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Oscillations of the Nernst coefficient in bismuth
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We calculate the magnetic-field dependence (oscillations) of the Nernst coefficient in bismuth at low
temperatures for the case when the magnetic field is directed along the trigonal axis of the crystal. In the
calculations we take into account the scattering of the electrons and holes in bismuth on impurities and
the dependence of this scattering on the magnetic field. The results of these calculations are compared with
the experimental data recently published.
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I. INTRODUCTION

In a recent paper,1 oscillations of the Nernst coefficient in
bismuth were observed for magnetic fields directed along the
trigonal and bisectrix axes of the crystal. These oscillations
have the shape of rather sharp peaks which originate from the
crossing of the Landau levels of charge carriers in bismuth
with the Fermi level EF of this semimetal. Moreover, several
unusual peaks of this coefficient were discovered for very high
magnetic fields H (14 � H � 33 T) parallel to the trigonal
axis.2 At such magnetic fields almost all the Landau levels
are empty, and one can hardly expect that the unusual peaks
result from the above-mentioned crossing. So the authors
of Ref. 2 suggested that the unusual peaks are caused by
some collective effects in the electron system of bismuth.
Interestingly, in the same interval of high magnetic fields
several jumps of magnetization were observed, which were
ascribed to field-induced instabilities of the ground state of
interacting electrons in bismuth.3

Within a simple model of the electron energy spectrum of
bismuth in magnetic fields, the positions of the usual peaks
in the magnetic-field axis were explained,4,5 by calculating
the crossing of the appropriate Landau levels with EF . It
turned out that most of these peaks are due to the hole Fermi
surface of bismuth, while some result from its electron Fermi
surface. However, the unusual peaks observed in the Nernst
signal at high magnetic fields cannot be explained in this way.
Nevertheless, we showed4 that, in principle, the positions of
some of these peaks can be reproduced if one assumes that
a small deviation of the magnetic-field direction from the
trigonal axis occurred in the experiments. In order to support or
to disprove this possible explanation of the unusual peaks, we
also suggested4 experimental investigation of the dependence
of the Nernst-coefficient peaks on the tilt angle of the magnetic
field. These experiments were described in Ref. 6, and it was
found that the angular dependences of the usual peaks are in
agreement with the theory,4,5 while the dependences of the
unusual peaks are essentially different, and hence their origin
cannot be explained by a small deviation of the magnetic-field
direction from the trigonal axis. In addition, the results of
the calculations in Ref. 4 show that the usual electron peaks
observed in the experiment correspond to only some of the
crossings of the electron Landau levels with EF , while other
crossings do not manifest themselves.

In order to continue analysis of the experimental
findings,1,2,6 in this paper we calculate not only the positions

of the peaks in the Nernst coefficient but also their shape, i.e.,
the dependence of this coefficient on the magnetic field, in
the case when the field is along the trigonal axis. We carry
out the calculations within the same model of the spectrum of
bismuth as in Ref. 4. This model is briefly described in Sec. II.
In Sec. III we present formulas for the Nernst coefficient,
taking into account the effect of impurities on the density of
states of charge carriers in bismuth, and in Sec. IV we compare
the results of our calculations with the experimental data.

II. ENERGY SPECTRUM OF BISMUTH

The Fermi surface of bismuth consists of one hole ellipsoid
located at the point T of its Brillouin zone and three electron
ellipsoids centered at the points L and elongated along the
bisectrix directions.7 As in Ref. 4, we shall describe the
electron spectrum of bismuth in the magnetic field H by
the model of Smith, Baraff, and Rowell.8 According to this
model, the nth Landau level εn for an electron with the
quasimomentum pH along H can be found from the equation

E

(
1 + E

Eg

)
=

(
n + 1

2

)
h̄ωc + p2

H

2mH

± 1

2
gβ0H, (1)

where the signs ± correspond to the electron spins that are
antiparallel and parallel to H, respectively; the energy E is
measured from the edge of the conduction band; ωc is the
cyclotron frequency

ωc = |e|H
mcc

; (2)

Eg is the gap between the conduction and valence bands at the
point L; g is the effective electron g factor at this point; β0 is
the Bohr magneton; c is the speed of light; e is the electron
charge; and the longitudinal and the cyclotron masses mH and
mc are given by

mH = h · me · h, (3)

mc = [det me/mH ]1/2. (4)

