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Berry Phase and de Haas–van Alphen Effect in LaRhIn5

G. P. Mikitik and Yu.V. Sharlai
B. Verkin Institute for Low Temperature Physics & Engineering, Ukrainian Academy of Sciences, Kharkov 61103, Ukraine

(Received 19 April 2004; published 2 September 2004)
106403-1
We explain the experimental data on the magnetization of LaRhIn5 recently published by Goodrich et
al. [Phys. Rev. Lett. 89, 026401 (2002)]. We show that the magnetization of a small electron group
associated with a band-contact line was detected in that Letter. These data provide the first observation
of the Berry phase of electrons in metals via the de Haas–van Alphen effect.
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In recent years the concept of the so-called Berry
phase [1] has attracted considerable attention thanks to
its fundamental origin; see, e.g., Refs. [2,3], and referen-
ces therein. According to Berry, if a Hamiltonian of a
quantum system depends on parameters, and if the pa-
rameters undergo adiabatic changes so that they eventu-
ally return to their original values, the wave function of
the system can acquire the so-called geometrical phase in
addition to the familiar dynamical one. This additional
phase (the Berry phase) differs from zero when the tra-
jectory � of the system in the parameter space is located
near a point at which the states of the system are degen-
erate [1]. In analyzing this situation, Berry assumed that
the Hamiltonian of the system is a Hermitian matrix
which is linear in deviations of the parameters from the
point, and he presented his final result in the pictorial
form. He found that such a point can be considered as a
‘‘monopole’’ in the parameter space when the geometrical
phase is calculated. In other words, the point ‘‘generates’’
a field which coincides in the form with that of the
monopole, and the flux of this Berry field through the
contour � gives the geometrical phase of the system.
Evidence for this phase was obtained in experiments
with various physical systems [2,3]. However, an experi-
mental observation of the Berry phase for electrons in
crystals has proved a challenging problem (some progress
in this direction was achieved only recently [4–6]).

It is well known (see, e.g., Ref. [7]) that the semiclas-
sical motion of an electron in a crystal in the magnetic
field H can be represented as the motion of the wave
vector k in an orbit in the Brillouin zone. This orbit is
the intersection of the constant-energy surface, "�k� �
const, with the plane, kz � const, where z is the direction
of the magnetic field H and "�k� is the electron dispersion
relation in the crystal. Berry’s result is applicable to such
an electron, with the Brillouin zone playing the role of
the parameter space [8]. However, in crystals with the
inversion symmetry and a weak spin-orbit interaction,
the Berry phase of the electrons has specific features [9]
which are due to the fact that the electron states are
invariant under the simultaneous inversion of time and
spatial coordinates. This invariance permits one to trans-
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form the Hermitian Hamiltonian of the electron into the
real form for any point of the Brillouin zone. As a
consequence, the character of the energy-band degener-
acy differs from that considered by Berry. Now the elec-
tron energy bands "l�k� contact along lines in the
Brillouin zone, and the lines need not be symmetry
axes [10]. In other words, the degeneracy is not lifted
along these lines, and the monopole in the k space dis-
appears. As it was shown in our Letter [9], in such a
situation the band-contact lines play the role of infinitely
thin ‘‘solenoids’’ which generate the Berry field with the
flux ��. Although this field is zero outside the solenoids,
if the electron orbit surrounds the line, the flux threads
the orbit, and the electron acquires the Berry phase �B �
�� when it moves around this line. It is clear that in this
case the Berry phase does not depend on the shape and the
size of the electron orbit but is specified only by its
topological characteristics (there is either a linking of
the orbit with the band-contact line or there is not).

The Berry phase of the electron modifies [9] the well-
known semiclassical quantization rule [11] for the elec-
tron energy in the magnetic field, ",

S�"; kz� �
2�eH
�hc

�n� ��; (1)

where S is the cross-sectional area of the closed electron
orbit in the k space, n is a large integer (n > 0), e is the
absolute value of the electron charge, and the constant �
is given by

� �
1

2
�
�B

2�
: (2)

The meaning of formula (2) is the following: When the
electron makes a complete circuit in its orbit, the change
of the phase of its wave function consists of the usual
semiclassical part �hcS=eH, the shift �� associated with
the so-called turning points of the orbit where the semi-
classical approximation fails, and the Berry phase.
Equating this change to 2�n, one arrives at Eqs. (1) and
(2). Thus, when the electron orbit links to the band-
contact line, one obtains � � 0 (the values � � 0 and
� � 1 are equivalent) instead of the usual value [11]
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FIG. 1. The electron magnetization associated with the band-
contact line, Eq. (4), for x > 0 (a) and for x < 0 (b). A sign of x
coincides with the sign of �"F � "0�m3. The electron spectrum
is described by Eq. (3) with a2? � �v1=V1�

2 � �v2=V2�
2 < 1.

