

Atomic structure calculations of singly ionized vanadium

S. V. Gedeon V. Yu. Lazur V. I. Kazakov

Department of Theoretical Physics, Uzhhorod National University

Introduction

Atomic structure and spectroscopic properties of the neutral and ionized vanadium is of great interest to several fields of applied and fundamental science

Practical needs:

Fundamental problems:

- astrophysics
- industrial devices
- plasma physics
- controlled thermonuclear fusion
- laser development
- term-dependence of orbitals
- lines
- new theoretical models

General information

Vanadium:

transitional metal with open d-shell

Z = 23

 $V_{\rm I}: 1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2 \, {}^4F$

 $E_{ion} = 6.746 \,\mathrm{eV}$

 $\bigvee_{\rm II}: 1s^2 2s^2 2p^6 3s^2 3p^6 3d^4 5D$

 $E'_{ion} = 14.634 \,\mathrm{eV}$

Electronic structure

Principal electronic configurations according to LS approximation

Theoretical methods

In most cases, the theoretical study of spectroscopic properties requires knowledge of wave functions. Multi-configuration Hartree-Fock (MCHF) method combined with configuration interaction (CI) methods are a method of choice for complex atoms where atomic state functions are expanded in a basis of configuration state functions [2].

Schroedinger equation:

 $H\Psi = E\Psi$

Multi-configuration expansion:

$$\Psi(\gamma LS) = \sum_{i} c_i \Phi(\gamma_i LS), \quad \sum_{i} c_i^2 = 1$$

 Ψ – atomic state function (ASF), Φ – configuration state function (CSF)

Configuration interaction method:

 $\mathbf{H}\mathbf{c} = E\mathbf{c}$

Hamiltonian matrix elements:

 $H_{ij} = \langle \Phi(\gamma_i LS) | H | \Phi(\gamma_j LS) \rangle$

Hartree-Fock method:

$$\Phi(\gamma LSM_LM_S) = \sum_i c_i \left| u_1^i u_2^i \dots u_N^i \right\rangle$$

where $|u_1 \dots u_N\rangle$ – Slatter determinants

$$|u_1 \dots u_N\rangle = \frac{1}{\sqrt{N!}} \begin{vmatrix} \langle t_1 | u_1 \rangle & \cdots & \langle t_1 | u_N \rangle \\ \vdots & \ddots & \vdots \\ \langle t_1 | u_1 \rangle & \cdots & \langle t_N | u_N \rangle \end{vmatrix}$$

Figure 3. Comparison of excitation energies. Black dashes – experimental energies [1]; blue dashes – present calculations, full CI-expansion; red dashes – present calculations, CI-expansion with the mixing coefficients > 0.001.

Table 2. Excitation energies of the lower states of vanadium ion.

Ν	Config.	Term	E_{ex} NIST, eV	E_{ex} MCHF, eV	ΔE_{ex} , eV	$N_{\rm conf}$
1	$3d^4$	^{5}D	0.026	0		55 (94)
2	$3d^{3}[{}^{4}\!F]4s$	${}^{5}\!F$	0.363	1.676	1.313	51 (103)
3	$3d^{3}[{}^{4}\!F]4s$	${}^{3}\!F$	1.104	2.358	1.254	186 (356)
4	$3d^4$	$^{3}\!P2$	1.452	1.651	0.199	140 (239)
5	$3d^4$	$^{3}\!H$	1.566	1.758	0.192	134 (252)
6	$3d^4$	${}^{3}\!F2$	1.681	1.839	0.158	191 (356)
7	$3d^{3}[^{4}P]4s$	${}^{5}\!P$	1.692	3.381	1.689	40 (70)
8	$3d^4$	${}^{3}G$	1.807	2.138	0.331	139 (302)
9	$3d^{3}[^{2}G]4s$	${}^{3}G$	2.039	3.452	1.413	180 (302)
10	$3d^4$	$^{1}G2$	2.221	2.594	0.374	146 (239)
60	$3d^{3}[^{2}H]4p$	$^{3}\!I^{ m o}$	6.585	7.24	0.655	79 (174)
61	$3d^{2}4s^{2}$	${}^{1}G$	6.646	7.656	1.01	130 (239)
62	$3d^{3}[^{2}D2]4p$	$^{3}D^{\mathrm{o}}$	6.679	7.761	1.082	139 (322)

electronic correlations orbital relaxation spectroscopic data for weak

In scope of LS-coupling scheme, most observed energy levels of exited states of singly ionized vanadium V_{II} can be classified as $3d^{3}(^{M}L)nl$ and $3d^{2}(^{M}L)4snl$ configurations with different ancestral terms (^{M}L) . Such complex electronic structure of vanadium atomic system leads to high number of LS terms.

