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Field, temperature, and concentration dependences of the magnetic susceptibility
of bismuth–antimony alloys
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~Submitted April 9, 1999; revised August 11, 1999!
Fiz. Nizk. Temp.26, 54–64~January 2000!

In the framework of the McClure model, which describes the electronic energy spectrum of
bismuth and its alloys in the neighborhood of theL point of the Brillouin zone, an expression is
obtained for the electron energy levels in a magnetic field. This expression is used to
calculate the magnetic susceptibility of bismuth alloys at arbitrary magnetic fields. It is shown
that the theoretical results are in good agreement with the entire set of published
experimental data on the field, temperature, and concentration dependences of the magnetic
susceptibility of bismuth–antimony alloys. ©2000 American Institute of Physics.
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INTRODUCTION

The electronic band structure of bismuth and its allo
with antimony has been the subject of many papers~see, e.g.,
Refs. 1 and 2 and the references cited therein!. It has been
established that the Fermi surface of bismuth and its all
~at low concentrations of antimony! consists of one hole el
lipsoid, located at theT point, and three closed electron su
faces of nearly ellipsoidal shape, centered at theL points of
the Brillouin zone. Another circumstance that is extrem
important for understanding many of the properties of b
muth is that in the neighborhood of theL point the conduc-
tion band is separated by only a small energy gap from
other, filled band. The detailed study of the energy spectr
the charge carriers near theL andT points is done mainly by
methods based on oscillation and resonance effects. By
the values of the main parameters characterizing the b
structure of bismuth and its alloys with antimony have be
determined by these methods.2

The smooth~nonoscillatory with respect to the magnet
field H! part of the magnetic susceptibility of the solid sol
tions Bi12xSbx exhibits noticeable~and often nonmonotonic!
changes upon variations ofH, the temperatureT, the anti-
mony concentrationx, and the admixture of dopants th
shift the level of the chemical potentialz of the alloy.3–7

These changes in the susceptibility are due to electro
states located near theL points and belonging to two band
separated by a small energy gap.8–10 The rest of the elec-
tronic states all give a contribution to the magnetic susce
bility that is practically independent ofT, z, H, andx and
represents a constant background. The study of the ‘‘v
able’’ contribution to the magnetic susceptibility~i.e., its de-
pendences onT, z, H, andx! will make it possible to check
and refine the data on the electronic band structure in
neighborhood of theL point as obtained from investigation
of oscillation and resonance effects.

Calculations of the special~or ‘‘variable’’ ! contribution
to the magnetic susceptibility of bismuth and its alloys in t
391063-777X/2000/26(1)/8/$20.00
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limit H→0 were done in Ref. 8–10. The models of the ele
tronic band structure11,12used in Refs. 8 and 9 would later b
found to give a poor description of the spectrum of bismu
alloys in the neighborhood of theL point. In Ref. 10 the
magnetic susceptibility was calculated using a spectr
which is intermediate in accuracy between those propose
Ref. 13 and in Refs. 14 and 15; both of these last provid
good description of the entire set of experimental data
oscillation and resonance effects in bismuth alloys. Howev
in Ref. 10 the theoretical and experimental results were co
pared only for the dependences of the magnetic susceptib
x on z andx, and the comparison was done using values16 of
the spectrum parameters that were later revi
considerably.2 In Ref. 17 the same model of the spectrum
in Ref. 10 was used to calculate the field dependence of
magnetic susceptibility, but only in low magnetic fields. F
high magnetic fields a calculation ofx was done in Refs. 6
and 9, but with the use of unrealistic, oversimplified mod
of the spectrum.11,12 Thus, at the present time there is n
complete quantitative description of the experimental cur
of the magnetic susceptibility of bismuth alloys as a functi
of H, T, z, andx.