The field H1 is given by Eq. (6). The insets show the appropriate
Fermi surfaces and the extremal cross sections; the dash-dotted
lines depict the band-contact line.
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� � 1=2. This change of � has to manifest itself in the de
Haas–van Alphen effect [9].

In a recent experimental investigation [12] of the de
Haas–van Alphen effect in LaRhIn5, the oscillations of
magnetization associated with a small cross section of the
Fermi surface of this metal were detected. The electron
cyclotron mass m� corresponding to this cross section
was also small compared with electron mass m, jm�j 	
0:067m. Authors of that paper attributed these oscillations
to a small electron pocket of the Fermi surface. Besides,
in that paper, the magnetization of the electrons of the
pocket was studied in the ultraquantum limit, and the
following intriguing contradiction between the obtained
experimental data and the existing theory was discov-
ered: Since in the ultraquantum limit the electrons oc-
cupy only the lowest Landau level, they have to migrate
into large sheets of the Fermi surface when this level is
raised above the Fermi energy. Hence, the magnetization
M of the electrons of the pocket has to vanish with
increasing magnetic field H. However, the experimental
data [12] reveal a finite contribution to the magnetization
even in such magnetic fields.

In this Letter, we resolve this contradiction. We show
that in fact a small electron group associated with a band-
contact line was detected in Ref. [12], and the results of
Ref. [12] provide the first observation of the Berry phase
of the electrons via the de Haas–van Alphen effect.

A small cross section of a Fermi surface appears near
that point k0 of the Brillouin zone for which the two
conditions are fulfilled: Topology of this surface changes
at the k0 if the Fermi energy "F is shifted past some
critical energy "0, and this "0 is close to the initial Fermi
level of the crystal. In the case of the degeneracy of two
electron energy bands of the crystal [say, "��k� and
"��k�] along a line in the Brillouin zone, these bands
near the k0 always can be represented in the form [13]

"��k� � "0 �
�h2k23
2m3

� �h�v? � k�

�
�������������������������������������������
� �hV1k1�2 � � �hV2k2�2

q
; (3)

where the wave vector k is measured from the k0; the
constants m3, V1, V2, and v? � �v1; v2; 0� are some pa-
rameters of the spectrum; the k3 axis coincides with the
tangent to the band-contact line at the point k0; and the
k0 is defined by the condition that the band energies in the
line ["��k� � "��k� there] reach the extremal value "0 at
this point. A small extremal cross section can exist only
under the condition a2? � �v1=V1�

2 � �v2=V2�
2 < 1,

which we imply to hold below.
If sgn�m3��"F � "0�< 0, the Fermi surface has the

shape of a neck, with the band-contact line being inside
the neck [Fig. 1(b)]. Here sgn�z� � 1 for z > 0 and
sgn�z� � �1 if z < 0. As the Fermi energy passes the
critical energy, sgn�m3��"F � "0�> 0, the neck is broken,
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and immediately a new pocket appears, i.e., the Fermi
surface takes the self-intersecting shape, with the band-
contact line still lying inside it [Fig. 1(a)]. Thus, in the
case of the degeneracy of the bands, the k0 is the point
where a self-intersecting Fermi surface appears (or dis-
appears) at "F � "0.

Let the magnetic field H be in the k3 direction. In this
case, the exact Landau levels were found in a vicinity of
the critical energy "0 [14]. Interestingly, these exact levels
obtained from the appropriate Schrödinger equation co-
incide with the semiclassical levels, given by Eq. (1) and
� � 0, at all n (even at n 1), and not just for n � 1. On
the basis of this spectrum, the magnetization M of the
electrons with spectrum (3) was calculated for an arbi-
trary strength of H [14]:

M � �

�
e
c

�
2 23=2jm3�"F � "0�j1=2

�2 �hjm�j
H1=4

1 H3=4f�x�; (4)

where

x � sgn�m3�"F � "0���H1=H�1=2;

and the universal function f�x� is completely independent
of the spectrum,

f�x� �
1

4

Z 1

�x
dt
�
1

2
� ft2g

�
sgn�t�

7t� 6x�����������
x� t

p : (5)