Table 1. Number of terms for principal electronic configurations of V_{II} states

Configuration ⁻	Terms	Number of terms
$3d^4$ 1	$S^{3}P^{1,3,5}D^{1,3}FG^{3}H^{1}I$	11 (15)
$3d^34s$ $3d^34p$ ¹	$^{1,3,5}SPDFG^{1,3}HI^{\circ}$	12 (16) 19 (49)
$3d^24s^2$ 3	$^{3}P^{1}D^{3}F^{1}G$	4
$3d^24s4p$ ¹	$^{1,3}S^{3,5}P^{1,3,5}DF^{3,5}G^{3}H^{\circ}$	13 (25)

Note: number in parentheses indicates number of terms with same LS but different ancestral terms

Figure 1. Energy levels and main transitions. Energy levels diagram of vanadium ion according to the NIST data [1]. The energies for multiplets are averaged over the fine structure levels. Black dashes correspond to even terms, red dashes – odd terms. Arrows indicate the main allowed transitions between the levels. The levels are grouped according to the total orbital angular momentum L and the multiplicity 2S + 1 of the terms in the LS coupling approximation.

$|\langle t_N | u_1 \rangle \cdots \langle t_N | u_N \rangle|$

 $t = (\mathbf{r}, \sigma)$ – stands for position and spin of the individual electron, and u stands for the one-electron orbital $|u\rangle = |nlm\mu\rangle$

Computational details

To calculate the wave functions of the ground and lower excited states of vanadium ion V_{II} we employed multi-configuration Hartree–Fock method (MCHF) [3] together with configuration interaction (CI) approach with non-orthogonal orbitals and B-splines as basis functions [4, 5]. This approach allows to take into account the termdependence of valence orbitals, the effects of correlation and relaxation.

Spectroscopic orbitals of deep core 1s, 2s, and 2p were callulated for the ground state of <u>neutral</u> vanadium $3d^34s^2$ ⁴F using Hartree-Fock (HF) method.

Valence orbitals 3s, 3p, 3d, 4s and 4p were calculated separately for different configurations. They were obtained from term-average HFcalculations for each of the principal electronic configurations under consideration: $3d^4$, $3d^34s$, $3d^34p$ and $3d^24s^2$.

After that, the spectroscopic orbitals mentioned above were supplemented by sets of correlation orbitals 4l and 5l (l = 0-4). The correlation orbitals were obtained in separate MCHF calculations for one of the terms for each of the selected configurations. Subsequently, the obtained sets of the correlation orbitals were used in the calculations of all other terms with the same configuration. In the calculations of each of the sets of correlation orbitals, one- and two-electron excitations from the outer shells were included in the multi-configuration expansions.

$$\Psi(3d^2nln'l'\ LS) = \sum_i c_i \Phi(3d^2\bar{n}\bar{l}\bar{n}'\bar{l}'\ LS)$$

where $\bar{n}\bar{l}\bar{n}'\bar{l}'$ denotes all possible one- and two-electron promotions (for both spectroscopic and correlation orbitals)

The configurations with the mixing coefficients less than 0.001 were excluded from the final CI-expansions.

References

Table 3. Dependence of the deviation of the excitation energies on the number of configurations included in the CI-expansion.

Config.		1	MCHF		MC	HF 0.0	001	M	CHF O.	D1
		$\Delta E_{\rm ex},$	$\frac{\Delta E_{\rm ex}}{E_{\rm NIST}}$	$N_{\rm conf}$	$\Delta E_{\rm ex},$	$\frac{\Delta E_{\rm ex}}{E_{\rm NIST}}$, $N_{ m conf}$	$\Delta E_{\rm ex},$	$\frac{\Delta E_{\rm ex}}{E_{\rm NIST}}$, $N_{ m conf}$
			/0			/0		i ev	/0	
$3d^4$	min	0.155	7	78	0.158	7	55	0.279	13	15
	max	0.539	21	356	0.634	21	191	1.289	34	38
	median	0.409	14	239	0.413	14	140	0.490	21	30
$3d^34s$	min	1.029	33	70	1.029	33	40	1.082	35	10
	max	2.570	362	356	2.606	362	199	2.782	332	44
	median	1.655	63	240	1.695	63	183	1.638	63	33
$3d^34p$	min	0.357	7	34	0.359	7	30	0.253	5	14
	max	0.960	15	348	1.082	16	143	1.126	17	34
	median	0.740	12	220	0.747	12	110	0.706	11	28
$3d^{3}4s^{2}$	min	0.463	10	239	0.891	15	130	1.101	17	29
	max	1.395	25	356	1.405	25	175	1.461	26	41
	median	0.807	13	240	1.032	19	164	1.330	25	35
Total	min	0.155	7	34	0.158	7	30	0.253	5	10
	max	2.570	362	356	2.606	362	199	2.782	332	44
	median	0.751	14	239	0.785	14	138	0.863	18	30

Table 4. Correlation configurations and their mixing coefficients for the primary configurations of vanadium ion.

