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We discuss the known experimental data on the phase of the de Haas–van Alphen oscillations in graphite.
These data can be understood if one takes into account that four band-contact lines exist near the HKH edge of
the Brillouin zone of graphite.
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I. INTRODUCTION

At present, graphite and its electronic properties attract
considerable attention due to the discovery of novel carbon-
based materials such as fullerenes and nanotubes constructed
from wrapped graphite sheets.1 Besides, thin films of graph-
ite give promise of device applications.2 The attention to
graphite is also caused by specific features of its electron
energy spectrum which result in interesting physical
effects.3,4 The electronic spectrum of graphite is described by
the Slonzewski-Weiss-McClure �SWM� model,5,6 and values
of the main parameters of this model were found sufficiently
accurately from an analysis of various experimental data;
see, e.g., the review of Brandt et al.7 and references therein.
The Fermi surface of graphite consists of elongated pockets
enclosing the edge HKH of its Brillouin zone �see the figures
below�. These pockets are formed by the two majority
groups of electrons �e� and holes �h� which are located near
the points K and H of the Brillouin zone, respectively. There
is also at least one minority �m� low-concentration group of
charge carriers in graphite, and this group seems to be lo-
cated near the point H. However, it is necessary to emphasize
that, in spite of the considerable attention attracted by graph-
ite, an unresolved problem concerned with its spectrum still
exists.

It is well known5–7 that in the edge HKH of the Brillouin
zone of graphite, two electron energy bands are degenerate,
and in a small vicinity of the edge these bands split linearly
in a deviation of the wave vector k from the edge. In other
words, the edge is the band-contact line. But, it was shown in
our paper8 that if in the k space a closed semiclassical orbit
of a charge carrier surrounds a contact line of its band with
some other band �and lifting of the degeneracy is linear in k�,
the wave function of this carrier after its turn over the orbit
acquires the addition phase �B= ±� as compared to the case
without the band-contact line. This �B is the so-called Berry
phase,9 and it modifies the constant � in the well-known
semiclassical quantization rule10 for the energy � of a charge
carrier in the magnetic fields H,

S��,kH� =
2�eH

�c
�n + �� , �1�

where S is the cross-sectional area of the closed orbit in the
k space; kH is the component of k perpendicular to the plane
of this orbit; n is a large integer �n�0�; e is the absolute
value of the electron charge, and the constant � is now given
by the formula8

� =
1

2
−

�B

2�
. �2�

When the magnetic field is applied along the HKH axis, or-
bits of electrons and holes in the Brillouin zone of graphite
surround this axis. Thus, one might expect to find �=0 for
these orbits instead of the usual value �=1/2 �the values
�=0 and �=1 are equivalent�.

A value of � can be measured using various oscillation
effects and in particular, with the de Haas–van Alphen
effect.11–13 For example, the first harmonic of the de Haas–
van Alphen oscillations of the magnetic susceptibility has the
form14

	 cos�2�



H
+ �� , �3�

where 
= �cSex / �2�e�, Sex is some extremal cross section of
the Fermi surface of a metal in kH, a positive 	 is the ampli-
tude of this first harmonic, and � is its phase, which is given
by

� = − 2�� + � , �4�

with �= ±� /4 for a minimum and maximum cross section
Sex, respectively, and �=0 in the case of a two-dimensional
Fermi surface.15 It follows from Eq. �4� that one has to ob-
tain �e=�h=−� /4 for the maximum cross sections of the
electron and hole majorities in graphite. However, the phases
�e, �h measured long ago16,17 agree with the usual value
�=0.5; see Table I.

Recently, a new method of determining the phase � of the
de Haas–van Alphen oscillations was elaborated,15 and the
authors of that paper found �=0 for the cross section of the
hole majority in graphite. However, in this determination
they assumed the Fermi surface of the holes to be two-
dimensional ��h=0�; see Table I. Besides this, they found
�=0.5 for the maximum cross section of the electron major-
ity, assuming the three-dimensional Fermi surface for this
majority ��e=−� /4�. Although the obtained value �=0 for
the holes agrees with the above prediction, the results of Ref.
15 give rise to the following new problems: First, since the
band-contact line in graphite penetrates both the electron and
hole extremal cross sections, these cross sections must have
the same �. Second, using the values of the parameters of
SWM model,7 one might expect that in graphite the electrons
and holes of the extremal cross sections are both three-
dimensional.
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In this paper we show that in graphite, apart from the
band-contact line coinciding with the edge HKH, three addi-
tional band-contact lines exist near this edge. The existence
of these lines leads to the usual value �=0.5 for the maxi-
mum cross sections of the electron and hole majority groups
in graphite. In other words, we resolve the above-mentioned
contradiction between the theoretical value of � and the data
of Refs. 16 and 17. We also discuss the data of Ref. 15.