Here fzg means the fractional part of the number z. The
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H1 is one of the fields given by the formula

e
c �h

Hn �
Sex
2�

1

n
�

m�

2 �h2
�"F � "0�

n
; (6)

where n � 1; 2; . . . , Sex is the area of the extremal cross
section of the Fermi surface (see Fig. 1), and the cyclotron
mass m� is proportional to "F � "0,

m� �
"F � "0

V1V2�1� a2?�
3=2

; (7)

and is small compared to the electron mass m at j"F �
"0j � mV1V2  1–10 eV. The meaning of the fields Hn
will become clear from the subsequent analysis. Note that
we consider M�H� at a fixed "F since, in a metal, large
sheets of its Fermi surface provide such large density of
states that "F is practically independent of the magnetic
field.

If jxj � 1, the magnetization (4) splits into the oscil-
lation part, which completely agrees with the well-known
Lifshits-Kosevich formula [11,15], and the smooth con-
tribution �H, with the magnetic susceptibility � coincid-
ing with that of Ref. [13]. At low temperatures,

�"H �
e �hH
jm�jc

� 2�2T; (8)

the oscillations of the magnetization M prevail over the
smooth part, many harmonics in the Lifshits-Kosevich
formula are relevant, and sharp peaks of M occur when
the Landau levels cross the Fermi energy. It is the field Hn
defined by Eq. (6) that gives the position of the peak at
crossing "F by the nth Landau level. Note that at x > 0 the
oscillations of M result from the maximum cross section
of the pocket with k3 � 0, and the peaks of the magne-
tization are directed upward [Fig. 1(a)], while at x < 0 the
oscillations result from the minimum cross section of the
neck with k3 � 0, and the peaks are directed downward
[Fig. 1(b)].

Formula (6) provides the possibility to find the band-
contact lines in metals, using the Shoenberg procedure
[11]. Plotting experimental values of 1=Hn versus n, one
can state that a band-contact line has been detected if this
dependence is extrapolated to the origin of the coordinate.
If the � were different from zero, the dependence would
be extrapolated to ��. We emphasize that since for the
electrons near the point k0 the exact spectrum in the
magnetic field coincides with the semiclassical spectrum,
formula (6) defines the positions of the peaks in M�H� not
only for large n but also for n 1. Thus, it is sufficient to
use several last oscillations of M�H� in this detection.
This enables one to find � with maximal accuracy. Note
also that the observation of the sharp peaks for the last
oscillations (n 1) is the most favorable since �"H 
j"F � "0j=n in Eq. (8).

The ultraquantum limit occurs when jxj � 1, i.e., when
H � H1. In this limit the magnetization M�H� cannot be
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decomposed into the oscillation parts and the term �H
[e.g., f�x� 	 0:156 at jxj � 1]. In this case the magneti-
zation is determined by the Landau levels of the lower
band "��k�, which are all occupied by the electrons. It is
important that at H H1 the magnetization far exceeds
that of the usual small pockets and necks which contain
no band-contact line. Indeed, for such the pockets and
necks the appropriate magnitude of M is of the order of
the prefactor before the function f�x� in Eq. (4), but m� in
such situations is not proportional to "F � "0 and gener-
ally not small, m� m. Moreover, at H H1 the M in
Eq. (4) generally is not small compared with the smooth
part of the magnetization, �0H1, caused by the large
electron groups in metals. Estimating the smooth part
of the magnetic susceptibility of the large electron
groups, �0, by the Landau formula for the electron gas
[11], �0  �e=c�2�"F�1=2= �h

����
m

p
, we find that, at H H1,

M�H�

�0H


mV1V2

�"Fj"F � "0j�1=2
� 1:

In the last inequality, we have assumed that mV1V2 and
"F are of the order of the characteristic energies in
metals, 1–10 eV.

