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Calculation of conduction electrong factor in metals: Comparison of electron-spin dynamics
and local g-factor approaches
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We analyze and compare two approaches to calculations of theg factors of electron semiclassical orbits in
metals. The first, exact approach takes into account a dynamics of the electron spin when the Bloch electron
moves in a magnetic field. The second, more simple approach is based on the concept of the so-called localg
factor and completely neglects this dynamics. It is pointed out that the second approach is approximately valid
not only at a weak spin-orbit interaction in crystals but also at an arbitrary strength of this interaction if the
Fermi level of electrons lies near an edge of the electron energy band under consideration or if the electron
spectrum specifying the semiclassical orbit can be well described by a two-band model. As an example of the
spectrum with more than two bands and with the strong spin-orbit interaction, we consider the electron
spectrum of bismuth when the direction of the magnetic field is close to the trigonal-binary plane of the crystal
and calculate theg factors of the appropriate electron orbits.
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I. INTRODUCTION

As known well,1 the g factor of conduction electrons in
metalsg specifies the splitting of the Landau energy lev
caused by an interaction of the electron spin with a magn
field, DE5g(e\/2mc)H, and can considerably differ from
its free-electron valueg52. Heree andm are the charge and
mass of an electron,H is the external magnetic field, and th
crystal is implied to have a center of inversion~and only
such crystals are considered below!. In this paper we shal
discuss theg factors which are experimentally found from
oscillation effects in the semiclassical limit when there ar
lot of the Landau levels under the Fermi surface of the me
Besides this, we do not consider the situations when
magnetic breakdown occurs. As well known,2 in this case an
electron in the crystal in a magnetic field may be conside
as a wave packet, with the wave vector of the packetk mov-
ing in a semiclassical orbitG in the Brillouin zone. The orbit
is the intersection of the constant-energy surface of the e
tron in the absence of the magnetic field,«(k) is equal to a
const, with the planekH is equal to a const, wherekH is the
component of the wave vector in the direction of the exter
magnetic fieldH. In this approach the semiclassicalg factor
appears in the well-known quantization rule1,3,4 for electron
energy« in a magnetic field

S~«,kH!52p
ueuH
\c S n1g6

g~«,kH!m*

4m D , ~1!

whereS is the cross-sectional area of theclosedorbit G, n is
a large integer, the cyclotron massm* 5(\2/2p)(]S(«,kz)/
]«), the constantg is always equal to 1/2 when the spin
orbit interaction is taken into account,5,6 and theg factor
g(«,kH) depends on a location of theorbit G in the Brillouin
zone.

Calculations of theg factors were carried out for variou
metals.9–29 It is necessary to stress that all these calculati
were based on the concept of the so-called localg factor
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g(k). This concept was introduced in Ref. 30 to describe
g factors forpointsk on the Fermi surface, and in the abov
mentioned publications theg factor for the orbitG was ob-
tained by the averaging ofg(k) over thisG. However, as it
follows from Refs. 7 and 8, only theg factors of closed
orbits have a strict physical meaning, while the concept
the localg-factor can be applied only approximately when
strength of the spin-orbit interaction in the metal is suf
ciently weak.8 The exact formulas for theg factor7,8 are ap-
plicable at any strength of the spin-orbit coupling, but th
are more complicated than in the localg-factor approach. In
this paper, we consider various types of the electron ene
band structure in crystals and point out situations, for wh
one may expect an essential difference in results obtaine
the framework of the exact approach and of the appro
based on the concept of the localg factor. Since the electron
spectrum of bismuth provides an example of such a situat
we analyze theg factors of extremal orbits lying on the elec
tron ellipsoids of the Fermi surface of bismuth and show t
for directions of the magnetic field near the plane contain
the trigonal and the binary axes, the exactg factors do no-
ticeably differ from values derived on the basis of loc
g-factor approximation. We also demonstrate that the
tained results for theg factors well agree with the experimen
tal data.31

The paper is organized as follows: In Sec. II, we brie
describe the theoretical results for theg factor. We also ex-
plain distinctions between the exact approach to theg-factor
calculation and the localg-factor approximation, and poin
out situations for which the approaches may lead to differ
results. In Sec. III the necessary information on the electr
band structure of bismuth is presented, and theg factors of
the orbits lying on the electron ellipsoids are calculated
the framework of both the approaches. We also compare
derived exact results for theg factor with the appropriate
experimental data.31 Some mathematical details of our anal
sis are presented in Appendices A and B.
©2003 The American Physical Society14-1
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II. TWO APPROACHES TO THE g FACTOR
CALCULATIONS