II. BAND-CONTACT LINES IN GRAPHITE

The SWM model5,6 describes the wave-vector depen-
dence of four electron energy bands of graphite �i�k�
�i=1−4� in the vicinity of the vertical edge HKH of its Bril-
louin zone, Fig. 1. These bands can be found from the fourth-
order secular equation,

det�Ĥ − �� = 0, �5�

where the Hamiltonian matrix Ĥ has the form

Ĥ =�
E1 0 H13 H13

*

0 E2 H23 − H23
*

H13
* H23

* E3 H33

H13 − H23 H33
* E3

� . �6�

Here, the following notations have been used:

E1 =  + �1� +
1

2
�5�2,

E2 =  − �1� +
1

2
�5�2,

E3 =
1

2
�2�2,

H13 =
1
�2

�− �0 + �4��ei�� ,

H23 =
1
�2

��0 + �4�,�ei�� ,

H33 = �3�ei�� , �7�

where � is the angle between the direction of the vector k
and the �K direction in the Brillouin zone; �=2 cos �; �
and � are dimensionless wave vectors in the direction
of the z axis and in the basal plane, respectively:
�= �� /2��kz / �KH � �, �= �2� /�3��k� / ��K � �; k�=�kx

2+ky
2; k is

measured from the point K. The parameter �0 which de-
scribes the interaction between neighbor atoms in a graphite
layer is sufficiently large as compared to the other param-
eters �i,  which describe interactions between atoms in dif-
ferent graphite layers; see Table II. It is known7 that the band
structure near the point H is highly sensitive to values of the
small parameters �2 and . While the value of �2 is known
sufficiently well, the value of  was found less reliably.7

TABLE I. Frequencies 
, phases �, and the appropriate � and � of quantum oscillations in graphite for Se, Sh, Sm of Fig. 2.

WFD �Refs. 17 and 7� LK �Ref. 15� LK corrected


 �kOe� �� /�� �� /�� � 
 �kOe� �� /�� �� /�� � �� /�� �

e 65±4 0.64±0.18 −1/4 1/2 46.8 3/4 −1/4 1/2 −1/4 1/2

h 46±3 0.76±0.1 −1/4 1/2 64.1 1 0 0 −1/4 3/8

m 6±3 0.06 0 0 3.28 0 0 1/2 0 0

TABLE II. Values of the parameters �eV� of the SWM model
�Ref. 7�.

�0 3.16±0.05 �4 0.044±0.024

�1 0.39±0.01 �5 0.038±0.005

�2 −0.020±0.002  −0.008±0.002

�3 0.315±0.015 �F −0.024±0.002

FIG. 1. Dependences of the bands �i �i=1–4� on k near the
edge HKH in graphite. Shown are the dependences �i�kz� at k�=0
and the dependences of �i on k�=�kx

2+ky
2 at some characteristic

values of kz. The dashed line marks the position of the Fermi level
�F. For clarity, in the construction of the figure the parameter �1 has
been used, which is 20 times smaller than that of Table II. For
realistic values of �1 the point P0 is much closer to the point H than
in the figure. The inset shows the Brillouin zone of graphite and its
characteristic points.
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Although our main conclusions remain unchanged for any
reasonable , for definiteness, in subsequent analysis we
shall use the set of the parameters7 based on the data of Refs.
16 and 18–22 and presented in Table II.

It is seen from Fig. 1 that two of the four bands are de-
generate along the HKH edge of the Brillouin zone. In the
interval from K to the point P0 defined by the condition
E1���=E3��� �i.e., by the equality cos �	� � /2�1	0.01�
these two bands are �2�k� and �3�k�, while from P0 to the
point H they are �3�k� and �4�k�. The contact of these bands
is caused by the symmetry of the crystal. The change of the
band degeneracy at P0 can be understood if one takes into
account a small spin-orbit interaction in the SWM model
�and then makes the interaction tend to zero�. However, we
emphasize here that as it follows from Eqs. �5�–�7�, there are
three additional contact lines of the same bands which are
also located near the edge HKH �Fig. 2�. The contact of the
bands in these lines is accidental,23 i.e., not caused by the
symmetry of the crystal. It is due to the so-called trigonal
warping7 of the Fermi surface which is characterized by the
parameter �3. In the vicinity of the point K these lines can be
approximately found from the equations

sin 3� = − 1, � 	
�3

4

�1�3

�0
2 cos2 � . �8�

Thus, the situation in graphite can be described as follows:
The four contact lines of the bands �2�k� and �3�k� come to
the point P0 from one side of the HKH axis, and the four
contact lines of the bands �3�k� and �4�k� come to this point
from the opposite side, and all these lines merge at the point
P0. It is essential that in the vicinity of all these lines the
band splitting is linear in a deviation of k from the lines.

In graphite the electrons of the band �3�k� give rise to the
majority electron group, while the holes of the band �2�k�
make up the hole majority. All the contact lines of the bands
�2�k� and �3�k� lie under the Fermi surface of these majority
groups. When the lines pass from the electron part of the
surface to its hole part, the conical features of the Fermi
surface, the so-called “outrigger” pieces,7 appear �Fig. 2�.
The lines are just axes of these four pieces connecting the
electron and hole parts.