Above we have neglected the spin-orbit interaction in
the crystal. With this interaction, the semiclassical quan-
tization rule (1) is modifies as follows [11]:

S�"; kz� �
2�eH
�hc

�
n� ��

gm�

4m

�
; (9)

where � � 1=2, and g is the so-called g factor of the
electron orbit. Besides, the spin-orbit interaction gener-
ally lifts the degeneracy of the bands "��k� and "��k�.
But if this interaction is not too strong, so that the gap
between these bands is essentially smaller than the energy
gaps between "��k� and other bands of the crystal, the
concept of the band-contact line is still valid approxi-
mately. As it was shown in our paper [16], if the semi-
classical electron orbit in the magnetic field surrounds
such a band-contact line, one has g 	 2m=m�, and for-
mula (9) is equivalent to Eq. (1) with � � 0 for all n. In
other words, Eq. (6) for the peak positions is robust to
‘‘switching on’’ the spin-orbit interaction. Note that the g
factor is large even for a very weak spin-orbit interaction,
and this result is the other manifestation of the nonzero
Berry phase (instead of � � 0). The spin-orbit interaction
also modifies formula (4) [14]. However, if the splitting of
the bands "��k� is small near the point k0, the modifi-
cation is negligible, and it increases rather slowly with the
strength of the spin-orbit interaction.

We now apply the above results to the experimental
data of Ref. [12]. These data obtained at a low tempera-
ture (1.5 K) reveal the sharp peaks in the magnetization
of LaRhIn5 when the magnetic field H is parallel to the
�001� direction of this tetragonal compound (Fig. 2). The
analysis of the peak positions (see the inset of Fig. 2)
106403-3



0 10 20 30

−0.1

0

0.1

0.2

M
ag

ne
tiz

at
io

n

H (Tesla)

0 1 2 3 4 5
0

0.8

1/H
n

n

FIG. 2. The experimental data [12] on the magnetization of
LaRhIn5 (dots) and the magnetization calculated from Eqs. (4)
and (10) (solid line) for sgn�m3��"F � "0� � �25 meV, jm�j �
0:067m (H1 � 7 T), and �0 given in the text. The inset shows
the dependence of the experimental values of 1=Hn [12] on n.
This dependence gives � � 0.
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gives � � 0 [17]; i.e., we conclude that the oscillations in
the magnetization result from some small electron group
near the band-contact line [18]. Using the experimental
value [12] of the cyclotron mass, jm�j � 0:067m, and the
position of the last peak H1 	 7 T, we find from Eq. (6)
that j"F � "0j 	 25 meV. The downward peaks mean
that we deal with the situation shown in Fig. 1(b).

To verify this conclusion, we also compare the theo-
retical M�H� with the experimental data (Fig. 2). The
experimental magnetization Mexp has been approximated
by

Mexp�H� � �0H �M�H�; (10)

where M�H� is given by Eq. (4), while �0 is the smooth
part of the magnetic susceptibility of the large electron
groups in LaRhIn5. Thus, we have only the two constants
to fit the experimental data: the prefactor in Eq. (4) and
�0. In Fig. 2 we show the theoretical curve calculated
under the condition �0H1=M�H1� � 0:14. Note that
M�H1� is noticeably larger than �0H1. It is also evident
that the curve reproduces the experimental data suffi-
ciently well even without any corrections to M due to
the spin-orbit interaction.

Although the band structure of LaRhIn5 was calculated
in Ref. [19], the data presented in that paper do not permit
one to find the band-contact lines in this crystal. To locate
these lines, it would be well to calculate the bands lying
near "F over the Brillouin zone and to trace the evolution
of these bands with the strength of the spin-orbit interac-
tion. Such an analysis could also clarify one more point: It
turns out that two small and almost equal cross sections
determine the oscillations of M in LaRhIn5 [12]. This can
occur if the direction of the magnetic field slightly differs
from the �001� axis, and if the directions of the band-
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contact lines at the equivalent points k0 do not coincide
with this axis. Note that, when the magnetic field is tilted
away from the k3 axis, the component H3 has to be
inserted in the above formulas [14]. Thus, an experimen-
tal investigation of the angular dependences of the two
cross sections could also assist in clarifying this result of
Ref. [12].

In summary, we resolve the contradiction discovered in
Ref. [12]. It turns out that a small neck of the Fermi
surface with the band-contact line inside the neck [see
the inset of Fig. 1(b)] was discovered in Ref. [12]. In this
case the magnetization in the ultraquantum limit does not
vanish, while the positions of the peaks in the oscillation
part of M�H� depend on the nonzero Berry phase for the
electron orbits in the magnetic field. In other words, the
results of Ref. [12] provide essentially the first observation
of the Berry phase via the de Haas–van Alphen effect.
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