Here h is the unit vector in the direction of the magnetic field
H. The effective mass tensor me has the form

me =

⎛
⎜⎝

m11 0 0

0 m22 m23

0 m23 m33

⎞
⎟⎠ , (5)
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where the axes 1 and 3 coincide with the binary and the trigonal
axes, respectively, while the axis 2 is along the bisectrix
direction. The effective g factor

g2 = 4m2 h · me
s · h

det me
s

(6)

is defined in terms of a spin-mass tensor me
s that has the form

similar to Eq. (5). Within the model of Smith, Baraff, and
Rowell8 the elements of me

s differ from the elements of me.
Since the spectrum of the holes at the point T is parabolic,

their Landau levels can be easily found:7

E0 − E =
(

n + 1

2

)
h̄ωc + p2

H

2mH

± 1

2
gβ0H, (7)

where E0 is the edge of the hole band at this point of the
Brillouin zone. The cyclotron frequency ωc, the masses mc

and mH , and the g factor are defined by the same formulas
(3), (4), and (6) as for the electrons, but now the tensor of the
effective masses for the holes, mh, has the form

mh =

⎛
⎜⎝

M1 0 0

0 M2 0

0 0 M3

⎞
⎟⎠ , (8)

and a similar expression is valid for the spin-mass tensor mh
s .

All the parameters in Eqs. (1)–(8) are known for bismuth;8,9 see
Table I. The above formulas lead to the following expression
for the contribution of the ith electron ellipsoid to the density
of electrons in bismuth:8

Ne
i (EF ,H ) = (2mH )1/2eH

2π2h̄2c

∑
n,±

√
E∗

F − En,±, (9)

where

E∗
F = EF (1 + EF /Eg), (10)

EF is the Fermi energy, and we have used the notation

En,± = (n + 1/2)h̄ωc ± (1/2)β0gH. (11)

The density of the holes is given by8

Nh(EF ,H ) = (2mH )1/2eH

2π2h̄2c

∑
n,±

√
E0 − EF − En,±. (12)

TABLE I. Parameters of the Smith-Baraff-Rowell spectrum
(Ref. 8).

Electrons m11 m22 m33 m23

Orbital mass 0.001 13 0.26 0.004 43 −0.0195
Spin mass 0.001 01 2.12 0.0109 −0.13

Holes M1 = M2 M3

Orbital mass 0.07 0.69
Spin mass 0.033 200

Eg = 15.3 meV E0 = 38.5 meV

The position of the Fermi energy EF (H ) is determined by the
condition of charge neutrality:

Z ≡
3∑

i=1

Ne
i (EF ,H ) − Nh(EF ,H ) = 0. (13)

Below we shall apply the formulas of this section to the case
when the magnetic field is directed along the trigonal axis of
the crystal, i.e., when h = (0,0,1).

III. NERNST COEFFICIENT

Let the z axis of the coordinate system be directed along
the trigonal axis of the crystal, while the x and y axes lie in the
basal plane of bismuth. In the presence of a weak electric field
E and of a small temperature gradient ∇T , the charge-current
density j is determined by

ji = σikE
∗
k − αik∇kT , (14)

where the subscripts i, k stand for the spatial coordinates
x, y, z; E∗ = E + 1

e
∇μ; μ is the local chemical potential

in the crystal; σik and αik are the conductivity and Peltier
(thermoelectric) tensors, respectively. In the absence of an
external magnetic field the tensors σik and αik are diagonal,
and one has

σxx = σyy, αxx = αyy. (15)

If the external magnetic field H is applied along the z axis,
the off-diagonal terms σxy , σyx and αxy , αyx become different
from zero, and they satisfy the relationships

σxy = −σyx, αxy = −αyx. (16)

In this situation the temperature gradient ∇xT will generate a
transverse electric field Ey . The Nernst coefficient ν is defined
by the relation

νH =
∣∣∣∣ Ey

∇xT

∣∣∣∣
j=0

, (17)

and it can be found from the formula

Sxy ≡ νH =
∣∣∣∣∣
σxxαxy − σxyαxx

σ 2
xx + σ 2

xy

∣∣∣∣∣ , (18)

which immediately follows from Eqs. (14)–(17).
Since the oscillations of the Nernst coefficient can be

observed only at sufficiently high magnetic fields, we assume
below that the condition

