# Multi-channel heat transfer in CO2 solutions with N2O and Xe impurities

V.V. Sagan, O.A. Korolyuk, A.I. Krivchikov, V.A. Konstantinov, Yu.V. Horbatenko

B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine



**Temperature**, K **Fig. 1.** Isochoric thermal conductivity of samples S1, S2 and S3 of crystalline CO<sub>2</sub> and N<sub>2</sub>O at different molar volumes. Symbols are experimental data [1]. Lines are contribution  $\kappa(T)$  according to equation:

 $\kappa(T) = \kappa_{ph} + \kappa_{dif} = A/T + B \qquad (1)$ 

where  $\kappa_{ph} = A/T$  arises from phonon-phonon scattering, and  $\kappa_{dif} = B$  accounts for temperature-independent diffusons contributions [2].

| V <sub>m</sub> ,<br>cm <sup>3</sup> /mole |                  | А,<br>W m <sup>-1</sup> | В,<br>Wm <sup>-1</sup> K <sup>-1</sup> | ΔT,<br>K | Ref. |  |  |  |  |  |
|-------------------------------------------|------------------|-------------------------|----------------------------------------|----------|------|--|--|--|--|--|
|                                           |                  | CO <sub>2</sub>         |                                        |          |      |  |  |  |  |  |
| Specimen 1                                | 27.58            | 50.0                    | 0.29                                   | 176-208  | [1]  |  |  |  |  |  |
| Specimen 2                                | 27.83            | 44.0                    | 0.29                                   | 188-212  | [1]  |  |  |  |  |  |
| Specimen 3                                | 28.36            | 35.0                    | 0.29                                   | 210-220  | [1]  |  |  |  |  |  |
|                                           | N <sub>2</sub> O |                         |                                        |          |      |  |  |  |  |  |
| Specimen 1                                | 29.01            | 9.1                     | 0.345                                  | 163-196  | [1]  |  |  |  |  |  |
| Specimen 2                                | 29.14            | 6.8                     | 0.345                                  | 170-193  | [1]  |  |  |  |  |  |
| Specimen 3                                | 29.34            | 4.3                     | 0.345                                  | 177-188  | [1]  |  |  |  |  |  |

**Table 1.** Fitting parameters obtained in the description of experimental data on the isochoric thermal conductivity of solid molecular crystals  $CO_2$  and  $N_2O$ : *A* is the intensity of three-phonon scattering processes; *B* is the temperature-independent contribution,  $V_m$  is the molar volume of the samples,  $\Delta T$  is the temperature range where the measurements were taken.

e-mail: <u>sagan@ilt.kharkov.ua</u>





**Fig. 2.** Isochoric thermal conductivity of samples: S1 (pure CO<sub>2</sub>), S2 (CO<sub>2</sub> with x = 0.051 N<sub>2</sub>O admixture), S3 - S7 solid solution (CO<sub>2</sub>)<sub>1-x</sub>Xe<sub>x</sub> (x = 0.0025, 0.011, 0.013, 0.0205 and 0.091) at molar volumes ~28.0 cm<sup>3</sup>/mole. Symbols are experimental data [3]. Solid colored lines are  $\kappa(T)$  according to equation (1). Black dashed lines is tunnel contribution "coherences"  $\kappa_C(T)$  for the case of thermal conductivity of samples S6 and S7 according to equation:

# $\kappa_{c}(T) = \kappa_{0} \cdot \exp(-E/T)$

where  $\kappa_0$  is the pre-exponential factor, which represents the maximum tunneling heat transfer, and *E* denotes the dominant excitation energy and is expressed in Kelvin.

| C. Sale | Sam<br>con | ple/impurity<br>centration x                   | V <sub>m</sub> ,<br>cm <sup>3</sup> /mole | А,<br>W m <sup>-1</sup> | B,<br>W m <sup>-1</sup> K <sup>-1</sup> | κ <sub>0</sub> ,<br>Wm <sup>-1</sup> K <sup>-1</sup> | E,<br>K | ΔT,<br>K | Ref. |  |  |  |  |
|---------|------------|------------------------------------------------|-------------------------------------------|-------------------------|-----------------------------------------|------------------------------------------------------|---------|----------|------|--|--|--|--|
| -       |            | $CO_2$ with N <sub>2</sub> O and Xe impurities |                                           |                         |                                         |                                                      |         |          |      |  |  |  |  |
|         | S1         | / 0.00                                         | 27.78                                     | 42.0                    | 0.29                                    | 0                                                    | -       | 185-217  | [3]  |  |  |  |  |
| in      | S2         | / 0.051                                        | 27.98                                     | 39.0                    | 0.29                                    | 0                                                    | -       | 195-220  | [3]  |  |  |  |  |
| 24      | <b>S</b> 3 | / 0.0025                                       | 27.85                                     | 32.0                    | 0.29                                    | 0                                                    | -       | 90-225   | [3]  |  |  |  |  |
| 25      | S4         | / 0.011                                        | 28.0                                      | 7.0                     | 0.37                                    | 0                                                    | -       | 195-230  | [3]  |  |  |  |  |
|         | S5         | / 0.013                                        | 28.17                                     | 2.0                     | 0.375                                   | 0                                                    | -       | 205-230  | [3]  |  |  |  |  |
|         | S6         | / 0.0205                                       | 28.05                                     | 0                       | 0                                       | 0.405                                                | 18      | 200-227  | [3]  |  |  |  |  |
| 1       | <b>S</b> 7 | / 0.091                                        | 28.0                                      | 0                       | 0                                       | 0.78                                                 | 179     | 195-227  | [3]  |  |  |  |  |

**Table 2.** Fitting parameters obtained in the description of experimental data on the isochoric thermal conductivity of solid solutions: A is the intensity of three-phonon scattering processes; B is the temperature-independent contribution,  $\kappa_0$  is pre-exponential factor of the intensity of wave-like tunneling processes, E is the characteristic energy of the dominant excitations,  $V_m$  is the molar volume of the samples,  $\Delta T$  is the temperature range where the measurements were taken.



**Fig. 3.** Dependence of parameters *A* (a) and *B* (b) on the Xe concentration in solid  $(CO_2)_{1-x}Xe_x$  solution (in samples S1, S3, S4 and S5). Lines are smoothed data.



Fig. 4. The dependence of isochoric thermal conductivity of solid  $(CO_2)_{1-x}Xe_x$  solution at x = 0.0205 and x = 0.091 in semi-logarithmic coordinates from the inverse temperature. Black dashed lines represent fitted functions of equation [4]:

### $ln(\kappa_{c}(T)) = ln(\kappa_{tot}(T) - \kappa_{ph}(T)) = ln(\kappa_{0}) - E/T$ (3)

#### References



# This research was supported by the National Research Foundation of Ukraine (Project № 2023.03/0012).