A. Formulas for the g factor

The g factor in the quantization rule~1! can be expresse
in terms of matrix elements of the effective one-band Ham
tonian Ĥe f f of a Bloch electron in a magnetic field. Sinc
electron bands are twofold degenerate in crystals with
inversion symmetry,2 the Hamiltonian is a 232 matrix in a
spinor space. According to Refs. 32 and 33, this Hamilton
to first order in the magnetic fieldH has the form

Ĥe f f5«0~ k̂! 1̂1
e

c
Hm̂0~k,n!, ~2!

wheren is the unit vector directed along the magnetic fie
H, «0(k) is the electron dispersion relation for the band b
ing investigated~from here on we denote this band by th
subscript 0), k̂5K2(e/c\)A( i ]/]K ), A(r ) is the vector
potential of the magnetic fieldH, and the function«0( k̂) in
Eq. ~2! is implied to be completely symmetrized in the com
ponents ofk̂. Elements of the matrixm̂0 are the sums

m0,rr85m0,rr8
s

1m0,rr8
or ,

of the pure spin partsm0,rr8
s

m0,rr8
s

~k!52
\

2mE
v
uk,0r* ~r !~ns!uk,0r8~r !dr , ~3!

and the orbital contributionsm0,rr8
or

m0,rr8
or

~k!5~n@v03V0r,0r8# !

1
\

2i (
r9,mÞ0

~n@v0r,mr93vmr9,0r8# !

«m~k!2«0~k!
, ~4!

where the spin indexesr,r8,r951,2; s i is the Pauli matri-
ces;v05(1/\)(]«0 /]k); vnr,mr8 andVnr,mr8 are the matrix
elements of the velocity operator and the periodic ink part of
the position operator

Vnr,mr8~k!5 i E
v
uk,nr* ~r !

]

]k
uk,mr8~r !dr , ~5!

calculated in thek representation. In Eqs.~3! and ~5! the
integration is over a unit cell of the crystal latticev, and
uk,lr(r ) is the periodic factor in the Bloch wave function o
the l th band

ck,lr5exp~ ikr !uk,lr .

It is always assumed thatuk,l25( is2KI )uk,l1 where I, K,
andis2K are the spatial inversion, complex conjugation, a
time reversal operators, respectively. With this choice of
spinors, the propertym0,1152m0,22 holds.34 Several formu-
las simplifying calculations ofm0,rr8 in real situations were
derived in the Appendix of Ref. 8~see also Sec. II B and
Appendix B below!.
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In 1969, De Graaf and Overhauser30 introduced the con-
cept of the localg factor associated with thepointsk of the
Fermi surface of a metal. In our notations their quantity
described by the expression

g~k!52~4m/\!m0,11~k!. ~6!

In this approach, theg factor of the orbitG is obtained by
averagingg(k) over G

g5

R
G
dkg~k!/v'

R
G
dk/v'

5
2m

pm*
R

G

dk

v'

@2m0,11~k!#, ~7!

wherev' is the absolute value of projection ofv on the plane
normal toH; dk is the infinitesimal element of the orbitG,
and we have inserted the well-known formula2 for the cyclo-
tron mass,m* 5(\/2p)rGdk/v' . It is Eq. ~7! that was used
in numerous publications.9–29

The exact expressions for theg factor in the semiclassica
limit were derived in Refs. 7,5, and 8. In order to write the
expressions, it is convenient to introduce the complex par
etert(k) that defines the direction of the electron spin

S 1

t D
in the spinor space of the Hamiltonian~2! at the pointk of
the orbitG. Then, the g factor of the orbitG is given by5,8

g52
2m

pm*
R

G

dk

v'
Fm0,111

~tm0,121t* m0,12* !

2 G . ~8!

The functiont(k) along the semiclassical orbit is specifie
by the equation

iv'

dt

dk
5m0,12t

212m0,11t2m0,12* , ~9!

with the boundary condition

t~0!5t~k0!, ~10!

wheret is written as a function of a length along the electr
trajectory andk0 is the perimeter of the orbit. Formulas~8!,
~9!, and~10! permit one to find theg factor for any electron
orbit.

Taking into account the well-known relation,2 (dk/v')
5(eH/c\)dt, Eq. ~9! can be understood as the equation
spin dynamics of the electron moving in the semiclassi
orbit ~during the motion a direction of the electron sp
changes due to the spin-orbit coupling!. Then, boundary con-
dition ~10! simply means that in the steady state the direct
of the electron spin must periodically return to its initi
value.