ωcτ � 1 (19)

is fulfilled for both the electrons and the holes in bismuth,
where τ is the scattering time of an electron or a hole on
impurities. In clean crystals of bismuth, condition (19) can
be satisfied even for moderate magnetic fields. For example,
using the parameters presented in Table I and the experimental
data of Ref. 10, we estimate that at H = 1 kOe directed along
the trigonal axis the values of ωcτ for the electrons and holes
are of the order of 10 for the crystal used by Behnia et al.10

(here we have assumed that the scattering lengths for the holes
and the electrons are approximately the same).
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Under condition (19), the diagonal component αxx of the
Peltier tensor is small as compared with αxy :11

αxx

αxy

∼ 1

ωcτ
� 1. (20)

Since bismuth has equal numbers of electrons and holes, the
ratio σxy/σxx in this semimetal is also suppressed as compared
to the case of a metal with a single type of charge carrier12

(e.g., in Ref. 13 σxx was approximately ten times larger than
σxy). Then we obtain from Eq. (18) that

νH ≈ σxxαxy

σ 2
xx + σ 2

xy

= ρxxαxy, (21)

where ρik = σ−1
ik is the resistivity tensor. As the experimental

data14 show, ρxx is a smooth and almost monotonic function of
the magnetic field in that region of the T -H plane in which the
oscillations of the Nernst coefficient were observed.1,2 Hence,
the peaks in the Nernst coefficient mainly result from the peaks
in αxy , and below we shall analyze only this αxy , taking ρxx(H )
from the experiment.14

The off-diagonal term of the Peltier tensor, αxy , consists of
the purely electronic and the phonon-drag parts,

αxy = α(e)
xy + α(ph)

xy . (22)

The purely electronic part α(e)
xy is caused by a nonequilibrium

distribution of the electrons and holes over the crystal when
∇xT 	= 0. In strong magnetic fields, ωcτ � 1, α(e)

xy is dissipa-
tionless, i.e., it does not depend on the relaxation mechanisms
of this distribution:15,16

α(e)
xy = cS

H
= c

H

∫ +∞

−∞
dE

∂Z

∂E
{fF ln fF + (1 − fF ) ln(1 − fF )},

(23)

where S is the entropy of the charge carriers per unit volume,
fF is the Fermi function with the chemical potential μ, and
∂Z/∂E is the density of states of the charge carriers in bismuth,

∂Z(E,H )

∂E
=

3∑
i=1

∂Ne
i (E,H )

∂E
+

∣∣∣∣∂Nh(E,H )

∂E

∣∣∣∣ . (24)

According to formulas (1), (7), (9), and (12), the derivative
∂Z/∂E diverges when the energy E crosses the Landau levels.
The integral over E with the hatlike function {fF ln fF +
(1 − fF ) ln(1 − fF )} of characteristic width T smooths the
singularities of ∂Z/∂E, but at low temperatures, h̄ωc � T ,
the quantity α(e)

xy shows sharp peaks when the Fermi energy
approaches a Landau level. These simple considerations
qualitatively explain the origin of the peaks in the Nernst
coefficient of bismuth.

The phonon-drag part α
(ph)
xy originates from the charge

carriers that are dragged by a phonon flow in the crystal due to
the electron-phonon interaction. In the strong magnetic fields
this part is described by a sufficiently complicated formula
which schematically has the form17,18

α(ph)
xy ∝ c

H

〈
νpe

νpe + ν0

〉
, (25)

where νpe is the probability of phonon scattering by the
charge carriers; ν0 is the probability of phonon scattering by

other phonons and by the boundaries of the sample; 〈· · ·〉
means some averaging over the wave vectors of the phonons
existing at the temperature T . It is essential here that the
probability νpe is proportional to the density of states ∂Z/∂E

and oscillates with changing H . At very low temperatures the
phonon scattering by the boundaries of the sample prevails over
other phonon scattering processes,10 i.e., one has ν0 � νpe. In
this case the expression for α

(ph)
xy is proportional to ∂Z/∂E and

is similar to Eq. (23). In order to estimate the magnetic-field
dependence of the phonon-drag part in this situation, we shall
use the simplest approximation

α(ph)
xy (H,T ) ≈ r(T )α(e)

xy (H,T ), (26)

where the factor r(T ) can be found as the ratio of α
(ph)
xy and

α(e)
xy at sufficiently low magnetic fields when the oscillations

of αxy become small. With increasing T the probability νpe

may become of the order of ν0 or even exceed it. According
to Ref. 10, this seems to occur in bismuth at T ∼ 3–4 K.
Then, νpe/(νpe + ν0) ∼ 1, and the oscillations of ∂Z/∂E with
changing H scarcely reveal themselves in α

(ph)
xy .

