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The conductance of systems containing two tunnel point-contacts and a single subsurface scatterer is investi-
gated theoretically. The problem is solved in the approximation of s-wave scattering giving analytical expres-
sions for the wave functions and for the conductance of the system. Conductance oscillations resulting from the 
interference of electron waves passing through different contacts and their interference with the waves scattered 
by the defect are analyzed. The prospect for determining the depth of the impurity below the metal surface by us-
ing the dependence of the conductance as a function of the distance between the contacts is discussed. It is 
shown that the application of an external magnetic field results in Aharonov–Bohm type oscillations in the con-
ductance, the period of which allows detection of the depth of the defect in a double tip STM experiment. 

PACS: 61.72.J– Point defects and defect clusters; 
73.63.Rt Nanoscale contact; 
74.55.+v Tunneling phenomena: single particle tunneling and STM. 
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With the further development of scanning tunnelling 

microscopy (STM) it has become clear that a single STM 
probe is often not enough for obtaining information on the 
detailed characteristics of the surface under investigation. 
A logical development of the one-tip approach is a dual-tip 
experimental setup, which can provide us with richer in-
formation than conventional single-probe STM. Despite 
the apparent technical complexity of the dual-tip STM 
(DSTM) in comparison with standard STM several groups 
have demonstrated successful solutions for such refine-
ment of the STM technology [1– 4]. 

DSTM can be realized in different ways. For example, 
it can be a spatially extended STM tip with two protru-
sions, each ending in a cluster or a single atom [5]. A 
second approach is a coaxial beetle-type double-tip STM 
design that looks advantageous in retaining the standard 
STM stability [6]. The most versatile DSTM comprises 
two individual tips, which can be driven independently. In 
this case the distance between the tips is limited in prin-
ciple only by a parameter such as the characteristic tip ra-

dius [2]. Another original example of the DSTM was pro-
posed in [7], where one contact can be created directly on 
the surface, while the other one was the STM-tip itself. 

For DSTM experiments with two independent probes 
there are different possibilities for applying voltages to the 
tunnelling contacts. There are two basic circuit designs: in 
the first one electrons are emitted from the first contact and 
then gathered at the second, i.e., the current flows from one 
contact to the other through the surface being probed [8,9]. 
This method allows capturing a trans-conductance map, 
and in addition allows the implementation of three-terminal 
ballistic electron emission spectroscopy (BEES) without 
introduction of macroscopically bounded contacts [3]. In the 
second basic scheme proposed in Ref. 5 the bias is applied 
between the two tips and the sample, i.e., the current flows 
from two contacts into the sample. 

Subsurface defects, adatoms, and steps on the metal 
surface result in the appearance of Friedel-like oscillations 
in the STM conductance = /G dI dV  — a nonmonotonic 
dependence of G  with the distance between the STM tip 
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and the defect 0r  (for a review see [10]). The study of this 
dependence can be used for the detection of buried defects 
and for investigation of their characteristics. Methods for 
determining defect positions below a metal surface using a 
single tip STM have been proposed before: this can be 
achieved using the period of oscillation of the conductance 
as a function of bias [11,12] or by exploiting the interfe-
rence pattern of conductance as a function of position, 

0( )G r , which is very pronounced for open directions of 
Fermi surface [13–15]. These approaches are very suitable 
for the surfaces of simple metals, such as the noble metals, 
but application to conductors having a more complicated 
Fermi surface geometries will be difficult and has not yet 
been explored. 

In the present work we examine the case of injection of 
electrons to the surface by the first and the second contacts 
simultaneously. We consider this realization of a double-
tip experiment as a natural refinement of the single-tip 
STM problem for the study of single defects buried under 
the metal surface [11,12,15]. 

