

a)

Comparative analysis of Raman and IR spectra in $LiCoPO_4$ and $LiNiPO_4$ magnetoelectrics A.V. Peschanskii¹, V.P. Gnezdilov¹, A.Yu. Glamazda^{1,2}

¹B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Ave., 61103 Kharkov, Ukraine

²V.N. Karazin Kharkiv National University, 4 Svobody Sq., 61022, Kharkov, Ukraine

The olivine-type lithium orthophosphates $LiMPO_4$ (M=Fe²⁺, Mn²⁺, Co²⁺, CO²⁺, and Ni²⁺) family have intriguing magnetoelectric properties, the entangled spin excitations and demonstrates a tight coupling of the phonon, electron, and magnetic subsystems. The present work is dedicated to the Raman studies of the LiCoPO₄ single crystal possessing the highest magnetoelectric coefficient among the above-mentioned crystals of the LiMPO4 family. Raman spectroscopy is the non-destructive highly informative method that can simultaneously probe the phonon, electron, and magnetic excitations. In the present work, we discuss the electronic excitations of the Co^{2+} ion and additional phonon lines arising below $T_N = 21.9$ K.

Raman spectrum of the LiCoPO₄ single crystal was investigated in the frequency region of 3–1200 cm⁻¹ in the temperature range between 5 and 300 K. A_g , B_{1g} , B_{2g} , and B_{3g} modes are active in Raman tensor components: A_g -XX, YY, ZZ, B_{1g} -XY, YX, B_{2g} -Z, ZX, and B_{3g} -YZ, ZY. $X \parallel a, Y \parallel b, Z \parallel c.$

Fig. 1. Structure of LiCoPO₄.

Structure of LiCoPO₄ : *Pnma* (D_{2h}¹⁶), Z=4, *a*=10.092 A, *b*=5.89 A, *c*=4.705 A at T=300 K. *a*=10.159 A, *b*=5.9 A, *c*=4.70 A at T=8 K.

```
T_N = 21.9 \text{ K}, magnetic group Pnma (Z=4).
Linear magnetoelectric (ME) – P_i = \alpha_{ii} H_i
ME coefficients:
|\alpha_{vx}| (4.2 K) =30.6 ps/m and |\alpha_{xv}| (4.2 K) =18.4 ps/m.
\Gamma_{\rm vib} = 11A_{\rm g} + 7B_{1\rm g} + 11B_{2\rm g} + 7B_{3\rm g} + 10A_{\rm u} + 14B_{1\rm u} + 10B_{2\rm u} + 14B_{3\rm u}
\Gamma_{\text{int}} = 6A_g + 3B_{1g} + 6B_{2g} + 3B_{3g} + 3A_u + 6B_{1u} + 3B_{2u} + 6B_{3u}
\Gamma_{\rm tr} = 4A_{\rm g} + 2B_{1\rm g} + 4B_{2\rm g} + 2B_{3\rm g} + 5A_{\rm u} + 6B_{1\rm u} + 4B_{2\rm u} + 6B_{3\rm u},
```

 $\Gamma_{\text{lib}} = A_g + 2B_{1g} + B_{2g} + 2B_{3g} + 2A_u + B_{1u} + 2B_{2u} + B_{3u}$

11A_g+7B_{1g}+11B_{2g}+7B_{3g} modes are active in Raman spectra.

Fig. 2. Temperature dependent polarized Raman spectra taken in: a), b), c) – (YX, YX) B_{1g} ; d) – (XZ) B_{2g} modes. Spectral resolution: a), b) – 3.0 cm⁻¹ (λ_{exc} = 488 nm); c), d) – 1.8 cm^{-1} ($\lambda_{exc} = 632.8$ nm). Thin black arrows are related to the additional phonon lines. The thick red arrows mark electronic excitations.