It was shown in Ref. 18 that under conditions of dege
eracy of the electronic energy bands of the crystal in a w
magnetic field (H→0) there can be giant anomalies of th
magnetic susceptibility, and the types of degeneracy of
bands which can lead to such anomalies were listed. In R
19 the problem of the electron energy levels in a magn
field was solved exactly for two of these types~those most
often encountered in crystals!, and the special contribution to
the magnetic susceptibility was calculated for arbitrary v
ues ofH. As expected, this contribution depends strongly
H, z, andT. The spectrum of bismuth–antimony alloys
the neighborhood of theL point of the Brillouin zone is close
to degenerate and is characterized by the circumstance
for a nonzero gap in the spectrum, the type of degenerac
intermediate between those considered in Ref. 18. Thi
what accounts for the strong field, temperature, and conc
© 2000 American Institute of Physics
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tration dependences ofx in these alloys. However, a detaile
comparison of the theoretical and experimental results m
be done with allowance for the aforementioned feature of
spectrum of bismuth alloys. Therefore, generalizing the
sults of Ref. 19, in Sec. 1 of the present paper we giv
solution to the problem of the energy levels of an electron
a magnetic field for the McClure spectrum,13 and in Sec. 2
we obtain the corresponding expressions for the magn
susceptibility, valid for arbitraryH. In Sec. 3 we use thes
expressions to compare the theoretical and published ex
mental results for the field, temperature, and concentra
dependences ofx in Bi12xSbx alloys. We conclude with a
summary of our findings.

1. SPECTRUM

As we said in the Introduction, the dependences of
magnetic susceptibility on the field and on temperature,
purity concentration, and other external parameters are g
erned mainly by the electronic states located in the neigh
hoods of theL points of the Brillouin zone and belonging t
two bands which lie close to each other and to the leve
the chemical potential. These electronic states are descr
using several models of the energy spectrum which h
different degrees of accuracy in terms of the parameter

d5
«0

E0
!1,

where«0 is the characteristic energy scale for the two nea
bands, andE0 is the energy distance from these bands to
nearest of the remaining bands. The most comp
models10,14,15 have an accuracy of orderd. However, at
present the values of the parameters of the spectrum hav
been determined for the simpler McClure model,13 which
describes the spectrum with an accuracy of orderd1/2. We
will use the McClure model here. In it the Hamiltonian of th
electrons in the neighborhood of anL point has the form

H5S D1Kc 0 t u

0 D1Kc 2u* t*

t* 2u 2D2Kv 0

u* t 0 2D2Kv

D . ~1!

Here and below the energy and chemical potentialz are reck-
oned from the center of the energy gap 2D ~here «0

;2D,uzu! which separates the two bands, denotedc andv,
which are nearly twofold degenerate at this point. The qu
tities t, u, Kc , andKv are given by the formulas

t5q1k1 , u5q2k21q3k3 , Kc,v5
a22

c,v

2
k2

2, ~2!

in which q1 , q3 , anda22
c,v are real parameters of the mode

and q2 is a complex number. The origin of coordinates f
the wave vectork is at theL point. The axis 1 is along the
binary axis, and axis 2 is along the length of the Fermi s
face of pure bismuth at theL point, i.e., at an anglew'6° to
the bisector direction. For pure bismuth Re(q2)50. In
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Bi12xSbx alloys the dependences of the parametersqi , a22
c,v ,

andD on the antimony concentrationx are well described by
the linear functions2

q150.45720.188x; a22
c 50.61510.4x;

Im~q2!50.0320.04x; a22
v 51.110.7x; ~3!

q350.344; 2D5~102242x! meV

~qi anda22
c,v are given in atomic units, a.u.!. In addition, asx

increases, the parameterq2(x) generally acquires a rea
part.10 A nonzero Re(q2) causes the long direction of th
electronic isoenergy surfaces to deviate from the axis 2 by
angle dw;(Re(q2)/q3). Such a deviation was actually ob
served in Ref. 16, and it follows from the data of that stu
that

Re~q2!;0.05x.

The band energies«c(k) and«v(k) are found from the equa
tions

F«2
1

4
~a22

c 2a22
v !k2

2G2

5E2, ~4!

where

E25FD1
1

4
~a22

c 1a22
v !k2

2G2

1q1
2k1

21uq2u2k2
2

1q3
2k3

212q3 Re~q2!k2k3 . ~5!

The relative position of these bands as a function of
antimony concentrationx is shown in Fig. 1.

