Crystal structure, phase transitions and magnetic behaviour of the BiFeO₃-based perovskite solid solutions

<u>A. N. Salak</u>¹, D. D. Khalyavin², E. L. Fertman³, A. V. Fedorchenko³, R. Tarasenko⁴, A. Feher⁴, E. Čižmár⁴

¹Department of Materials and Ceramic Engineering, CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal

²ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK

³B. Verkin Institute for Low Temperature Physics and Engineering of NASU,

61103 Kharkiv, Ukraine

⁴Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, 041 54 Košice, Slovakia e-mail: salak@ua.pt

Bismuth ferrite is one of few materials in which the coexisting (anti)ferroelectric order and the (anti)ferromagnetic order are caused by independent mechanisms. Ferroelectricity in BiFeO₃ is induced by the electronic instability of the lone-pair Bi³⁺ cations, while the antiferromagnetism in this material results from the superexchange interactions between Fe³⁺ cations. Besides, the distorted crystal structure of this perovskite, involving large polar atomic displacements and octahedral tilting, gives rise to competing antisymmetric Dzyaloshinskii-Moriya interactions. The part of antisymmetric exchange associated with the polar distortions favours a spatially modulated ground state in the form of a long-period incommensurate cycloid. On the contrary, the antisymmetric exchange imposed by the octahedral tilting requires a non-modulated canted weak ferromagnetic state. In the undoped BiFeO₃, the former contribution wins, promoting the longperiod modulated spin ordering that averages the net magnetization to zero. This modulation, however, can be suppressed via chemical modification. Chemical modifications in the iron site of BiFeO₃ represent the direct approach to tune the magnetic behaviour of this material. However, using the conventional synthesis routes, it is possible to achieve the substitution rates of a few atomic percent only. Most of the reported single-phase $BiFe_{1-y}B^{3+}{}_{y}O_{3}$ perovskite compositions with y>0.10 were prepared via high-pressure synthesis.

In high-pressure stabilized perovskite solid solutions of the BiFe_{1-y}Sc_yO₃ system, a series of structural transitions with increasing *y* was found. Moreover, it was revealed that annealing of the as-prepared perovskite phases results in irreversible transformations into new structural phases with interesting combinations of ferroic orders [1]. In the $0.1 \le y < 0.3$ range, some peculiarities of the temperature-dependent magnetic moment below T_N were observed and associated with possible transitions between different antiferromagnetic structures corresponding to collinear, canted, and cycloidal spin arrangements. Similar temperature anomalies of the magnetic behaviour below T_N were then revealed in the Fe-rich compositional range of the BiFe_{1-y}[Zn_{0.5}Ti_{0.5}]_yO₃ perovskites [2].

In this work, we considered the compositional behaviours of the crystal structure and the magnetic properties of the BiFe_{1-y} $B^{3+}_{y}O_3$ perovskites (where $B^{3+} = Ga$, Co, Mn, Cr, [Zn_{0.5}Ti_{0.5}] and Sc) in the vicinity of parent bismuth ferrite. Among these, Cr³⁺, Mn³⁺, and Co³⁺ are magnetic cations of transition metals from the same 3*d* series to which iron belongs, while Ga³⁺, Sc³⁺ and [Zn_{0.5}Ti_{0.5}]³⁺ are non-magnetic. Besides, as compared with iron, gallium is smaller, scandium is considerably bigger, and [Zn_{0.5}Ti_{0.5}]³⁺ is slightly bigger than Fe³⁺ in octahedral coordination. The crystal structure sequences, phase diagrams and the $T_N(y)$ dependences are compared and discussed.

[1] D.D. Khalyavin, A.N. Salak, E.L. Fertman, O.V. Kotlyar, E. Eardley, N.M. Olekhnovich, A.V. Pushkarev, Yu.V. Radyush, A.V. Fedorchenko, V.A. Desnenko, P. Manuel, L. Ding, E. Čižmár, and A. Feher, *ChemComm.* 55, 4683 (2019). https://doi.org/10.1039/C9CC00472F
[2] A.N. Salak, J.P.V. Cardoso, J.M. Vieira, V.V. Shvartsman, D.D. Khalyavin, E.L. Fertman, A.V. Fedorchenko, A.V. Pushkarev, Yu.V. Radyush, N.M. Olekhnovich, R. Tarasenko, A. Feher and E. Čižmár, *Magnetochemistry* 7, 151 (2021). https://doi.org/10.3390/magnetochemistry7110151