It should be also emphasized that expression~8! generally
does not admit defining the localg factor even though one
finds the solution of Eqs.~9! and ~10! and inserts this solu-
tion into Eq.~8!. Indeed, the integrand of Eq.~8! at the point
k depends on the electron states of thewhole orbit G @t at
4-2
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the pointk is determined bym0,rr8(k8) with k8Þk, see Eq.
~9!#, so it cannot be considered as a local quantity which
determined only by the electron state corresponding to
point k. Besides this, a true localg factor should be express
ible through its values for three mutually orthogonal dire
tions of the magnetic field. However, if one tilts the magne
field and considers the pointk0 on the Fermi surface which i
the intersection point of the initial and the tilted orbits, t
integrand of Eq.~8! at k0 generally does not satisfy thi
condition, sincet(k0) at different directions ofH are deter-
mined by different orbits.

B. Comparison of the approaches

Since theg factor is themeasurablequantity, formula~8!
must be independent of a choice of the basis in the sp
space, i.e., must be invariant under unitary transformation
this space. The unitary transformations can be represente
a product of matrices corresponding to phase transformat
of the Bloch factorsuk,lr and to rotations in the space o
these factors~see Appendix A!. Equation~8! is invariant un-
der the phase transformations.8 In Appendix A we show that
this equation is also invariant under the rotations. Thus,
exact formula for theg factor ~8! really satisfies the above
mentioned physical requirement.

Although formula~7! is invariant under the phase tran
formations, the rotations in the spinor space change its fo
Appendix A. Thus, values of theg-factors determined by this
expression depend on the basis in the spinor space us
calculations of the matrixm̂0 , and formula~7! could be valid
only in a specific basis. Although De Graaf and Overhau
did not point out this basis in their paper, it is easy to gu
it. In this basis, the matrixm̂0(k) should be diagonal at ever
point k of the Fermi surface. Then, one hasm0,12(k)50; the
solution of Eqs.~9! and ~10! is t50 for any orbit, and for-
mulas ~8! and ~7! coincide. Note that just this basis wa
implied in the numerous publications mentioned abo
However, in practice there exists a problem of determin
this basis since under an unitary transformationÛ(k), the
matrix m̂0(k) changes as follows,

m̂085Û1m̂0Û1 i S nFv03Û1S ]Û

]k D G D , ~11!

and the problem of calculating the appropriateÛ(k) @trans-
forming m̂0(k) to the diagonal form# is equivalent to that of
solving Eqs.~9! and~10!. In other words, in this way of the
calculations, one deals with another representation of th
equations, and formula~7! is the specific form of Eq.~8!. In
any other basis, Eq.~7! is not exact since De Graaf an
Overhauser did not take into account the dynamics of
electron spin when they analyzed the semiclassical motio
the electron wave packet in the magnetic field.

Applicability of Eq. ~7! in the specific basis does no
mean that the localg-factor approach is true. This approac
is valid if the dynamics of the electron spin is absent at
i.e., if there exists a basis in the spinor space in whicht is a
constant foranydirection of the magnetic field~the value of
11511
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the constant may depend on the direction of the magn
field, n). In this case the arguments of Sec. II A against
concept of the localg factor do not work, and Eq.~9! deter-
mines thist through the elements of the matrixm̂0 ,

t5
2m0,116A~m0,11!

21um0,12u2

m0,12
. ~12!

It follows from this relation that fort to be constant, the
matrix m̂0 must have the form

m̂05c~k,n!S c1~n! c2~n!

c2* ~n! 2c1~n!
D , ~13!

wherec(k,n) is some real scalar function ofk andn, while
c1(n) andc2(n) are some real and complex functions ofn,
respectively. In the basis in which the matrixm̂0 does have
the form of Eq.~13!, and hence in which the localg-factor
approach is valid, the insertion of formula~12! into Eq. ~8!
leads to the expression

g56
2m

pm*
R

G

dk

v'

~A~m0,11!
21um0,12u2!, ~14!

while the localg factor can be defined as follows,

g~k!56
4m

\
A@m0,11~k!#21um0,12~k!u2. ~15!

Note that Eqs.~15! and~14! agree with formulas~6! and~7!.
Indeed, at constantt, the matrixÛ transformingm̂0(k) to
the diagonal form is also constant; the second term in
~11! vanishes, and the diagonal elements of the transform
matrix m̂0(k) are equal to6@m0,11

2 (k)1um0,12(k)u2#1/2.
In general case, the matrixm0 does not seem to reduce t

form ~13!, and therefore the localg-factor approach is no
true. However, when the spin-orbit interaction is absent,
matrix m̂0 has just this form. Moreover, as was shown in o
previous paper,8 the localg-factor approach is approximatel
valid if the strength of the spin-orbit interaction in the crys
is sufficiently weak. To describe the strength of this intera
tion, we introduced the parameter

n[
D

E0
, ~16!

whereD is a characteristic spin-orbit energy in the cryst
while E0;mv2 is a typical energy scale of an electron-ba
structure in it (v describes a characteristic value of interba
matrix elements of velocity, andE0 is of the order of the
atomic energies,E0;0.121Ry). When the spin-orbit inter-
action in the crystal is strong, i.e.,n;1, one may expect tha
only formulas~8!, ~9!, and ~10! can give the correct result
for theg factor, while the localg-factor approach is not valid
at all. Below we investigate this issue in more detail f
various types of the electron-band structures and show
this is not always the case.
4-3
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1. ‘‘One-band’’ case

Consider the case when the Fermi energy«F lies near a
minimum or a maximum of«0(k) occurring at a pointkex of
the Brillouin zone,

min
nÞ0

U «F2«0~kex!