FIG. 1. Diagram of the changes in the electronic energy spectrum
Bi12xSbx alloys at theL and T points of the Brillouin zone. The dashe
lines indicate the path of the band edges«c(0) and«v(0) at theL points and
«T(0) at theT point asx is changed. The lines were constructed usi
formulas ~3! and ~10!. At x'0.04 the gap in the spectrum at theL point
goes to zero, and forx.0.07 the alloy undergoes a transition to a semico
ducting state. The solid curves show a schematic illustration of«c(k),
«v(k), and«T(k) at the respective points.
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The spectrum of electrons in a magnetic fieldH directed
along the k2 axis can be obtained from the gener
expression19

S~«n ,k2!5
2peH

c\
n, ~6!

where e is the absolute value of the electron charg
S(«n ,k2) is the cross-sectional area of the isoenergy surf
on a planek25const, andn is a nonnegative integer. Here
should be kept in mind that the energy levels«n with n.0
are twofold degenerate. In the derivation of~6! we neglected
the direct interaction of the electron spin with the magne
field, since the purely spin contribution to the magnetic s
ceptibility is of order d ~but the spin–orbit interaction is
taken into account in all the formulas given above!. We note
that, although the quantization condition~6! has the quasi-
classical form, in this case it gives the exact eigenvalues
the energy of an electron with the Hamiltonian~1!, ~2!. From
Eqs.~4!–~6! we obtain

«n
c,v~k2 ,H !5S a22

2 2a22
v

4 D k2
26FaHn1S D1

a22
c 1a22

v

4
k2

2D 2

1~ Im~q2!!2k2
2G1/2

, ~7!

wherea52euq1q3u/c\. If the magnetic field is directed a
an angleu to thek2 axis, then, as was shown in Ref. 19, to
accuracy of d tan2 u the eigenvalues«n

c,v(k2,H) are de-
scribed, as before, by formula~7! but with H cosu substi-
tuted forH.

Besides the electronic states in the neighborhoods of
L points of the Brillouin zone, bismuth also has hole state
the neighborhood of theT point. These states have the e
ergy spectrum1

«T~k!5ET2
\2

2m1
h ~k1

21k2
2!2

\2

2m3
h k3

2. ~8!

Here the values of the effective massesm1
h andm3

h are

m1
h50.212 a.u., m3

h50.0639 a.u., ~9!

k is reckoned from theT point, the axes 1 and 2 coincid
with the binary and bisector axes, respectively, andET is the
energy of the band edge, which in Bi12xSbx alloys falls off
linearly with increasingx ~see Fig. 1!:

ET5~46.92601.26x! meV. ~10!

The contribution tox from the hole states at theT point is
small compared to the contribution from the electronic sta
near theL points and is of orderd. This is because of the
relatively large massesm1,3

h and, accordingly, the small dis
tances between energy levels«n

T in a magnetic field:

«n
T~k2!5ET2

\eH

cAm1
hm3

h S n1
1

2D2
\2k2

2

2m1
h . ~11!

However, while neglecting the contribution of these states
the susceptibility, one must take into account their influen
on the position of the chemical potential of the electrons
bismuth–antimony alloys.
l
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2. CALCULATION OF THE MAGNETIC SUSCEPTIBILITY

The magnetic susceptibility of bismuth and its alloys c
be written as the sum of a special contribution due to
electronic states near the threeL points and a background
term due to all the remaining states. The background term
practically independent of the magnetic field and tempera
and even remains constant upon variations of the chem
potentialudzu;uDu. The special contribution to the magnet
susceptibility consists of a sum of three terms due to
states near the respectiveL points. Each of this terms can b
obtained from the following expression for theV potential
~per unit volume!:

V~Hu!52
eHuT

4p2c\ (
c,v

(
n50

8 E
2`

1`

dk2

3 lnH 11expS z2«n
c,v~k2 ,Hu!

T D J , ~12!

where the prime on the summation sign means that in tak
the sum overn the terms withn.0 must be doubled;Hu is
the projection of the magnetic field on thek2 axis at the
given L point. In an experiment one measures the quanti

x5hihjx
i j ,

whereh5H/H is a unit vector in the magnetic field direc
tion, and the differential magnetic susceptibilityx i j is given
by the expression

x i j 52
]2V

]Hi]H j
.

Since theV potential~12! depends onH only throughHu , in
our approximation~to accuracyd1/2! we have

x5(
i 51

3

cos2 u lx
22~H cosu l !,

whereu l are the angles between the magnetic fieldH and the
k2 axis for the threeL points.