The idea of using multiple tunnelling contacts for de-
termining the depth and location of impurities under a met-
al or semiconductor surface has been expressed earlier in 
Ref. 8. The paper by Niu et al., Ref. 8, proposes a method 
for determining the desired depth by measuring the trans-
conductance between two tips of the dual-tip scanning 
tunneling microscope. In the present paper we propose a 
different approach, namely, by measuring the phase change 
Δϑ  in the conductance oscillations as a function of the 
distance between two STM tips d. Such phase changes can 
be measured experimentally with great precision. We show 
that Δϑ  can be expressed in terms of the distance d (in 
units of the Fermi wave vector Fk ), the position of the 
defect in the plane parallel to surface plane 0,ρ  which is 
easily defined experimentally, and the unknown depth of 
the defect 0z . Thus by measurement of ( )dΔϑ  it is possi-
ble to determine the depth of the buried impurity. The pro-
cedure of defining 0z  is further simplified when a magnet-
ic field H  is applied to the system. In this case the STM 
conductance G  undergoes Aharonov–Bohm type oscilla-
tions. These oscillations result from the quantization of the 
magnetic flux through the area formed by the electron tra-
jectories from the contacts to the defect and the line con-
necting the contacts (Fig. 1). For a weak magnetic field the 
electron trajectories and the line connecting the contacts 
form a triangle, and from its area S  the defect depth can 
be found easily. 

As a model for the double-tip STM geometry we con-
sider two metal half-spaces separated by an infinitely thin 
nonconducting interface at = 0,z  which contains two 
small regions (contacts) that allow electron tunnelling (see 
Fig. 1). The origin of the coordinate system = 0r  is cho-
sen in the center of the first contact. The x-axis is directed 
along the the line connecting the contacts. For the potential 
barrier in the plane = 0z  we use the function [17] 

 0( ) = ( ) ( ).U U f zδr ρ  (1) 

In our case ( )f ρ  describes two «windows» for electron 
tunneling and the reciprocal function 1( )f − ρ  can be pre-
sented as a sum of two terms  
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where ( ) 1xχ �  for 1,x  and ( ) 1xχ �  for 1,x �  1,2a  
are the characteristic radii of the contacts, ρ  is the compo-
nent of the vector r  parallel to the plane = 0,z  d  is a 
two-dimensional radius vector from the center of first con-
tact to the center of second one. The absolute value d  is 
the distance between contacts, assuming that this is smaller 
than the shortest relaxation length. 

In the vicinity of the contacts a single defect is placed 
described a short range potential ( )D r , 

 ( )0 0( ) = ,D gD −r r r  (3) 

where g  is the constant of interaction of the electrons with 
the defect, and 0 0( )D −r r  is a spherically symmetric 
function localized within a region of characteristic radius 

Dr  centered at the point 0= ,r r  which satisfies the norma-
lization condition  

 2
0

0
4 ( ) = 1.dr r D r

∞
′ ′ ′π∫  (4) 

Fig. 1. Schematic arrangement of the system of two tunnel con-
tacts, modelled as two orifices in an infinitely thin interface be-
tween conducting half-spaces. The inset shows the equivalent 
circuit with two STM tips, which provide the electron tunnelling 
paths through small areas with characteristic radii 1a  and 2.a  
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For calculation of the conductance G  we proceed as 
before. The probability density current is found by using 
the wave function ( )ψ r  for the electrons tunnelling 
through the potential barrier in the plane of the orifices. 
The total electric current I  in the system is calculated by 
integrations over electron momenta and over a real-space 
surface overlapping the contacts. We will take the tempera-
ture to be zero, and assume a small applied voltage V  
such that we stay in the linear regime of Ohm’s law, 

= .I GV  Under these assumptions the conductance G  can 
be written as 

 
2

2

, >0
= ( ) Im ( ) ( ) .F

S v SF z

eG d d r
m

∗
∗

⎡ ⎤ν ε Ω Ω ψ ∇ψ⎣ ⎦∫ ∫p r r   

  (5) 

In Eq. (5) m∗  is the effective electron mass, ( )Fν ε  is the 
electron density of states at the Fermi level, dΩ  and dΩp  
are solid angles in the real and momentum spaces, respec-
tively. As the surface for space integration we choose a 
half-sphere of radius r , larger than distance between the 
contacts d  and centered at the center of first contact, 

= 0,r  and covering the contacts in the lower half-space, 
> 0.z  The integration over the directions of the momen-

tum over the Fermi surface FS  is carried out for electrons 
tunnelling and having a positive projection zv  of the elec-
tron velocity on the contact axis .z  As a consequence of 
the conservation of total current the integral over dΩ  does 
not depend on the length we choose for the radius .r  

The electron wave function ( )ψ r  satisfies the 
Schrödinger equation 

 ( )2
2

2 ( ) ( ) = 0,m D
∗⎡ ⎤

∇ + ε − ψ⎢ ⎥
⎢ ⎥⎣ ⎦

r r  (6) 

subject to the boundary conditions of continuity and of the 
jump of its derivative at = 0z . In Ref. 17 a solution of 
Eq. (6) was found for an arbitrary function ( ),f ρ  in the 
limit of weak tunnelling, 01 / 0,U →  and for a purely bal-
listic contact (no defects present),  
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where 2 2 2= ,z zk k′ ′+ −  and  and zk  are the com-
ponents of the vector k  parallel and perpendicular to the 
interface, respectively. As a special case the authors of 
Ref. 17 considered a system of several orifices with differ-
ent radii. 