«n~kex!2«0~kex!
U!1.

In this situation the orbitG is small and is located near th
point. The quantitiesm0,rr8(k) are approximately constant i
the orbit,m0,rr8(k)'m0,rr8(kex), and the matrixm̂0 has the
form of Eq. ~13!. Thus, in this case, the localg-factor ap-
proach leads to the exact results for theg factor atarbitrary
strength of spin-orbit interaction. Using Eq.~14!, we find
that theg-factor of the orbit coincides with the localg factor
and is given by the formula

g56
4m

\
A~m0,11~kex!!21um0,12~kex!u2. ~17!

Note that expression~17! fully agrees with formula~26! of
Ref. 34 if one takes into account thatv0(kex)50.

2. Two-band case

A two-band model can be applied to real situations if
some region of the Brillouin zone, the energy gap betwe
the band under consideration«0(k) and some other ban
«a(k) as well as the energy differences between these ba
and the Fermi energy«F are all relatively small as compare
to other energy intervals:u«0(k)2«a(k)u, u«F2«0(k)u
!u«n(k)2«0(k)u, for nÞ0,a. Then, in this region of the
Brillouin zone, one may take into account only the band
and a and neglect all other bands. In other words, in t
region, we can use the followingkp Hamiltonian

~ĤLK! lr,l 8r85« l~0!d l l 8drr81\vlr,l 8r8~0!k, ~18!

wherel, l 850, a; r, r851, 2; the vectork is measured from
a point taken inside the region@it is convenient to place the
point k50 at the point of an extremum of«0(k)]. The basis
functions of this Hamiltonian are the well-known function
of Luttinger-Kohn,35 xk,lr5exp(ikr )c0,lr , which coincide
with the Bloch functionsck,lr at the pointk50. Note that in
Eq. ~18!, a diagonal term35 proportional tok2 was omitted
since its effect on the spectrum is comparable with an ef
of the bands disregarded here. The symmetry relative to
tial and time inversion leads34 to the following relationships
betweenvlr,l 8r8(0):

v01,01~0!5v02,02~0![v0~0!,

va1,a1~0!5va2,a2~0![va~0!,

v02,a2~0!5v01,a1* ~0!, ~19!

v02,a1~0!52v01,a2* ~0!.

The electron dispersion relations« l(k) for the bands 0 anda
are obtained by diagonalization of Eq.~18!:
11511
n

ds

0

ct
a-

@Ŝ1ĤLKŜ# lr,l 8r85« l~k!d l l 8drr8 , ~20!

whereŜ is an unitary transformation. It is worth noting tha
the two-band model of the energy spectrum~18! is more
general than that of Ref. 34, since we do not assume here
the velocitiesv05(1/\)(]«0 /]k) and va5(1/\)(]«a /]k)
vanish at the samepoint of the Brillouin zone. In other
words, we admit possibility that the bands 0 anda reach an
extremum at different points of the Brillouin zone.

In our previous paper~Appendix of Ref. 8! we showed
how to obtain the orbital part of the matrixm̂0 using the
Hamiltonian in the Luttinger-Kohn representationĤLK and
the matrixŜ which transforms it to the diagonal form~i.e., to
the Bloch representation!. This formula can be rewritten in
the form:

m0,rr8
or

5
i

2\ (
a,b,g51,2,3

eabgng

3H Ŝ1S ]«0

]ka
11

]ĤLK

]ka
D ]Ŝ

]kb
J

0r,0r8

, ~21!

where eabg is the completely antisymmetric tensor whic
has values61. The spin contribution tom̂0 may be neglected
here, since this contribution is comparable with that of t
disregarded bands. Using Eqs.~18! and~21!, we find that the
matrix m̂0 has the form of Eq.~13! with

c~k!5
\@«F10.5Eg2\va~0!k#21

2«F2\@v0~0!2va~0!#k
~22!

and

cj5~nwj !S «F1
Eg

2 D2\kH@n3wj #•@n3va~0!#, ~23!

where j 51, 2; the Fermi energy«F is measured from the
middle of the gapEg5«0(0)2«a(0) at the pointk50, and
we have used the notations:kH5(nk),

2w15 i @v01,a1~0!3v02,a2~0!#2 i @v01,a2~0!3v02,a1~0!#,

w25 i @v01,a2~0!3v01,a1~0!#.