In the case of weak magnetic fields, for which the ch
acteristic distance between energy levels in the magn
field obeys d«H!T, we integrate~12! by parts, use the
Euler–Maclaurin summation formula, and differentiate w
respect to the magnetic field to obtain for the susceptibi
an expression of the formx5x01x1H2, where the expres-
sions for theH-independent termsx0 andx1 are the same as
those obtained previously in Refs. 10 and 17.

Let us now analyzex22 in the case of high magneti
fields,d«H@T. The contribution of the electrons in the con
duction band to the magnetic susceptibility can be calcula
directly using formula~12!, since the number of filled levels
«n

c is finite. To calculate the contribution of the filled bandv
to x22, we once again integrate~12! by parts as many times
as necessary, use the Poisson summation formula, an
T50 (d«H@T). The resulting formula includes one summ
tion and integrations overn andk2 . If the quantity (d«n

v/dn)
in this formula@where«n

v is defined in Eq.~7!# is written as
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Ud«n
v

dn
U5 2

Ap
E

0

`

dt expH 2S d«n
v

dn D 22

t2J ,

then the summation and integration overn and k2 can be
done in explicit form. As a result, we obtain foruzu,uDu

x22~H !52
1

4p2 S e

c\ DaS uQu
puD~a22

c 1a22
v !u D

1/2

3E
0

`

dt fS H

HD
t2De~Q222!t2K1/4~Q2t2!, ~13!

whereQ is the following dimensionless combination of p
rameters:

Q5sgn@D~a22
c 1a22

v !#S 11
2~ Im~q2!!2

D~a22
c 1a22

v ! D ; ~14!

HD is the characteristic magnetic field, at whichd«H;uDu,
i.e., HD5D2/a; K1/4(x) is a modified Bessel function, and

f ~x!52S x cothx21

sinh2 x D .

In the derivation of expression~13! we have assumed tha
the parameter

g5Ua22
c 1a22

v

a22
c 2a22

v U>1. ~15!

We note that this condition is satisfied for Bi12xSbx alloys
for any antimony concentrationsx.

If the magnetic fields are such thatH!HD , then the
magnetic susceptibility~13! is independent of the field, and
is described by the same expression as that given in Re
for T→0. On the other hand, ifH@Q2HD ~for bismuth–
antimony alloysQ@1 for x;0.04, while for other antimony
concentrationsQ>1 in the regionx,0.2!, then

x22~H !'2A
e

c\

a3/4

ua22
c 1a22

v u1/2H21/4, ~16!

where

A5
21

32

z~7/4!cos~p/8!G~1/4!

23/4p13/4 '6.2131022; ~17!

z(x) is the Riemann zeta function, andG(x) is the gamma
function. Formulas~16! and ~17! agree with those obtaine
in Ref. 9.

In Ref. 19 the field dependence of the magnetic susc
tibility of electrons was investigated for two of the thre
types of degeneracy of the energy bands of crystals lea
to strong field dependence. According to Eqs.~3!–~5!, in
Bi0.96Sb0.04 alloys there is band degeneracy of the first ty
according to the classification of Ref. 18, i.e., a band splitt
that is linear in the wave vectork in the neighborhood of the
degeneracy pointL. However, bismuth alloys are characte
ized by relatively small values of the matrix elementq2 re-
sponsible for this linear splitting along thek2 axis. That is
why we took terms quadratic ink2 into account in the Hamil-
tonian ~1!–~3!. According to Eqs.~3!–~5!, as the pointk
moves away from theL point along thek2 axis, the splitting
10

p-

ng

g

of the bands rapidly deviates from linearity and approache
quadratic law. This leads to a more complicated depende
of x(H) than in Ref. 19@see Eq.~13!#. The limiting expres-
sion ~16! corresponds to the case when the initial~linear in
k2! part of the band splitting can be neglected, and one
assume thatu«c(k2)2«v(k2)u}k2

2 ~we note that this approxi-
mation is justified even forDÞ0!. Thus formula~16! actu-
ally describes the behavior ofx(H) for the third type of band
degeneracy,18 for which a giant anomaly of the magnet
susceptibility can occur and which was not considered
Ref. 19. Here Eq.~15! corresponds to the condition whe
«c(k2) and«v(k2) have different signs. If«c(k2) and«v(k2)
had the same sign, i.e., ifg,1, then, as one can show, fo
H@HDQ2g2/(12g2) the magnetic susceptibility is de
scribed as before by formula~16! but with a different con-
stantA:

A5
21

16

z~7/4!cos~p/8!