The characteristic radius of the region through which 
the electrons tunnel from the STM tip into the sample has 
sub-atomic size ( 0.1 Å)a �  while the Fermi wave vector 

is 1Fk � Å 1.−  By using the condition Fk 1,2 1a �  we 
find, after integrating over ′  in Eq. (7), 

(1) (1)2 2
0 1 21 1

( )
( ) = ( ) ( ) ( ) ( )e

2
izit k z zka h kr ka h kr

r r
⎡ ⎤′ψ +⎢ ⎥′⎣ ⎦

dr  

  (8) 

where (1)
1 ( )h kr  is the spherical Bessel function of the first 

order, = ,r ′ −r d  and  
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z
k

t k
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is the transmission amplitude of the electron wave function 
passing through a homogeneous barrier. Note that in the 
limit 1,2 0Fk a →  the result of Eq. (8) does not depend on 
the concrete form of the function ( / )aχ ρ  in Eq. (2) and 
the wave function Eq. (8) as well as the conductance of the 
system are expressed in terms of the effective areas of the 
contacts, 2

1,2.aπ  
The effect of electron scattering by the short-range po-

tential can be taken into account by the method proposed 
in Ref. 18. If the radius of action Dr  of the potential ( )D r  
is of the order of Fermi wave length ,Fλ  in the region of 
the defect 0 Dr−r r  the wave function ( )ψ r  can be 
taken as a constant 0( ),ψ r  as for a δ-function. Under this 
approximation Eq. (6) takes the form of a non-
homogeneous equation with the right-hand member being 

2
0(2 / ) ( ).m D∗ ψ r  In the limit 01/ 0U →  a solution of 

this equation can be expressed in terms of the solution of 
the homogeneous equation (see Eqs. (7), (8)) and the re-
tarded electron Green’s function of Eq. (6) for the semi-
infinite half-space 

Fig. 2. Squared modulus of the wave function (10). The defect 
sits at 0 = (10, 0, 15),kr  the distance between the contacts 

= 14,kd  the scattering phase shift is 0 = 1.5.δ  
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 ( ) ( ) ( )0 2
2= m T k

∗
ψ ψ + ×r r   

 ( ) ( ) ( ) ( ) ( )00 0 00 0 ,G G+ +⎡ ⎤× − − − ψ⎢ ⎥⎣ ⎦
r r r r r  (10) 

where 0 0 0= ( , ).z−r ρ  ( )T k  is the scattering matrix, which 
for a short-range scatterer can be expressed in terms of the 
s-wave scattering phase shift 0δ  [20] 
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The Green’s function  

 ( )
0

exp( )( ) =
4

ikxG x
x

+ −
π

 (12) 

is the retarded Green’s function of a free electron. The phase 
shift 0δ  is determined by the scattering strength g  as, 
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Figure 2 illustrates the spacial variation of the wave 
function (10) for the case when the contacts and the scat-
terer are all placed in the plane = 0y . The interference of 
election waves passing through different contacts and their 
interference with the waves scattered by the defect are 
clearly visible. In order to make the effects more visible we 
used in Fig. 2 a large value for the scattering phase 

0 = 1.5,δ  which is acceptable only for Kondo resonance 
scattering by a magnetic impurity (see, for example, [19]). 
The grey circle round the point 0=r r  in Fig. 2 is the re-
gion in which the Eq. (10) is not valid because of diver-
gence of the Green function. 

