016) 034005.			
 increase in the fluorescence polarisation degree 			TMPyP ⁴⁺ +poly(dA)·poly(dT)	[7]. Kelly J.M. et al. <i>Nucleic</i>	
HAggregates J-aggregates J-aggregates	$TMPyP^{3+}+[poly(dA-dT)]_2$	[3] Andrews K. et al. <i>Biochemistry</i>	TMPyP ⁴⁺ +poly(dG)·poly(dC)	Acids Res. 13(1) (1985) 167– 184.	
Haggregate H-Dimer Monomer J-Dimer J-Aggregate J_2Aggregate 88 8 9 9 8 8 9 8 8 9 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 8 9 8 8 8 9 8 8 8 9 8 8 8 9 8 8 8 9 8 8 8 9 8 8 8 9 8 8 8 9 8 8 8 9 8 8 8 9 8 8 8 8 9 8	$\frac{\text{TMPyP}^{3+} + [\text{poly}(\text{dG-dC})]_2}{\text{TMPyP}^{3+} + [\text{poly}(\text{dG-dC})]_2}$	47(4) (2008) 1117–1125.	$TMPvP^{4+} + [polv(dA-dT)],$	[3] Andrews K. et al.	
	TMPyP ⁴⁺ + poly(A)·poly(U)	_		<i>Biochemistry</i> 47(4) (2008)	
$54.7^{\circ} \le \theta < 90^{\circ} \qquad 0 \le \theta < 54.7^{\circ}$	TMPyP ⁴⁺ + poly(G)·poly(C)	[4] Uno T. et al. <i>Inorg. Chem.</i> 36(8)	$TMPyP^{4+} + [poly(dG-dC)]_2$	1117–1125.	
	$\frac{1 \text{MPyP}^{4+} + \text{poly}(rA) \cdot \text{poly}(d1)}{\text{TMP} \cdot P^{4+} + m \cdot P^{4+}(rA) \cdot \text{poly}(d1)}$	(1997) 1676–1683.	TMPyP ⁴⁺ +DNA (B-form)	[8] Oh Y.S. et al. ACS Omeg	
J. Phys. Org. Chem. 2004; 17: 890–897	TNIPyP ⁺⁺ + poly(rG)·poly(dC)		TMPyP ⁴⁺ + DNA (A-form)	3 (1) (2018) 1315-1321.	
Fluorescence enhancement upon binding at low P/DFluorescence quenching upon binding at low P/D	TMPyP ⁴⁺ + poly(A)·poly(U)	[5] Tolstykh G. et al. <i>J. Mol. Str.</i> 1098 (2015) 342-350.			
$\underline{TMPyP^{3+} + poly(A) \cdot poly(U) [1]} \qquad TMPyP^{3+} + poly(G) \cdot poly(C) [2]$					
$TMPyP^{3+} + poly(G) [2]$	CONCLUSIONS TMPyP ³⁺ and TMPyP ⁴⁺ porphyrins bind to the polynucleotide duplexes via a three competitive binding modes:				
$\frac{1}{10000000000000000000000000000000000$					
$TMPyP^{4+} + poly(P) [11]$					
$TMPyP^{4+} + poly(A) \cdot poly(U) [5] \qquad Zn^{2+}TMPyP^{4+} + poly(A) \cdot poly(U) [12]$	(i) external ligand binding with or without self-stacking dominates at $P/D < 4$;				
$\underline{\text{TMPyP}^{4+} + \text{poly}(dA) \cdot \text{poly}(dT) [7]} \qquad \underline{\text{TMPyP}^{4+} + \text{poly}(dG) \cdot \text{poly}(dC) [7]}$	(ii) intercalation of the porphyrin chromophore between the nucleic bases of GC-containing ds-				
Stabilization Possible applications of porphyrin aggregates:	deoxypolyribonucleotides (B-DNA) was observed at $P/D > 30$;				
of porphyrin aggregates: - design of new photonic materials	(iii) embedding of the porphyrin monomers or partially stacked porphyrin <i>J</i> -dimers into the biopolymer groove prevails at $P/D > 30$.				
electrostatic forces $-$ light- harvesting systems					
H-honding - molecular electronics					
van der Waals forces - nonlinear optics	TWPYPS' discriminates between polynucleotide duplexes containing $A \cdot U(A \cdot I)$ and $G \cdot C$ base pairs at low P/D				
hydrophobic interaction - chemotherapeutics	ratios				
Example of natural porphyrin aggregates: light-harvesting complexes of the plants (200 chlorophyll molecules)	In contrast to TMPyP ⁴⁺ , large bathochromic shifts of the TMPyP ³⁺ Soret band at high <i>P/D</i> don't depend on the polynucleotide base composition and type of helical structure.				

III International Conference "Condenced Matter & Low Temperature Physics 2025", 2-6 June, 2025, Kharkiv, Ukraine

[2] Ryazanova O. et al. *Methods*

TMPyP⁴⁺ + poly(dG)·poly(dC)

2406-2414.