Primary config.	Correlation config.	Mixing coeff.	Primary config.	Correlation config.	Mixing coeff.
$3d^4$	$3d^{2}4d^{2}$	0.073	$3d^{2}4s^{2}$	$3d^34s$	0.433
	$3d^{2}4d^{2}$	0.051		$3d^4$	0.423
	$3d^{2}4d^{2}$	0.049		$3d^34d$	0.151
	$3d^34d$	0.040		$3d^34d$	0.089
	$3d^24d^2$	0.036		$3d^34d$	0.085
	$3d^{2}4f^{2}$	0.035		$3d^24s4d$	0.081
	$3d^24f^2$	0.032		$3d^34d$	0.073
	$3d^24f^2$	0.030		$3d^34d$	0.068
	$3d^24p^2$	0.023		$3d^34d$	0.068
	$3d^24p^2$	0.022		$3d^24s4d$	0.066
				$3d^34s$	0.059
$3d^34s$	$3d^24p4f$	0.041		$3d^24s4d$	0.051
	$3d^35s$	0.035		$3d^4$	0.047
	$3d^24d5s$	0.033		$3d^24p^2$	0.037
	$3d^24p4f$	0.032		$3d^24s4d$	0.032
	$3d^24s4d$	0.021		$3d^35s$	0.032
				$3d^24p^2$	0.032
$3d^34p$	$3d^35p$	0.060		$3d^35d$	0.027
	$3d^24d5p$	0.038		$3d^34d$	0.023
	$3d^24s4f$	0.033		$3d^24s4d$	0.023
	$3d^24d4f$	0.028		$3d^24p4f$	0.023
	$3d^24d5p$	0.024			
	$3d^24s4p$	0.021			
	$3d^24s4f$	0.021			

Figure 2. Energy levels diagram of vanadium ion according to the NIST data [1]. The energies for multiplets are averaged over the fine structure levels. The levels are grouped according to the electronic configuration of the atomic states in the LS coupling approximation.

[1]	Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team (2022). NIST						
	Atomic Spectra Database (ver. 5.10). Available: https://physics.nist.gov/asd						
[2]	C. Froese Fischer <i>et al</i> 2016 J. Phys. B. 49 182004;						
	doi:10.1088/0953-4075/49/18/182004						
[3]	C. Froese Fischer <i>et al</i> 2007 Comput. Phys. Commun. 176 8, 559-579;						
	doi:10.1016/j.cpc.2007.01.006						
[4]	O. Zatsarinny and C. Froese Fischer 2000 Phys. Commun. 124 2–3, 247-289;						
	doi:10.1016/S0010-4655(99)00441-5						

[5] O. Zatsarinny and C. Froese Fischer 2009 Comput. Phys. Commun. 180 11, 2041-2065; doi:10.1016/j.cpc.2009.06.007

Further improvement

• Additional research for states with $3d^34s$ configuration

• Finetune energies using different cut-off parameters for CI-expansions

• Quasi-relativistic CI-calculations with Breit-Pauli Hamiltonian and J-dependent ASF

 $H_{\rm BP} = H_{\rm NR} + H_{\rm RS} + H_{\rm FS}$

$$\Psi^{\beta J\pi} = \sum_{\alpha LS} C(\beta J\pi; \alpha LS\pi) \Phi^{\alpha LS}$$

 $\Phi^{\alpha LS\pi}$ – multiconfigurational expansions from the LS calculations $C(\beta J\pi; \alpha LS\pi)$ – spin-orbit mixing of different LS terms

Conclusions

• The wave functions of the ground and 61 excited staes of the singly ionized vanadium were calculated in scope of non-relativistic LS appoximation using the MCHF method and CI approach

• The calculated values of the excitation energies are in satisfactory agreement with the available experimental data

• For the multi-configuration expansions for each of four types of electronic configurations under considerations $(3d^4, 3d^34s, 3d^34p, and 3d^24s^2)$ the main correlation contributions were investigated

• Obtained sets of the wave functions can be used in further calculations of

- radiative parameters of V_{II} -lines
- Iow-energy electron scattering by vanadium ion
- wave functions of V_I using BSR method
- photoionization processes

https://www.uzhnu.edu.ua/uk/cat/fphysics-fiztheory

CM<P Conference, 2025

sergej.gedeon@uzhnu.edu.ua