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We emphasize that there exist four Dirac-type points in the electron energy spectrum of a graphite bilayer
near the point K of its Brillouin zone. One of the Dirac points is at the point K, and three Dirac points lie
nearby. Each of these three points generates the Berry phase �, while the Dirac point at K gives the phase −�.
It is these four points that determine the Berry phase in the bilayer. If an electron orbit surrounds all these
points, the Berry phase is equal to 2�.
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In the recent Letter1 McCann and Fal’ko considered the
electron energy spectrum of a graphite bilayer in the vicinity
of the point K of its Brillouin zone and stated that in this
bilayer the low-energy electronic excitations correspond to
chiral quasiparticles with a parabolic dispersion exhibiting
Berry phase 2�. This value of the Berry phase explains the
unconventional Hall effect observed in the bilayer.2 Here we
refine some details of the spectrum and show that in reality
this Berry phase in the bilayer is generated by four Dirac
points of its spectrum.

First of all we point out that the electron spectrum of the
bilayer1 can be easily obtained from the well-known
Slonzewski-Weiss-McClure spectrum3 of bulk graphite if
one puts cos �=0.5 and �2=�5=0 �the parameters �2 and �5
describe the interaction of the atoms in the next-nearest-
neighbor layers of graphite that are absent in the bilayer; � is
the dimensionless wave vector perpendicular to the graphite
layers�. The Slonzewski-Weiss-McClure model3 describes
the wave-vector dependence of four electron energy bands of
graphite E�k� in the vicinity of the vertical edge HKH of its
Brillouin zone. These bands can be found from the fourth-
order secular equation

det�Ĥ − E� = 0, �1�

where the Hamiltonian matrix Ĥ has the form

Ĥ =�
E1 0 H13 H13

*

0 E2 H23 − H23
*

H13
* H23

* E3 H33

H13 − H23 H33
* E3

� . �2�

Here the following notations have been used:

E1 = � + �1� + 1
2�5�2,

E2 = � − �1� + 1
2�5�2,

E3 = 1
2�2�2,

H13 = 1
�2

�− �0 + �4��ei�� ,

H23 = 1
�2

��0 + �4��ei�� ,

H33 = �3�ei�� , �3�

where � is the angle between the direction of the vector k
and the �K direction in the Brillouin zone, �=2 cos �, � and

� are dimensionless wave vectors in the direction of the z
axis �i.e., HKH axis� and in the basal plane, respectively,
�= �� /2��kz / �KH�� and �= �2� /�3��k� / ��K��, k�=�kx

2+ky
2,

and k is measured from the point K. The parameter �0 which
describes the interaction between neighbor atoms in a graph-
ite layer is sufficiently large as compared to the other param-
eters �i and � which describe relatively weak interactions
between atoms in different graphite layers.4 As it was men-
tioned above, the spectrum of the bilayer is obtained if one
puts �=1 and �2=�5=0. Note that in this way one can allow
for the small parameter �4 that was neglected in Ref. 1.

In the interval Ec� �E���1 Eqs. �1�–�3� lead to the ap-
proximate formula for the two low-energy bands of electrons
�e� and holes �h� in the bilayer

Ee,h�kx,ky� � �
�0

2

�1
�2, �4�

which exhibits a quadratic dependence on k� discussed in
Ref. 1. Here Ec= ��1 /4���3 /�0�2�2 meV, and the signs plus
and minus correspond to the electrons and holes, respec-
tively.

At energies �E�	Ec the role of the so-called trigonal
warping5 increases, and this warping breaks the line
E=const in the kx-ky plane into one central and three side
pockets,1 see Fig. 2 in Ref. 1. We emphasize here that each
of these pockets contains a point at which the electron and
the hole bands contact, and near all these points the spectrum
is linear in k, Fig. 1, see also Refs. 6–8. Thus, similarly to
bulk graphite9 and in contrast with graphene, in the graphite
bilayer near the point K there are four points of the
Dirac type. The central contact point coincides with K,
while the three side contact points are at a distance of
��3 /2����3�1 /�0

2���K��0.005��K� from K where ��K� is
the distance between the point K and the center � of the
Brillouin zone.