A. Effect of impurities on the electron and hole densities of
states in bismuth

Although in the limit of strong magnetic fields ωcτ � 1,
formula (23) does not depend on τ explicitly, the scattering of
the charge carriers on impurities renormalizes the density of
states of the electrons and holes in bismuth, causing a smearing
of the peaks in αxy . We calculate the renormalized ∂Z/∂E for
bismuth using the approach of Ref. 19.

Within this approach Green functions Gl of charge carriers
in the magnetic field H are considered that are averaged over
the positions of impurities in the crystal. The index l means the
set of quantum numbers n, pz, py , sz = ±1 that characterize
eigenstates of a charged particle in a magnetic field in the
absence of impurities. The potential of an impurity, U (r), is
assumed to be of the form U (r) = f δ(r) where δ(r) is the delta
function, and the constant factor f determines the scattering
amplitude of a charged particle on an impurity at ε = 0 and
H = 0. The density of states of the charge carriers per unit
interval of their energy ε, ∂N (ε)/∂ε, is expressed in terms of
the Green functions as

∂N

∂ε
= 1

π
ImG(ε), (27)

where G(ε) = ∑
l Gl(ε). The function G(ε) can be found from

the self-consistent equation19

G =
∑

l

(εl − ε − cif
2G)−1, (28)

where εl = ε(n,pz,sz) is the spectrum of a charge carrier in
the magnetic field in the absence of impurities, and ci is the
impurity concentration. The quantity f can be expressed in
terms of the scattering time τ of the electrons (the holes) at
H = 0 when the energy ε of these particles is equal to the
chemical potential μ0 of bismuth in zero magnetic field:

cif
2G|H→0,ε→μ0 = i

πh̄

2τ
. (29)
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FIG. 1. The density of states for the electrons in bismuth. The
solid line has been calculated with Eqs. (27)–(34) and h̄/τe =
0.001 meV. The points show the analytical results obtained with
the substitution (35) at h̄/τ ′

e = 0.1 meV.

Below we calculate G under the simplification that the
scattering of the holes and of the electrons of the three different
ellipsoids of bismuth does not mix these particles, and so one
has electron τe and hole τh scattering times.

The integration over pz and py in Eq. (28) can be done
explicitly for the electrons and holes that are described by the
spectra (1) and (7), respectively. Then, in the case of the holes
we obtain the following equation in G:

G − G0 = i
m

1/2
z eH

25/2πh̄2c

∑
n,±

{gn,±(cif
2G) − gn,±(0)}, (30)

where

gn,±(x) = 1√
E0 − ε + x − En,±

, (31)

and G0(ε) is the function G(ε) in the absence of impurities.
The function G0 is imaginary and is given by

ImG0 = π
∂Nh

0 (ε,H )

∂ε
, (32)

where ∂Nh
0 /∂ε is the density of states of the holes in the

absence of impurities, i.e., ∂Nh
0 /∂ε directly follows from

Eq. (12). The functions G for all the electron groups are
identical, and the equation in G has the same form as Eq. (30)
but with

gn,±(x) = Eg + 2(ε + x)

E
1/2
g [(ε + x)2 + Eg(ε + x − En,±)]1/2

(33)

and

ImG0 = π
∂Ne

0 (ε,H )

∂ε
, (34)

where ∂Ne
0/∂ε is the density of states of one of the electron

ellipsoids in the absence of impurities. The renormalized
densities of states of the electrons and of the holes in
bismuth calculated with Eqs. (27)–(34) are shown in Figs. 1
and 2.
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FIG. 2. The density of states for the holes in bismuth. The
solid line has been calculated with Eqs. (27)–(34) and h̄/τh =
0.5 × 10−3 meV. The points show the analytical result obtained with
the substitution (35) at h̄/τ ′

h = 0.007 meV.

