Low-temperature magnetic phase transition in TbAl₃(BO₃)₄ - quantum and classical aspects

T. Zajarniuk¹, <u>A. Szewczyk¹</u>, P. Wisniewski², M. U. Gutowska¹, R. Puzniak¹, H. Szymczak¹, I. Gudim³, V. A. Bedarev⁴, and P. Tomczak⁵

¹Institute of Physics, Polish Academy of Sciences, Warsaw, Poland ²Institute of Low Temperature and Structure Research, Polish Acad. of Sciences, Wroclaw, Poland ³Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia ⁴B. Verkin Institute for Low Temperature Physics and Engineering of NAS of Ukraine, Kharkiv, Ukraine

5Faculty of Physics, Adam Mickiewicz University, Poznan, Poland

Specific heat, C_B , of a TbAl₃(BO₃)₄ single crystal was studied for temperatures, *T*, from 50mK to 300 K, with emphasis on the *T*< 1 K range, where a phase transition was found at 0.68 K. Nuclear, non-phonon, and lattice contributions to C_B were separated. Based on the C_B and magnetization, *M*, studies, we found that: (i) the phase transition shifts to lower temperatures with increase in magnetic field B_{\parallel} , parallel to the easy magnetization axis, (ii) the critical, i.e., related to the phase transition, contribution to the specific heat, C_{cr} , shows an unusual dependence on *T*, $C_{cr} \sim T^{y_0}$, where y_0 is a positive exponent, and (iii) the Grüneisen ratio, Γ , defined as:

$$\Gamma = -\frac{1}{T} \frac{(\partial S/\partial B)_T}{(\partial S/\partial T)_B} = -\frac{(\partial M/\partial T)_B}{C_B(T)} = \frac{1}{T} \left(\frac{\partial T}{\partial B}\right)_S$$

where *S* denotes entropy, diverges as a function of B_{\parallel} for B_{\parallel} approaching a critical value of 0.6 T. The determined behaviors of both C_{cr} and Γ as a function of *T* (especially scaling of the latter for $B_{\parallel} \ge 0.30$ T), as well as dependence of Γ on B_{\parallel} are characteristic of the systems, in which the classical phase transition line is influenced by quantum fluctuations, QF, and ends at a quantum critical point. Based on the determined y_0 and Γ values, we assessed the dynamical critical exponent *z* to be $0.82 \le z \le 0.96$. Taking into account all these results, we suppose that QF dominate the behavior of the system and destroy the long range order, i.e., we suppose the transition found to have a quantum character.

The physical nature of the transition is not clear. The interpretation that this is the transition to the ferromagnetic order of Tb^{3+} magnetic moments is the most natural, intuitive, and supported by the *M* studies. However, such a classical transition should be smeared and shifted to higher *T* by B_{\parallel} , while we observe the opposite effect. Such effect was observed in systems, in which not only the exchange interactions but also magnetic dipolar interactions are essential [1]. However, the possibility, that the transition is related to any other kind of ordering, e.g., a multipolar ordering, and the ordering of the Tb³⁺ moments is a "side effect" only, can not be ruled out *a priori*.

* This work was supported partially by the National Science Centre (NCN), Poland, under Project No. 2018/31/B/ST3/03289.

[1] G. Mennenga, L. J. de Jongh, W. J. Huiskamp, J. Magn. Magn. Mater. 44, 59 (1984).