Substituting the wave function (10) into the general ex-
pression for the conductance G  (5) we find 

 1 2 osc= ( , ) ,cG G a a G+  (14) 

where cG  is the conductance of the double contact system 
in the absence of the defect 

 1 2 0 1 0 2 12( , ) = ( ) ( ) ,cG a a G a G a G+ +  (15) 

0G  is an inherent conductance of the single contact [17] 
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and 12G  takes into account the interference of electron 
waves passing through different contacts  
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Here we introduced the notation 

 13 ( )
( ) = ,

j x
f x

x
 (18) 

1( )j x  the spherical Bessel function of the first kind such 
that ( )0 = 1.f  The second term in Eq.(14), osc ,G  de-
scribes the quantum interference resulting from the scatter-
ing of the electrons by the defect  

 ( )osc 0 0 1 0 0 2 0( , ) = ( ) ( ) ( )G r d G a G a ′Γ + Γ +r r   

 12 0 02 ( , ) / ( ),FG f k d′+ Ψ r r  (19) 

where 0 0 0= ( , )z′ −r dρ , and 0r′  is the distance between the 
defect and the second contact. The functions 0( )Γ r  and 

0( )′Γ r  take into account the effect of interference of elec-
tron waves passing through the contact and returning to the 
same contact after scattering by the defect, 
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and 

 1 0 0 1 0( ) = ( )cos sin [ ( )( (2 ) 1)F F Fy k r j k r j k zγ − δ + δ − +r   

 0 1(2 ) ( )].F Fy k z y k r+  (22) 

In the last term in Eq. (19) 0 0( , )′Ψ r r  describes the interfe-
rence of electron waves that arrive at the other contact after 
scattering by the defect, 

 [
2

1
0 1 1( , ) = sin ( ) ( ) ( ) ( )F F

zF j k r j k r
rr

−′ ′ ′Ψ δ γ + γ +
′
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 2 2
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For 2 = 0a  (i.e., when we have just a single contact) 
Eq. (14) coincides with the expression for the conductance 
of a tunnel point contact obtained in Ref. 20. Figure 3 illu-
strates the dependence of the oscillatory part of the con-
ductance (19) on the position of the defect in the plane 

0= .z z  The oscillatory pattern presented in Fig. 3 
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represents an image which could be obtained by DSTM 
when mapping the tunnelling conductance in the vicinity 
of the subsurface defect. 

The general formula for the conductance (14) can be 
simplified for large distances between the contacts and the 
defect, 0 0, 1/ Fr r k′� , and for a weak scattering potential 

2
0 / 2 1Fgm k∗δ − π� � . Under these assumptions the 

normalized oscillatory part of the conductance, in the li-
near approximation in ,g  can be written as 

 
2
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For simplicity we take here 1 2= = .a a a  Equation (24) 
shows that in contrast to one tunnel point contact, for 
which osc 0sin 2 FG k r∼  when 0 1,Fk r �  the oscillatory 
dependence of the double contact has a phase shift ϑ  that 
depends on the distance between the contacts 

 osc
0

0
sin (2 ),F

G
k r

G
+ ϑ∼  (25) 

_____________________________________________ 
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and 0 0= / .Fk d rϕ ρ  The defect position in the plane paral-
lel to the surface, 0ρ , is known from the interference pat-
tern of the conductance oscillations (see Fig. 3). In prin-
ciple, the depth of the defect 0z  may be found from the 
experimental data in the following way: changing the dis-
tance between the contacts over a small range d dΔ �  
leads to the appearance of an additional phase shift 

0 0( , , )z dΔϑ ρ , which can be defined from the dependence 
osc 0 0( , , ),G z dρ  see Fig. 4. The depth 0z  can be obtained 

as a numerical solution of the equation 

 0 0= ( , , ) .d z d d′Δϑ ϑ ρ Δ  (27) 

Let us now consider applying a magnetic field H  pa-
rallel to the surface of the sample (see Fig. 1). If the exter-
nal magnetic field is sufficiently weak, such that the radius 
of the electron trajectories = /H Fr ck eH  is much larger 
than the distances between the contacts and the impurity, 

0r , 0r ′ , the magnetic distortions of the trajectories [21] are 
negligible, i.e., the trajectories can be considered as 
straight lines. 