Interestingly, the renormalized densities of states can be
approximately obtained by the following simple substitution
in formulas (9) and (12):

u →
√

u2 + 2 + u

2
, (35)

and by the subsequent differentiation of these formulas over
EF . Here  = h̄/τ ′, u = E0 − EF − En,± for the holes, and
u = E∗

F − En,± for the electrons. It turns out that at an
appropriate choice of the effective scattering times τ ′, the
densities of states thus obtained very well describe the densities
of states calculated with Eqs. (27)–(34) (see Figs. 1 and 2). The
effective scattering time τ ′ weakly depends on the number n of
the Landau level nearest to EF , and so one and the same value
of τ ′ can describe the oscillations of the density of states in a
rather wide interval of the magnetic fields, Figs. 1 and 2. Note
that τ ′ found for strong magnetic fields is essentially larger
than τ defined in the limit H → 0.

The substitution (35) can be understood from the following
considerations: Let us average the density of states of charge
carriers in the absence of impurities, ∂N0(E)/∂E, with a
hatlike function characterized by some half-width  = h̄/τ ′:

∂N (ε)

∂ε
= 1

π

∫ ∞

−∞
dE

(h̄/τ ′)
(E − ε)2 + (h̄/τ ′)2

∂N0(E)

∂E
. (36)

In the case of the holes in bismuth (and for any quadratic spec-
trum) this integral is calculated analytically, and the density of
states obtained coincides with ∂N (EF )/∂EF calculated with
the substitution (35).

Using the substitution, one can easily understand the result
that follows from the calculations with Eqs. (27)–(34): In
the presence of impurities, the positions of the peaks in
∂N (EF )/∂EF generally do not coincide with the magnetic
fields at which the Landau levels calculated at zero impurity
concentration, ci = 0, cross the Fermi energy. Indeed, for
the holes in bismuth, we find from formula (12) with
substitution (35) that

∣∣∣∣∂Nh

∂EF

∣∣∣∣ ≈ (2mz)1/2eH

4
√

2π2h̄2c

∑
n,±

√√
u2

n,± + 2 + un,±√
u2

n,± + 2
, (37)
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FIG. 3. The Nernst signal Sxy = νH as a function of the magnetic
field H at T = 0.18 K. The points show the experimental data (Ref. 6),
and the solid line is the result of the calculation with Eqs. (21)–(34).
Here r(0.18) = 0.85, h̄/τh = 0.005 meV, and h̄/τe = 0.005 meV.
The arrows indicate positions of the electron peaks visible in the
solid line.

where un,± = E0 − EF − En,±. Now each term of this sum
reaches its maximum at un,± = /

√
3. On the other hand, in

the absence of impurities the singularities in ∂N0(EF )/∂EF

occur at un,± = 0. In other words, if one takes into account the
impurities, the positions of the peaks in the density of states
shift.

IV. RESULTS

In Figs. 3–6 we show the magnetic-field dependences of the
quantity Sxy = νH calculated with Eqs. (21)–(34) at different
temperatures T , using the data on the resistivity ρxx(H )
measured in Ref. 14. For comparison, in these figures we also
present the appropriate experimental data6 for Sxy(H ). In the
calculation of the curves Sxy(H ), we take into account the H

dependence of the chemical potential μ which is determined
by Eq. (13). Since the renormalization of the electron and hole
densities of states by impurities influences this dependence, we
have calculated Nh and Ne

i in Eq. (13) using formulas (9) and
(12) and substitution (35). At temperatures T = 0.18, 0.49,
and 1.04 K the factor r in Eq. (26) has been chosen in such a
way that the calculated and the experimental curves coincide at
a point near the lowest magnetic field H ≈ 10 kOe, i.e., at the
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FIG. 4. As Fig. 3 but here T = 0.49 K and r(0.49) = 2.5.
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FIG. 5. As Fig. 3 but here T = 1.04 K and r(1.04) = 4.5.

point where the oscillations of Sxy(H ) are small. At T = 4.3 K
(Fig. 6), in accordance with the considerations of Sec. III,
we take S

(ph)
xy (H ) as a constant. The value of this constant,

S
(ph)
xy = 0.21 mV/K, has been found from the condition that the

calculated Sxy at H = 10 kOe fits the appropriate experimental
value.