21/4p11/4G~1/4!
g1/2FS 1

4
,2

1

4
,
5

4
,g2D , ~18!

whereF is the hypergeometric function. In the limiting cas
g50 ~and uq2u50! we would arrive at a line of degenerac
of the bands, i.e., at the second case according to the cl
fication of Ref. 18. Then expression~16! with the factorA
from ~18! agrees with the expression obtained in Ref. 1
Finally, we note that in the case of band degeneracy at aL
point or for small D the parameterQ@1, and there is a
region of magnetic fieldsHD!H!Q2HD in which the part
of the band splitting that is linear ink2 plays the governing
role in x(H). Then it follows from Eq.~13! that

x22~H !52
1

6p2

e

c\

a

2uIm~q2!u
lnS HD

H D 1/2

.

With an accuracy up to the background constant, this re
agrees with that obtained in Ref. 19 for the first type of ba
degeneracy. Thus the strong field dependence of the m
netic susceptibility of bismuth alloys is a manifestation of t
fact that the spectrum of these alloys is close to those c
of band degeneracy which lead to a giant anomaly of
magnetic susceptibility.18

The chemical potentialz of the electrons in the crystal
generally speaking, itself depends on the magnetic field. T
dependence is determined from the condition that the t
electron density is constant:

n[2
]V

]z
5const. ~19!

To evaluate the magnetic susceptibility at constantn, it is
necessary to go over from theV potential to the free energy
As a result, forx i j (H,n) we have19

x i j ~H,n!5Fx i j ~H,z!2
]n

]Hi

]n

]H j
S ]n

]z D 21G
z5z~H,n!

.

~20!

When obtaining the functionz(H,n) using formula~19! it is
necessary to take into account the contributions to theV
potential not only from the electronic states near theL points
but also the states near theT point, and also the influence o
donor and acceptor impurities. The states at theT point give



a

d

k
le

d
a
th
e
e

e
v-

tie

to
I

ta

e

c-

e
s

ti
po
uc
y-

. 2

re
l-

new

ack-
ith
ion
ten-

ons
f

va-
en-
ted

ata
16.

-
ults

iza-
he
ins
ons.

he
to
.
he
m

e

the

rum

43Low Temp. Phys. 26 (1), January 2000 G. P. Mikitik and Yu. V. Sharla 
a term in theV potential which is determined by formul
~12! with the energy levels from~11!. Impurities, first, cause
scattering of the charge carriers and, second, give an a
tional impurity contribution to theV potential in semicon-
ducting alloys. The scattering of charge carriers can be ta
into account in a simple way by the introduction of a Ding
temperatureTD , i.e., by replacingT by T1TD in all the
formulas. In semiconducting alloys of Bi12xSbx (x.0.07)
we consider the impurity contribution to theV potential,
V imp , in the limiting case of lightly and heavily dope
n-type semiconductors. The case of light doping is char
terized by the presence of carrier–impurity bound states,
energies of which form a narrow impurity band lying in th
gap of the spectrum. In bismuth–antimony alloys these
ergies « i practically coincide with the band edge, i.e.,« i

'uDu. We then have

V imp52Tn imp lnS 11expS z2« i

T D D , n5n imp , ~21!

where n imp is the density of doping impurities. As w
know,20 the main condition for the existence of impurity le
els is that the average sized of the carrier–impurity bound
state be small compared to the distance between impuri
i.e., the conditiondn imp

1/3 !1. The dimensiond is of the order
of the ‘‘Bohr’’ radius d;aB* 5k\2/e2m* , where k is the
dielectric constant of the crystal andm* is the effective mass
of a charge carrier. For a heavily doped semiconduc
dn imp

1/3>1, and carrier–impurity bound states do not arise.
this case we have

V imp50, n5n imp , ~22!

i.e., the semiconductor is transformed into a ‘‘poor’’ me
with an intrinsic electron densityn imp . If the semiconductor
is in a magnetic fieldH, then we must take into account th
dependence onH of the average sized of a localized state.
In a weak magnetic field we haved;aB* , as before. How-
ever, when the magnetic lengthl>(\c/eH)1/2 becomes
smaller thanaB* , the size of the localized state in the dire
tions perpendicular toH is determined by the value ofl, and
the average sized;(l2aB* )1/3 falls off with increasingH.
Therefore, in sufficiently high fields H>Hcr

;(\c/e)n impaB* there occurs a magnetic ‘‘freeze-out’’ of th
electrons,21 and the heavily doped semiconductor is tran
formed into a lightly doped one.