As was shown in our paper,24 in the magnetic field H
parallel to a band-contact line the splitting of the Landau
levels for the electron states near the line is proportional to
�H rather than to H. In the case of graphite these levels are
known as the so-called “leg levels” investigated by
Dresselhaus.25 The existence of the leg levels �and, in fact, of
the band-contact lines in graphite� was confirmed by
magneto-optical experiments.20,26 Interestingly, the well-
known large diamagnetism of graphite27 is also caused by
electron states near the band-contact lines.28

III. DISCUSSION

When the magnetic field H is directed along the z axis, the
maximum electron cross section in kz is located at �=0,
while the maximum cross section of the hole majority is
between the points K and P0, viz., at cos �	 ± ��F /6�2�1/2

	0.45, where �F is the Fermi energy in graphite; see Fig. 2.
Thus, both these cross sections are penetrated by the four
band-contact lines. However, an even number of the band-
contact lines does not change8,29 the usual value �=1/2.
Thus, we find �=1/2 for the maximum cross sections of the
majority groups, which agrees with the experimental results
of Refs. 16 and 17.

We now discuss briefly the value of � for the minority
group. For the parameters presented in Table II, the hole
minority is located near the point H and it results from the
band �1�k�. At this point the minority and the hole majority
produced by the band �2�k� have equal cross sections when
the magnetic field is along the HKH axis. Since no contact
lines of the bands �1�k� and �2�k� penetrate this common
cross section, one might expect to find the usual value
�=1/2 in this case. However, the semiclassical approxima-
tion which is used in deriving Eqs. �1� and �2� fails for the
hole orbits corresponding to this cross section since, for this
approximation to be valid, the orbits must be sufficiently far
away from each other. The analysis carried out beyond the
scope of the semiclassical approximation17 led to �=0 and
�=0 for the “degenerate” orbit. In experiments this orbit is
ascribed to the hole minority, and the phase �m measured in
Ref. 17 agrees with these � and �; see Table I.

In Ref. 15 a new method was developed to determine the
phase � of the de Haas–van Alphen oscillations of the mag-
netic susceptibility. The appropriate results for � and � in
graphite are presented in Table I. However, the authors of
Ref. 15 implied in their analysis of � that the sign of 	 in
formula �3� is positive in the case of electrons and negative
for holes. This is not correct; the sign is always positive. A
re-examination of the derivation of the Lifshits-Kosevich
formula14 proves this statement.30 With this in mind we have

FIG. 2. Sketch of the Fermi surface �half of it� and of the band-
contact lines in graphite. The accidental contact of the bands �2�k�
and �3�k� occurs along the solid lines, while the dashed lines mark
the accidental contact of the bands �3�k� and �4�k�. The same bands
are in contact along the HKH axis due to the symmetry of the
crystal. All the lines merge at the point P0. Shown are also the
maximum cross sections of the electron �Se� and hole �Sh� majori-
ties and of the hole minority �Sm� for the magnetic field along the
HKH axis. A part of the Fermi surface where the electron and hole
majorities touch is presented in an enlarged scale on the right; the
band-contact lines pass through the conical features of the Fermi
surface.
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corrected � and � of Ref. 15, and the obtained results are also
presented in Table I.

For the hole minority and for the electron majority31 the
corrected results coincide with those of Williamson et al.17

�but �m=0 can be caused by the above-mentioned degen-
eracy of the hole orbits rather than by the two-dimensional
spectrum of the hole minority�. For the hole majority the
phases �h measured in Refs. 17 and 15 disagree. The phase
�h=� obtained by Luk’yanchuk and Kopelevich15 means
that either the spectrum of these carriers is two-dimensional,
or if �=−� /4, one obtains �=3/8. However, in the semiclas-
sical approximation, � can be equal to 1/2 or to 0 only.8,11

Intermediate values can occur in situations close to the mag-
netic breakdown.32 In principle, such a situation is possible
for the SWM model, but it does not occur for the parameters
presented in Table II.

The parameters of Table II correspond to three-
dimensional spectrum of graphite and led to a consistent de-
scription of the experimental data16,18–22 obtained many yeas
ago. However, Luk’yanchuk and Kopelevich15 used the
highly oriented pyrolytic graphite �HOPG� with very high
ratio of the out-of-plane to basal-plane resistivities

�
5�104�, and in this sample, quantum-Hall-effect features
were observed, which indicate a quasi-two-dimensional na-
ture of this HOPG.3 It was also argued33 that in similar
samples of HOPG an incoherent transport occurs in the di-
rection perpendicular to the graphite layers, and the three-
dimensional spectrum of carriers seems to fail. If this con-
clusion is valid only for the hole majority, it could explain
the above-mentioned disagreement. This also means that the
parameters of SWM model should be reconsidered to de-
scribe the spectrum of such HOPG.

To conclude, the phases of the de Haas–van Alphen oscil-
lations in graphite were measured in Refs. 16, 17, and 15.
The data of Refs. 16 and 17 can be completely explained in
the framework of the known band structure of graphite7 if
one takes into account that four band-contact lines exist near
the HKH edge of its Brillouin zone. The data of
Luk’yanchuk and Kopelevich15 obtained for HOPG disagree
with the experimental results of Refs. 16 and 17 for one of
the two large cross sections and probably imply that a recon-
sideration of the energy-band parameters for such HOPG is
required.
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