An inspection of Figs. 3–6 shows that the theoretical curves
sufficiently well describe the experimental data especially in
the low-field parts of the figures where the electron peaks
essentially do not manifest themselves. Note also that the
values τh = τe ≈ 1.2 × 10−10 s used in the construction of
these figures are of the same order of magnitude as those
estimated in Ref. 20 from the data of transport measurements
(τh ≈ 8.5 × 10−10 s and τe ≈ 4.4 × 10−10 s). Interestingly,
although τe is equal to τh here, we find a relatively small
amplitude for the electron peaks since the hole density of
states is essentially larger than the electron contribution to
∂Z(EF )/∂EF . That is why only a few electron peaks are seen
in the experiment,6 and the value of τe has a weak effect
on the calculated Sxy . The visible difference in the positions
of the electron peaks in the theoretical and experimental
curves seems to be caused by an insufficient accuracy of the
spectrum of Smith et al.8 used here. As to the discrepancy
between the hole peaks in the theoretical and experimental
curves in the high-field parts of the figures, it could be due
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FIG. 6. As Fig. 3 but here T = 4.3 K and instead of formula
(26) we use S(ph)

xy (H ) = 0.21 mV/K. The inset shows the function
Sxy(T ) at H = 1 kOe [the solid line represents the experimental data
(Ref. 10) while the points are the values calculated here].
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to the two reasons. First, our simplest approximation for the
phonon-drag part α

(ph)
xy , Eq. (26), and for S

(ph)
xy (T = 4.3 K)

[i.e., S
(ph)
xy (T = 4.3 K) = 0.21 mV/K] is probably impaired

as the magnetic field H deviates farther and farther away
from the point 10 kOe at which the factors r and the value
of S

(ph)
xy (T = 4.3K) were found. Second, Eq. (28) obtained in

Ref. 19, strictly speaking, is valid in the semiclassical limit
(when the Landau level number n � 1), while we use this
equation in the whole interval of the magnetic field. In other
words, in the ultraquantum limit (n ∼ 1) a special analysis of
Sxy is required.

In the inset of Fig. 6 we compare the values of Sxy calculated
at H = 1 kOe for T = 0.18, 0.49, 1.04, and 4.3 K with
the experimental temperature dependence of Sxy measured
in Ref. 10 at the same magnetic field. These two functions
Sxy(T ) are seen to agree reasonably well if it is remembered
that they correspond to different crystals of bismuth [the
phonon-drag part S

(ph)
xy depends on the dimensions of the

sample at low temperatures when the phonon mean free path
l ∝ (νpe + ν0)−1 is set by the sample size].

The values of the factor r obtained (see the captions to
Figs. 3–5) demonstrate that the relative contribution of the
phonon-drag part S

(ph)
xy to Sxy decreases with decreasing T .

Our estimates show that at T � 0.05 K the phonon-drag
part will practically die out, and one will be able to neglect
S

(ph)
xy completely in the calculations and hence to compare

directly the electronic part S(e)
xy (H ) with the experimental data.

Therefore, the measurements of the Nernst signal at such
low temperatures could provide the possibility to compare
the theory and the experiment more accurately.

V. CONCLUSIONS

We calculate the purely electronic part S(e)
xy (H ) of the Nernst

signal in bismuth at low temperatures for the case when the
magnetic field is directed along the trigonal axis of the crystal.
In this calculation we take into account the renormalization of
the densities of states of the electrons and holes in bismuth due
to scattering of these charge carriers on impurities. Without this
renormalization, the amplitude of the oscillations of S(e)

xy (H )
at low temperatures would be too large as compared with the
amplitude observed in the experiment.6 As to the phonon-drag
part S

(ph)
xy (H ) of the Nernst signal, this part has been taken

into account within the simplest approximation. The results
of the calculations of Sxy = S(e)

xy + S
(ph)
xy are compared with

the experimental data,6,10 and we find a reasonable agreement
between the theoretical and experimental curves in the region
of the usual peaks of the Nernst coefficient (H � 120 kOe).
We also explain the lesser importance of the electrons than
the holes in the production of the peaks and point out that
measurements of the Nernst signal at lower temperatures
would be useful for a more accurate comparison of the
theory and the experiment. The approach of this paper, in
principle, can also be used in analyzing the Nernst-coefficient
oscillations recently observed in graphite.21
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