Thus, within the two-band approximation, the localg-factor
approach leads to the exact results for theg-factor atarbi-
trary strength of spin-orbit interaction. Using Eq.~14!, we
find theg factor of the orbit,

g56
2m

pm*
Ac1

21uc2u2 R
G

dk

v'

c~k!, ~24!

while the localg factor can be defined by the expressi
g(k)56(4m/\)Ac1

21uc2u2c(k).
In the special casev0(0)5va(0)50 and«F→«0(0), the

g factor of the orbit was calculated by Cohen and Bloun34

and it was shown thatd[(gm* )/(4m)561/2, i.e., the
splitting of the electron energy levels in the magnetic fie
described by theg factor exactlycoincides with their orbital
4-4
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TABLE I. Band parameters of bismuth.~Ref. 39!. The Fermi energy of electrons in Bi is«F535 meV.

q1~a.u.! uq2u~a.u.! q3~a.u.! a0~a.u.! aa~a.u.! Eg ~meV!

0.457 0.03 0.344 0.615 1.1 10
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splitting. We now can extend this result to the general c
when«F is not close to the band edge«0(0) and the veloci-
ties v0 , va do not vanish at the same point of the Brillou
zone. Indeed, inserting Eqs.~22! and~23! into formula~24!,
we find by a direct calculation thatd51/2. Note also that
this result agrees with the exact calculation of the elect
energy spectrum in the magnetic field.36

3. Three or more bands

In our previous paper8 we calculated theg factor for a
three-band model of the electron energy spectrum. T
model is commonly used to describe a part of the Fe
surface of zinc, the so-called needles located near the po
K of the Brillouin zone. Theg-factor of zinc is large due to
very small gaps in the spectrum at the pointK ~ the gaps are
comparable with the spin-orbit splittingD). However, in
zinc the parameterD is small as compared to the characte
istic energyE0 ~i.e., n!1), and so the localg-factor ap-
proach is a good approximation. If one formally increas
the strength of the spin-orbit interaction in this three-ba
model so that theD becomes comparable toE0 , formulas
~25! and ~26! of Ref. 8 show that the matrixm̂0 is not re-
duced to the form of Eq.~13!. Thus, this example demon
strates that in the case of a sufficiently strong spin-orbit c
pling, the localg-factor approach generally fails when on
deals with three~or more! band models of the electro
spectrum.

III. BISMUTH

To consider an example of the spectrum with more th
two bands and with the strong spin-orbit interaction, we n
analyze the electrong factor of bismuth. The electron Ferm
surface of Bi consists of three ‘‘ellipsoids’’ located near t
symmetry pointsL of the Brillouin zone.1,31 The symmetry
of this point isC2h . It is a common practice to take thex
axis along the twofold axisC2 , to place they-z plane on the
reflection planesh containing the trigonal axisC3 and the
bisector axisC1 , and to choose they axis in the direction of
the longest principal axis of the ellipsoid~this axis is ap-
proximately ten times greater than the other two and is til
at the angle about 6 deg from theC1 axis!. Since the Fermi
surface of bismuth is elongated in theky direction, the two-
band model is not sufficient to describe the electron ene
spectrum in this direction, and the extended two-band mo
Appendix B, is commonly used. In the case of bismuth,
quadratic terms are taken into account only for this directi
Then, we arrive at the Hamiltonian of McClure37,38

Ĥ̃~k!5S E0~k!1232 T̂~k!

T̂1~k! Ea~k!1232
D , ~25!
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where the pointk50 is placed at the L point;

E0,a~k!56S Eg

2
1

a0,a

2
ky

2D ;

T̂~k!5S t u

2u* t* D ;

t5q1kx ; u5q2ky1q3kz ;

Eg5«0(0)2«a(0), a0 , aa , q1 , andq3 are real parameter
of the model, whileq2 is an imaginary constant, Re(q2)50.
Values of all these parameters are well known,39,40 see Table
I. The parametersq1 , q2 , q3 denotes the nonzero compo
nents of\v0r,ar8(0). Note that the value ofq2 is relatively
small, and just for this reason the Fermi surface is elonga
in the ky direction, anduq2uky;ua0,aky

2u at the Fermi level.
The equation for the band energies«0(k) and«a(k) follows
from Eqs.~25! and ~B5!:

F«2
~a02aa!ky

2

4 G2

5FEg

2
1

~a01aa!ky
2

4 G2

1q1
2kx

21uq2u2ky
21q3

2kz
2 , ~26!

where the energy« is measured from the middle of the en
ergy gapEg at the pointL.