3. COMPARISON OF THE RESULTS OF THE CALCULATION
OF x WITH EXPERIMENTAL DATA

In Refs. 3–7 significant changes inx were observed in
bismuth–antimony alloys upon variations in the magne
field, temperature, antimony concentration, or chemical
tential, the level of the last being regulated by the introd
tion of doping impurities in the alloy. Our theoretical anal
sis of the dependence of the susceptibility onH, T, x, andz
will be done on the basis of the formulas obtained in Sec
using the values in~3!, ~9!, and~10! for the parameters of the
spectrum.

Let us first consider the dependence ofx(H→0) on the
antimony concentrationx in Bi12xSbx alloys ~Fig. 2!. Ex-
di-

en
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e

n-

s,

r
n
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-

c
-
-
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pressions for the magnetic susceptibility in low fields we
obtained previously.10 In the present paper, however, the ca
culations using these expressions were done with the
values of the parameters~3!, ~9!, ~10!. In comparing the the-
oretical and experimental results we chose the constant b
ground in the susceptibility so as to obtain coincidence w
the corresponding values for pure bismuth. In the calculat
it is necessary to find the dependence of the chemical po
tial z on x for the semimetallic alloys Bi12xSbx (x,0.07)
from the condition that there be equal numbers of electr
and holes at theL andT points, respectively. In the region o
semiconducting alloys (x.0.07) the chemical potential is
assumed to lie in the gap of the spectrum between the
lence band and conduction band, and the impurity conc
trationn imp is taken equal to zero. From the results presen
in Fig. 2 it follows that the use of the parameter set~3!, ~9!,
~10! provides a better description of the experimental d
for the semiconducting alloys than does the set from Ref.
In addition, we have calculated the dependence ofx in a
weak fieldH on the level of the chemical potentialz for the
alloys Bi0.92Sb0.08 and Bi0.97Sb0.03. The results of the calcu
lation with the new parameter values agreed with the res
of Ref. 10 to within the limits of experimental error.

Figure 3 shows the field dependence of the magnet
tion M of pure bismuth in magnetic fields so high that t
only the lowest Landau level in the conduction band rema
occupied, and there are no de Haas–van Alphen oscillati
In accordance with Eqs.~13! and~16!, this curve is nonlinear
in H. Here for a detailed comparison of the results of t
calculation with the experimental data of Ref. 6, we took in
consideration thatz.D in bismuth, and we added to Eq
~13! the contribution due to the conduction electrons. T
expression for this contribution was obtained directly fro

FIG. 2. Low-field magnetic susceptibilityx as a function of the antimony
concentrationx in Bi12xSbx alloys. The magnetic field is applied in th
basal plane of the crystal.T54.2 K. x is normalized to a unit volume;
s—experimental data of Ref. 7; solid curve—calculation according to
formulas of Ref. 10 with the use of the parameter values given in Eqs.~3!,
~9!, ~10!; dashed curve—calculation done in Ref. 10 using the spect
parameters given in Ref. 16.
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Eq. ~12!. We see that the agreement of the theoretical
experimental results is quite good, and it is achieved with
the use of any adjustable parameters.

The results of the calculations of the field dependence
the magnetic susceptibility of the semiconducting allo
Bi0.92Sb0.08 with a concentration of donor impuritiesn imp

51015cm23 are presented in Fig. 4. The twox(H) curves
shown differ in that they correspond to the dependencez
on H obtained for heavily and lightly doped semiconducto
For the given value ofn imp an estimate of the fieldHcr gives
Hcr;1 kOe. In accordance with the arguments set forth
Sec. 2, at fields much smaller thanHcr the theoretical curve
corresponding to the case of heavy doping gives a good
scription of the experiment. For magnetic fields that are

FIG. 3. MagnetizationM of pure bismuth as a function of the magnetic fie
H, directed along the binary axis, forT520 K and H>20 kOe; n—the
experimental data of Ref. 6; solid curve—the calculation of the pres
paper.