Under this condition of 0Hr r� , 0r ′ , the zero-field 
wave-function ( )ψ r  acquires an additional phase: 
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∫
r

r r A r r  (28) 

Fig. 3. Dependence of the normalized oscillatory part of the con-
ductance osc 0/G G  as a function of the defect position 0ρ  in the
plane parallel to interface = 0z , 0 = 5.Fk z  The distance be-
tween the contacts is taken as = 20Fk d , and the scattering phase
shift is 0 = 1.5.δ  
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and the Green function similarly takes the form [16]: 

 0 0

0

( ) = ( ) exp ( ) .ieG G d
c

⎛ ⎞
⎜ ⎟′′ ′′
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⎝ ⎠

∫
r

r
r,r r,r A r r  (29) 

Here, ( )A r  is the vector potential of the magnetic field. 

On account of this change in the wave function (28) the 
formula for the conductance G  is modified and takes the 
form: 
 1 2 osc 0= ( , ) ( , , ),cG G a a G r d H+  (30) 

 osc 0 0 1 0 0 2 0( , , ) = ( ) ( ) ( ) ( )G r d H G a G a ′Γ + Γ +r r   

 12 02 ( , ) / ( ),FG f k d′+ Ψ r r  (31) 

____________________________________________________ 
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 ( ){0 1 0 1 0 0 1( ) = cos ( ) sin ( ) (2 ) 1 (2 ) ( )},F F F F Fj k r y k r j k z y k z j k rγ δ + δ − −r  (33) 

_______________________________________________ 

where ( )γ r  is defined by (22), 0 = /c eΦ π  is the flux 
quantum and =Φ HS  is the magnetic flux through the 
triangle formed by vectors 0,r  0′r , and the vector d  con-
necting the contacts. At = 0H  the expression (30) reduces 
to the formula obtained earlier (14). 

At 0 1/ Fr k� , and 0 1,δ �  Eq. (31) takes the form 
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  (34) 

Similar oscillations in the electron local density of 
states have been predicted in Ref. 22 for a system of two 
adatoms and an STM tip in a plane perpendicular to a sur-
face magnetic field. 

If the period of the oscillations is known, the depth 0z  
can be determined using the following procedure: In the 
most convenient geometry of the experiment the contacts 
should be placed so that the vectors 0 ,r  0′r  and the normal 
to the sample surface are situated in the same plane, i.e., 
the vectors H  and S  are parallel. For our illustration in 
Fig. 1 that means the coordinate 0ρ  of the defect in the 
plane xy  is on the line connecting the tips. In this case the 
relation between the period of oscillations HΔ  and the 
depth 0z  is very simple 

 0
0

4
= .z

d H
Φ
Δ

 (35) 

Note that observation of the conductance oscillations 
(34) requires a sufficiently strong magnetic field. Currently 

in low temperature STM the magnetic field up to 15 T is 
reachable [23]. For example, in order to observe the quote of 
period HΔ  for 0 = =z d 20 nm it is necessary to apply the 
field =H  5 T. For typical metals, for which 0.1 nmFλ ∼ , 
for the distance between the contacts and the defect 

0 10r  nm the amplitude of conductance oscillations be-
come very small 2

osc 0 0( / )FG G rλ∼  4 5
0(10 –10 )G− −∼ . 

Therefore more suitable objects for application of pro-
posed magnetic method of determination of the defect 
position below the surface are semiconductors, semimet-
als (Bi, Sb and their ordered alloys) where the Fermi 
wave length 10 nm.Fλ ∼  Also the large amplitude 

2 3
osc 0(10 –10 )G G− −∼  could be expected in the metals of 

the first group, a Fermi surface of which has small cavi-
ties with effective mass 2 3

0(10 –10 )m m− −∗ �  ( 0m  is the 
mass of a free electron). As well a low temperature STM 
should be used to avoid electron-phonon scattering on the 
electron trajectory. 

Thus, in this paper we have investigated theoretically 
the conductance of the system consisting of two close tun-
nel point contacts in the vicinity of which the point defect 
is situated. In approximation of s-wave scattering which is 
valid for short range scattering potential the oscillatory 
dependence of conductance on the separation between the 
contacts and their distances from the defect is studied. We 
proposed an alternative way that allows to determine the 
depth of the subsurface impurity by measuring the phase 
change in the conductance oscillation, arising when we 
change the distance between the contacts of double-tip 
STM. Also it was obtained that for the case when low 
magnetic field which is parallel to the surface of the sam-
ple the depth of the subsurface impurity can be easily 
found from the period of Aharonov–Bohm type oscilla-
tions of conductance, which arise in this case. 
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