The constant matricesR̂g , Appendix B, considerably sim
plify if one takes into account the symmetry of the pointL:

R̂[ (
g51,2,3

R̂gng5S r̂0 0

0 r̂a
D , ~27!

where

r̂0,a5S r̃0,a ñ0,a

ñ0,a* 2 r̃0,a
D

are the 232 matrices with

r̃0,a5r0,anx , ñ0,a5n0,a
y ny1n0,a

z nz .

The two real constantsr0 , ra , and four complex parameter
n0

y , na
y , n0

z , na
z represent both the effect of bands differe

from 0 anda on the matrixm̂0 and the pure spin partm̂0
s .

Substituting Eq.~27! into formula~B8!, we obtain the matrix
elements ofm̂0 for central cross sections of the Fermi surfa

m0,115A@ iBq2q3nx1 r̃0~Ea2«F!21 r̃a~ t22uuu2!

1t~ ñau* 1 ña* u!#
4-5
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m0,125A@ iBq1~q3ny2q2nz!22r̃atu

1 ñ0~Ea2«F!21 ñat22 ña* u2#, ~28!

where

A5@~Ea2«F!~E01Ea22«F!#21,

B5~Ea1Eg1«F!/\. ~29!

Sincer0,a andn0,a
y,z are all of the order of\/m, the terms

in Eq. ~28! proportional to these parameters are relativ
small as compared to the main terms which contain prod
of qi and result fromm̂0

(2) , Eq. ~B9!. If the magnetic field is

directed along they axis, the small terms withr̃0,a and ñ0,a
can be omitted. Then, we go over to the case of the two-b
model, and the matrixm̂0 takes the form of Eq.~13!,

m̂5um0,12uS 0 i

2 i 0D .

Thus, one arrives at

d[
gm*

4m
56

1

2
.

If ny!1, i.e., if the magnetic-field direction is almost norm
to they axis, the role of the terms withr̃0,a andñ0,a increases
due to the small value ofq2 . In this case, the matrixm̂0
cannot be reduced to the form of Eq.~13!, and to obtain the
electrong factor, one must use Eqs.~8!, ~9!, and~10!.

The angular dependence of the electrong factor of bis-
muth in they-z plane was very accurately measured in R
31, see Fig. 1. In Fig. 1 we also show the electrong factor
calculated using Eqs.~8!, ~9!, ~10!, ~28!, and the data of
Tables I, and II. If one neglects the terms withn0,a

y,z , the
calculatedg factor only qualitatively agrees with the exper
mental data, but it is impossible to obtain their quantitat
agreement. In particular, these terms determine the asym
try of the plot relative to the direction of thez axis. The
values of the parametersn0,a

y,z have been chosen so that
provide the best agreement of the calculatedg factor with the
experimental data. It should be noted that this choice is
unique, and the Table II gives only one possible set of
values. In this context, we point out that the experimen
investigation of angular dependences of theg factor in thex-
z and thex-y planes would enable one to determine the
rameters unambiguously.

The results of Fig. 1 are in agreement with the consid
ations presented above. If the magnetic-field directionn is
close to they axis, the combinationd5(gm* /4m) ap-
proaches the value 1/2. But whenn is almost perpendicula
to the y axis, the magnitude of thed significantly differs
from this value characteristic for the two-band model of t
electron energy spectrum.

We have compared the exactg factor calculated using
Eqs. ~8!, ~9!, and ~10! with that calculated on the basis o
formula ~14!, see Fig. 2. When the magnetic-field directionn
is not close to thex-z plane, the results of the two ap
11511
y
ts

d

.

e
e-

ot
e
l

-

r-

proaches practically coincide. But whenn lies near thex-z
plane@i.e., when the two-band model fails and formula~14!
is not valid#, the comparison clearly shows the error whi
occurs if one continues to use Eq.~14!. Hence, the formal
use of Eq.~14! in this region of the magnetic-field direction
can lead to a noticeable error in theg factor. It should be
emphasized that this conclusion is independent of the se
the values in Table II.

IV. CONCLUSIONS

In the semiclassical approximation the electrong factor in
metals can be calculated using formulas~8!, ~9!, and ~10!.
Within this approach, Eq.~9! with boundary condition~10!
describes the dynamics of the electron spin when the elec
moves over the semiclassical orbit in the crystal. On
other hand, in many papers, the so-called localg-factor ap-

FIG. 1. The quantityudu5ugm* /4mu for electron orbits in bis-
muth as functions of angle between the direction of the magn
field H and the trigonal axisC3 of the crystal;H lies in they-z
plane. The solid line is plotted using Eqs.~8!, ~9!, ~10!, ~28! and the
data of Tables I and II, whiles marks the experimental data~Ref.
31!. The lower panel shows the results near the trigonal axis in
enlarged scale. The filled circle corresponds toz direction, and only
for this point the error bars are shown. The dashed line repres
the exactg factor calculated at alln0,a

y,z50.