Before analyzing the Berry phase in the bilayer, we point
out a general property of this phase for closed semiclassical
electron orbits in crystals with inversion symmetry in the
magnetic field H. The Berry phase 
B for such an orbit �
lying in the Brillouin zone and belonging to a band 0 is given
by10,11


B = �
�

�dk , �5�

where the direction of the integration is determined by the
vector 	H��E0 /�k
, � is the intraband matrix element of
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the periodic �in k� part of the coordinate operator in the
crystal momentum representation,12

��k� = ı� druk0
* �r��kuk0�r� , �6�

and uk0�r� is the periodic factor in the electron Bloch wave
function of the band 0, �k0�r�=exp�ıkr�uk0�r�. This Berry
phase manifests itself in the Onzager-Lifshitz-Kosevich
quantization condition13,14 for energy levels  of an electron
in the magnetic field,

S�,kH� =
2�eH

�c
�n + �� , �7�

where S is the cross-sectional area of the closed orbit in the
k space, kH is the component of k along the magnetic field
H, n is a large integer �n�0�, e is the absolute value of the
electron charge, and the constant � is given by the formula11

� =
1

2
−


B

2�
. �8�

If one reverses the direction of the magnetic field, the direc-
tion of the integration in Eq. �5� is also reversed, and the
Berry phase changes its sign, while � changes by 
B /�.
However, the electron spectrum in the magnetic field has to
be invariant under this transformation. Since in the semiclas-
sical approximation the quantity � is defined up to an integer,
we conclude that the Berry phases for such the orbits are
always multiple of �.15 This property of the Berry phase
agrees with the results of Ref. 11. It was shown in that paper
that if the electron orbit � surrounds band-contact lines
�Dirac points in the two dimensional case�, each of the lines
�the Dirac points� contributes �� to 
B. If the orbit does not
surround the band-contact line �the Dirac points�, the Berry
phase is equal to zero. This property of the Berry phase also

means that 
B can change only abruptly when the crystal
potential is perturbed, and a small variation of this potential
can, in principle, lead to an essential change of the Berry
phase.

McCann and Fal’ko derived the Berry phase for the elec-
tron orbits in the bilayer from an effective Hamiltonian that
leads to the parabolic spectrum �4�. However, it is clear that
parabolic spectra are idealization, and they never occur in
crystals, and at least a small warping of these spectra always
exists. As it was mentioned above, this small warping may
essentially change the Berry phase, and in principle, different
symmetries of the small warping may lead to different values
of the Berry phase since the number of the Dirac points
depends on symmetry of a crystal. In the case of the bilayer
the trigonal warping generates the three additional side Dirac
points and changes the type of the central band-contact point.
Thus, for the derivation of the Berry-phase value to be jus-
tified, it is necessary to consider the real symmetry of the
spectrum in the bilayer and to take into account all the band-
contact points of this spectrum.

Although each of the four Dirac point in the bilayer gen-
erates the Berry phase ��, it is necessary to find the signs of
these phases. This can be done using the approach of Ref. 15
in which the effect of a small spin-orbit interaction on the
Berry phase was investigated. It is important that if this in-
teraction is weak, it does not change the Berry phase. How-
ever, the interaction enables one to fix the sign of the
phase.16 This is clear from the following considerations:
Without the spin-orbit interaction the quantity 	�k��
 is
singular at the Dirac points. The interaction lifts the band
degeneracy, and 	�k��
 becomes a smooth function which
can be calculated using the formula12 	see also expressions
�9� and �10� in Ref. 17 and formula �6.6� in Ref. 18


	�k � �
z = i�2�
l�0

v0l
x vl0

y − v0l
y vl0

x

„El�k� − E0�k�…2 , �9�

which is completely independent of a gauge of the electron
Bloch wave functions. Here v0l

i are interband matrix ele-
ments of the velocity operator for the bands 0 and l at a point
k. Taking into account that Eq. �5� may be rewritten in the
form


B = �
S

dkxdky	�k � �
z, �10�

where the integration is over the surface S spanning the orbit
�, one can unambiguously calculate the Berry phase for each
of the Dirac points in the bilayer.