Frequency (in cm ⁻¹)			Factor-group	Site Free PO ₄			B _{1,4}		B ₂		B ₃₁₁		LiCoPO
Compound		symmetry	symmetry unit					2u				$-\frac{1}{5}$	
LiCoPO ₄ [1]	LiNiPO ₄ [2]	ωΝί / ωCo	$D_{2h}*$	C_s	T_d	— Table 1. Symmetry and frequencies LiNiPC	LiNiPO.	LiCoPO ₄	LiNiPO ₄ Exp [3]	LiCoPO ₄	LiNiPO ₄ Exp [3]	LiCoPO ₄	Raman
1093 (1087)	1090 (1088)	1.0009	B _{2g}	A'			$\begin{bmatrix} \text{End} & 0_4 \\ \text{Exp} & [3] \end{bmatrix}$						
1080 (1077)	1074.5 (1072)	0.9954	$\mathbf{A_g}$	(1080)		of the Raman phonon modes in		Calc.	Exp. [5]	Calc.	Tyb. [2]	Carc.	line
1044 (1028)	1023 (1022.5)	0.9946	B _{2g}	A' (1016) A''	$ \begin{array}{c cccc} A' & F_2 (v_3) \\ \hline (1016) & 1082 \text{ cm}^{-1} \\ \hline A'' & \\ \hline (970) & & \\ \end{array} $	LiCoPO ₄ [1] and LiNiPO ₄ [2] crystals at T = 10 K (300 K).	106	192.2	202.3	180 /	165.2	154 5	102 2 VV
1030 (1009)	1011.5 (1010.5)	1.0015	$\mathbf{A}_{\mathbf{g}}$				190	103.3	202.3	107.4	103.2	134.3	172.2 AI
986 (986.5)	986 (987.5)	1.0010	B _{1g}				227	212.1			203.5	190.3	
935 (943)	953 (952)	1.0095	B _{3g}	(970)			250	242.2	226	001			220 VV
	—		B _{2g}	$\mathbf{A'} \qquad \mathbf{A_1} (\mathbf{v_1})$		259	242.2	236	221	-		230 YX	
951 (951)	948.5 (948.5)	0.9974	Ag		980 cm ⁻¹		300	280.6	260	243.1	285	266.6	237.5 YX
636 (634)	642 (640)	1.0095	Ag	$\begin{array}{c c} A' \\ \hline (621) \\ A'' \\ \hline (591) \\ \end{array} \begin{array}{c} F_2(v_4) \\ 515 \text{ cm}^{-1} \end{array}$									
596 (596)	603 (601)	1.0015	B _{2g}			311	290.9	356.6	333.5	313	292.7	333.5 XY	
591 (590)	592.5 (591.5)	1.0025	B _{1g}		$\mathbf{F}_2(\mathbf{v}_4)$	Table 2. Symmetry and frequencies of the experimental IR phonon modes in LiNiPO ₄ [3] at T = 30 K and calculated IR phonon modes in	382	357.2	444	415 1	330.6	309 1	
589.5 (589)	592 (591)	1.0034	B _{3g}		515 cm^{-1}		502	JJ1.2		713.1	550.0	507.1	
577.5 (577)	581.5 (580)	1.0052	Ag	A'	A'		-	-			363	339.4	
	—		B _{2g}				524	521.2	166	1627	514	511 /	
451 (449)	462.5 (459)	1.0223	Ag	$ \begin{array}{c c} A' \\ (455) \\ A'' \\ 363 \text{ cm}^{-1} \end{array} $			534	531.3	400	403./	514	511.4	
444.5 (448)	470.5 (467.5)	1.0435	B _{2g}		LiCoDO emistela (fer coloriotiona	581	578.1	543	540.3	580	577.1	541.2 XY	
433 (432)	442.5 (437)	1.0116	B _{3g}		363 cm^{-1}	the average frequency change							
405 (401)	422.5 (417.5)	1.0411	B _{1g}	(427)			650	646.8			662.5	658.2	
279 (272)	308 (303.5)	1.1158	_			coefficients were used for			051	046.3	042	027.2	
261 (260)	287.5 (282.5)	1.0865				isomorphic substitution of Co by Ni: 1.07 for external and 1.005 for internal vibrational modes).	-	-	931	940.3	942	937.3	
216 (209)	242.5 (238)	1.1388	$\mathbf{A}_{\mathbf{g}}$		1083		1077.6			1035	1030	1031.5 XZ	
157.5 (156)	175.5 (175)	1.1218	-					107710			1000	1000	
104.5 (102)	114 (111.5)	1.0931					1145	1139.3			1102	1096.5	
310 (300.5)	325 (320.5)	1.0666	B _{1g}										
253 (250.5)	258 (256)	1.0220											
181.5 (180)	199 (195)	1.0541				The performed analysis of taken Raman spectra in the different polarization configurations							
149.5 (145)	220 5 (225 5)	1 0006		Extern	al mode	The periormed analysis of				·			
<u>304.5 (299)</u> 300 (200)	329.5(325.5)	1.0000	B _{2g}			revealed a number of addition	onal phone	on lines up	on transit	ion to a ma	agnetically	ordered s	tate: 192.2,
300 (299)	313 (310) 255 5 (252)	1.0300				230.0, 237.5, and 333.5 cm ⁻¹ ((Figs. 1a, 1	lc); 541.4 c	cm ⁻¹ (Fig. 1	lb); 1031.5	cm ⁻¹ (Fig.	1d). A rev	ealed effect
<u> </u>	$\frac{233.3(232)}{182(181.5)}$	1 1067				can be explained in terms of two scenarios: 1) the unit-cell multiplication below T_N ; 2) IR phonon leakage due to the magneto-electric effect							
100 (104) 151 5 (151)	$102 (101.3) \\ 172 (170)$	1.1007	-										
$\frac{131.3(131)}{323(3185)}$	$\frac{172}{320} (170)$	1.1230	B ₂			icanage due to the magneto-e							
248 (2445)	262 (2585)	1.0100											
174 5 (160)	193 5 (180)	1 1183	og			Conclusions							
113 (111)	122 (119.5)	1.0766	-			The assumption about the presence of the unit-cell multiplication contradicts the available X-ray and							

The assumption about the presence of the unit-cell multiplication contradicts the available X-ray and neutron diffraction data. There are no data on low-temperature IR phonons for LiCoPO₄ to verify the second scenario. The performed analysis of our Raman spectra of LiCoPO₄ [1] and LiNiPO₄ [2] allowed us to find the empirical dependences of the frequency positions of phonon lines on the ionic radius and atomic vibration types (Table 1). Having performed the comparative analysis of obtained abovementioned Raman data and IR spectra of LiNiPO₄ (T=30 K) [3], we calculated the frequency positions of the IR phonons in LiCoPO₄. The results obtained are in good agreement with the frequency positions of additional phonons observed in Raman spectrum (Table 2).

Referenses:

- [1] V. I. Fomin, V. P. Gnezdilov, V. S. Kurnosov, A. V. Peschanskii, at. al., Low. Temp. Phys., 25, 829 (1999).
- [2] V. I. Fomin, V. P. Gnezdilov, V. S. Kurnosov, A. V. Peschanskii, at. al., Low Temp. Phys. 28, 203 (2002).
- [3] M. S. Radionov, S. A. Klimin, A. Yu. Glamazda, A. V. Peschanski, Low Temp. Phys. 48, 246 (2022).