TABLE II. A possible set of the parametersr0,a , n0,a
y , n0,a

z for
bismuth ~atomic units!. r0 and ra were chosen using the know
data for the electrong factor in thex direction ~Ref. 31!.

n0
y n0

z na
y na

z r0 ra

215i -112i 215i -112i 1.7 -7.4
4-6
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proach was applied to calculate the electrong factors of a
number of metals. This simple approach is applicable onl
the dynamics of the electron spin is negligible. In this ca
one can use formula~14! to calculate theg factor of the
electron orbits. We compare these two approaches and
out when they lead to the sameg factor and when one shoul
expect a difference in the results.

The localg-factor approach is a good approximation
crystals with a weak spin-orbit coupling. Besides this, th
are two situations when this approach leads to the exac
sults at a strong spin-orbit interaction. In the first case,
Fermi level lies near an edge of the band under consi
ation. In the second situation, the electron spectrum
specifies the semiclassical orbit can be well described in
framework of the two-band model. In all other cases, o
may expect a difference between the exact results and t
obtained by the localg-factor approach.

As an example, we consider theg factor of bismuth. If the
magnetic field has a direction near the plane containing
trigonal and the binary axes of bismuth, theg factor of the
electron orbits cannot be described in the framework of
two-band model, and the effect of other bands on theg-factor
~and the spin contribution to it! should be taken into accoun
In this case the two approaches lead to different results
the g factor.

APPENDIX A: BLOCH BASIS TRANSFORMATIONS
AND g FACTOR INVARIANCE

In the case of the crystals with the inversion symme
the most general unitary transformation of the spinor sp
has the form

FIG. 2. The quantityudu5ugm* /4mu calculated using Eqs.~8!,
~9!, ~10! ~the solid lines!, and using Eq.~14! ~the dashed lines! for
bismuth when the magnetic-field direction n5H/H
5(sinucosw,sinusinw,cosu) lies in they-z, z-x, and x-y planes.
The upper panel shows a half of the electron ellipsoid of bism
and positions of the points a-d marked in the lower panel. T
calculations were carried out using formulas~28! and the data of
Tables I and II;udu has been reduced to the interval 0–1/2.
11511
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Û~k!5S c exp@ ia~k!# 2s exp@ ib~k!#

sexp@2 ib~k!# c exp@2 ia~k!#
D , ~A1!

wherec5cos@f(k)#, s5sin@f(k)#, and a, b, f are some
real functions ofk. This transformation can be decompos
as follows,

Û~k!5 P̂S a1b

2 D R̂~f!P̂S a2b

2 D , ~A2!

whereP̂(h) is the phase transformation

P̂„h~k!…5S exp@ ih~k!# 0

0 exp@2 ih~k!#
D , ~A3!

and R̂(f) is the rotation in the spinor space

R̂„f~k!…5S cosf~k! sinf~k!

2sinf~k! cosf~k!
D . ~A4!

The phase transformationP̂„h(k)… does not change the form
of Eqs. ~8! and ~7!.8 Consider now rotation transformatio
~A4!. It changes the matrixm̂0(k) as follows:

m̂085R̂1~f!m̂0R̂~f!1 i S nFv03R̂1~f!S ]R̂~f!

]k D G D ,

~A5!

and the solution of transformed equation~9! ~written with the
use of the new matrix elementsm0,rr8

8 ) has the form

t8~k!5
sinf~k!1cosf~k!•t~k!

cosf~k!2sinf~k!•t~k!
. ~A6!

Substitutingt8 andm0,rr8
8 into Eq.~8!, it can be verified that

the change of the exact g factor is described by

m*

4m
~g82g!5

1

2p R
G
dk

d arg@cosf~k!2sinf~k!t~k!#

dk

5n8, ~A7!

where n8 is some integer. Since in the semiclassical a
proach, the change ofd[(gm* )/(4m) by arbitrary integer
does not affect energy spectrum~1!, we can state that the
exact expression~8! is really invariant under transformation
~A4! @and hence~A1!#. In contrast to this, the rotation in th
spinor space~A4! essentially changes expression~7!,

g852
2m

pm*
R

G

dk

v'

@cos~2f!m0,112sin~2f!Re~m0,12!#.

~A8!

APPENDIX B: THE EXTENDED TWO-BAND MODEL

There exist situations when the two-band model is
sufficient to describe the electron energy spectrum«0(k) and
the matrixm̂0(k) with an appropriate precision even in th
case of the two close bands. We now show how to obtain«0

andm̂0 for the extended two-band model, in which the effe

h
e
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of other bands on these quantities is taken into account to
first order.