The effect of the spin-orbit interaction on the spectrum of
graphene was considered in Refs. 19 and 20, and the follow-
ing Hamiltonian for the electron and hole bands in the vicin-
ity of the point K was obtained as

Ĥ = v�kx�x + ky�y� + �so�zsz, �11�

where �i are the Pauli matrices describing the two bands, v is
a matrix element proportional to �0, 2�so0.2 meV is the
gap due to the spin-orbit interaction, and sz is the Pauli ma-
trix representing electron’s spin. Since the interaction be-

FIG. 1. Shown is the dispersion law E�kx ,ky� of the electrons �e�
and holes �h� in the graphite bilayer near the point K. The spectrum
contains four Dirac points. At the energy Ec2 meV all the
electron cones merge. Note that without neglecting the parameter
�4�0.044 eV, the spectrum E�kx ,ky� is slightly asymmetric relative
to the plane E=0: The Dirac points in the central and side cones are
at energies E=0 and E=2�4�1�3

2 /�0
3�0.15Ec, respectively. Thus,

in contrast with graphene, the graphite bilayer is a semimetal, and
changing the Fermi level in it, one cannot obtain the concentration
of the charge carriers less than 108 cm−2. Scales of the plot are
distorted for clarity.
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tween carbon atoms in a graphite layer is larger than the
interaction between the atoms in different graphite layers
�i.e., �0��i�, we use Hamiltonian �11� of a single layer to
include the spin-orbit interaction in Hamiltonian �2� and �3�
of the bilayer. Then, in the leading order in the small param-
eter �so /�1 the matrix elements E3 in the third and fourth
lines of formula �2� should be replaced by E3−�so and
E3+�so, respectively.

Although formulas �9� and �10� clearly demonstrate the
invariance of the Berry phase relative to the gauge transfor-
mations of the Bloch wave functions, it is more convenient
to find the field ��kx ,ky� in the bilayer, and to calculate the
Berry phase directly from formula �5�. This field for a band 0
can be obtained with the formula15,21

� = i�S+ �S

�k
�

00
, �12�

where S�k� is the matrix reducing Hamiltonian �2� and �3� to
the diagonal form, S+ is the Hermitian conjugate matrix, and
the subscript means that one has to consider the diagonal
matrix element corresponding to the band 0. Assuming the

spin-orbit interaction is infinitesimal, a direct calculation of S
leads to the field ��kx ,ky� shown in Fig. 2. Note that near the
central and the side Dirac points the vector � “circulates” in
opposite directions, which means the opposite signs of the
Berry phases generated by these points. The calculation of
the integral �5� gives the Berry phase � for electron orbits
surrounding each of the three side Dirac points and −� for an
orbit around the central point. Since the Berry phase of an
electron does not depend on a size or a shape of its orbit in
the Brillouin zone but is determined only by the Dirac
points enclosed by the orbit,11 one finds the Berry phase
3 ·�−�=2� for electrons with energies E�Ec �i.e., at the
electron concentration N�Nc�5�1010 cm−2� when their
orbits surround all these four points. Thus, at E�Ec we ar-
rive at the same Berry phase 2� as in the case of the para-
bolic spectrum �4� in spite of the change in the energy-band
degeneracy. The difference in the Berry phases for the para-
bolic and real spectra will manifest itself only in the interval
−Ec	E	Ec at low magnetic fields when many Landau
levels lie in this interval, and hence the trigonal warping is
not a small perturbation as compared to the magnetic energy
of the electron.

The above considerations also clarify existence of the re-
sistivity maximum discovered in the bilayer.2 In graphene the
universal resistivity maximum h /4e2 was observed at zero
magnetic field and low charge-carrier concentration N, and
this maximum was explained by the absence of localization
for electrons with the Dirac-type spectrum.22 A similar resis-
tivity maximum was also observed in the bilayer,2 and No-
voselov et al.2 emphasized that this observation is unex-
pected due to the parabolic spectrum in the bilayer. Although
the parabolic spectrum of Ref. 1 and the spectrum with the
four Dirac points lead to the same Berry phase at N�Nc,
existence of the Dirac points seems to shed a light on the
appearance of the resistivity maximum in the bilayer. The
effect of the trigonal warping on the resistivity maximum in
the bilayer was quantitatively analyzed in Refs. 6 and 23.

Finally, let us point out that our result for the Berry phase
is reminiscent of the result of Ref. 8. The authors of that
paper studied the stability of Fermi points in multilayer
graphene relative to perturbations of the crystal potential,
and they found that in the bilayer some topological charge Q
is equal to 2 for the case of the parabolic spectrum �4�, while
if one takes into account the trigonal warping, each of the
three side Dirac points located near the point K has the
charge 1 and the charge of the central Dirac point at K is −1.
Nevertheless, it is necessary to emphasize that in general
case formula �11� defining Q in Ref. 8 does not coincide with

B /� 	compare this formula with our Eqs. �5� and �12�
.
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