The electron energy spectrum of the extended two-b
model can be derived from the Luttinger-Koh
Hamiltonian35

~ĤLK!nr,n8r85S «n~0!1
\2k2

2m D dnn8drr81\vnr,n8r8~0!k,

~B1!

which includesall bands. We carry out the diagonalization
infinite matrix ~B1! by some unitary transformationŜ in the
two steps: At the first step the matrix elements (ĤLK) lr,nr8
between the bands under consideration,l 50, a, and the other
bands,nÞ0, a, are reduced to zero by an unitary transfo
mation Ŝ1 . At this step we arrive at the following trans
formed Hamiltonian:

Ŝ1
1ĤLKŜ15S Ĥ̃~k! 0

0 Ĥ̃R~k!
D . ~B2!

The matrixŜ1 has the form of a series in components ofk.
Thus, we find that the leading correction to (ĤLK) lr,l 8r8 is a
quadratic form in these components:

~ Ĥ̃2ĤLK! lr,l 8r85
\2

2 (
n,r9

8 @vlr,nr9~0!k#@vnr9,l 8r8~0!k#Tll 8
n ,

~B3!

where

Tll 8
n

5
1

« l~0!2«n~0!
1

1

« l 8~0!2«n~0!
;

l ,l 850,a, and (n8 denotes that the summation excludesn
50, a. The lower right block in matrix~B2! describes the
bands different from 0 anda and is not considered any mor
The second step of the diagonalization is to find a fo

dimensional unitary matrixŜ2(k) that transformsĤ̃ to the
diagonal form

@Ŝ2
1Ĥ̃Ŝ2# lr,l 8r85« l~k!d l l 8drr8 . ~B4!

The matrixŜ2(k) depends only on the matrix elements of t

Hamiltonian Ĥ̃. The band energies«0(k) and «a(k) are
found from the equation

det@ Ĥ̃2« l~k!#50. ~B5!

The matrix elements ofm̂0 can be obtained from Hamil
tonian ~B1! using the formulas of the Appendix of Ref. 8
The orbital part ofm̂0 is given by formula~21! of the present
paper, while its spin partm̂0

s has the form
11511
he

d

-

-

m0,rr8
s

5 (
g51,2.3

ng~Ŝ1ŜgŜ!0r,0r8 , ~B6!

where

@Ŝg#nr,n8r852
\

2m
^xk,nrusguxk,n8r8&. ~B7!

The unitary matrixŜ in these formulas must be taken in th

same approximation as in the determination ofĤ̃.
The two step procedure enables one to represent m

elements ofm̂0 as the sum of the two terms

@m̂#0,rr85 (
g51,2,3

ng@Ŝ2
1R̂gŜ2ng#0r,0r81@m̂ (2)#0,rr8 ,

~B8!

where the second termm̂0
(2) depends only on the matrix ele

ments of the HamiltonianĤ̃ @compare with Eq.~21!#:

@m̂ (2)#0,rr85
i

2\
• (

a,b,g51,2,3
eabgng

3H Ŝ2
1S ]«0

]ka
11

] Ĥ̃

]ka
D ]Ŝ2

]kb
J

0r,0r8

, ~B9!

while the four-dimensional matricesR̂g(k) are determined
by the bands different from 0,a, and by the contribution~B7!
associated with the spin:

@R̂g# lr,l 8r85
i

2 (
a,b51,2,3

eabgH V̂̃b

] Ĥ̃

\]ka
1 v̂̃aV̂̃bJ

lr,l 8r8

1@Ŝ1
1ŜgŜ1# lr,l 8r8 . ~B10!

Here

v̂̃a5Ŝ1
1v̂aŜ1 ,V̂̃b5 iŜ1

1~]Ŝ1 /]kb! ~B11!

and the vector of the matricesv̂a is defined by the relation-
ships (v̂a)nr,n8r85vnr,n8r8

a . The matricesR̂g are series ink,
and in the approximation used, only the first terms of the
series must be taken into account. Therefore, these mat
reduce to the constant matrices:

~R̂g! lr,l 8r85
i\

2 (
n,r9

8 @vlr,nr9~0!3vnr9,l 8r8~0!#Tll 8
n

1~Ŝg! lr,l 8r8 , ~B12!

which are determined by values ofR̂g at the pointk50.
When the pointk50 is a symmetry point of the Brillouin
zone, the form of the matricesR̂g is considerably simplified
by the use of the selection rules for the matrix elements
angular momentum.
4-8
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31V.S. Édelm’man, Usp. Fiz. Nauk123, 257 ~1977! @Sov. Phys.
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