FIG. 4. Magnetic susceptibilityx as a function of the magnetic fieldH for
the semiconducting alloy Bi0.92Sb0.08 with a concentration of donor impuri-
ties n imp51015 cm23. The magnetic field is directed along the binary ax
T54.2 K, TD53.5 K; x is the susceptibility per unit volume. The curves1
and2 correspond to the cases of heavily doped@Eq. ~22!# and lightly doped
@Eq. ~21!# semiconductors, respectively;n—the experimental data7 for an
alloy Bi12xSbx with x50.07660.005.
d
t

f
s

.

n

e-
o

weak (H,50 Oe) that the characteristic distance betwe
electronic energy levels at theL points is much less than th
temperature (T54.2 K), the aforementioned curve is ap
proximated by the expressionx(H)5x01x1H2, and the
values ofx0 and x1 agree with those calculated using th
formulas in Refs. 10 and 17. As the magnetic field is
creased a transition to the case of light doping occurs
account of the magnetic freeze-out of the electrons, and,
cordingly, in the regionH.Hcr the agreement with experi
ment is better for the other curve. As the magnetic field
increased further, the chemical potential of the electro
comes to lie in the gap of the spectrum, and the field dep
dence ofz(H) ceases to influence the magnetic suscepti
ity; then the theoretical curves in Fig. 4 practically coincid
Here one can findx(H) directly using formula~13!. The
results of this calculation are shown in Fig. 5. We see that
complete agreement with experiment, the magnetic susce
bility is practically independent of the direction of the ma
netic fieldH in the basal plane.

Figure 6 shows the results of calculations ofx(H) for
the alloy Bi0.92Sb0.08 with admixtures of the dopant tellurid
at concentrationsn imp'331016 but 431017cm23. For the
first of these concentrationsHcr;30 kOe, and in fields lower
than this, the difference inx for the heavily and lightly
doped semiconductor practically vanishes. For the secon
these concentrationsHcr;400 kOe, and the alloy remain
heavily doped throughout the magnetic field region cons
ered. Thus for an analysis of thex(H) curves it suffices to
use the formulas corresponding to a heavily doped semic
ductor. The introduction of the donor impurity Te raises t
level of z significantly, and the first few de Haas–van Alphe
oscillations appear; these, however, cannot be describe
the quasiclassical formulas. We see that, although the m
netic susceptibility is a nonmonotonic function ofH, the
theoretical curves rather accurately describe both the p
tions of the extrema ofx and the overall trend of the functio
x(H). We note one final circumstance. In constructing t
theoretical curves in Figs. 4–6 the Dingle temperaturesTD

were chosen so as to give the best fit of these curves with
experimental data. In agreement with the existing ideas ab

t

FIG. 5. Magnetic susceptibilityx as a function of magnetic fieldH for fields
greater than 3 kOe, for the same alloy as in Fig. 4. The calculation was d
using formula~13! for two orientations of the magnetic field—along th
binary axis and along the bisector direction. The results of the calcula
for the two cases practically coincide~solid curve!; n,s—the experimental
data of Ref. 7 for the first and second of the indicated directions ofH,
respectively. The values ofx, n imp , T, andTD are the same as in Fig. 4.
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the scattering of charge carriers in heavily dop
semiconductors,20 the values obtained forTD are of the order
of order of the characteristic Bohr energiesEB

5m* e4/2\2k2 and depend approximately logarithmically o
n imp .

The temperature dependence of the magnetic suscep
ity of bismuth–antimony alloys is shown in Fig. 7 and 8. T
nonmonotonic behavior ofx(T) ~Fig. 8b! is easily explained
on the basis of qualitative arguments. For the al

FIG. 7. Magnetic susceptibilityx as a function of temperatureT in a con-
stant magnetic fieldH5500 Oe applied along the bisector direction, for t
same alloy as in Fig. 4. Curve1 is for temperature-independent paramete
of the spectrum; curve2 is for parameters having temperature dependen
described by formulas~23! and~24!; curve3 is obtained for parametersq1 ,
q3 , and D depending onT according to Eq.~23! but for q2(T)5q2(0);
s—experimental data of Ref. 7 for Bi12xSbx with x50.07660.005.

FIG. 6. Magnetic susceptibilityx as a function of magnetic fieldH for a
field directed along the bisector direction, for the alloy Bi0.92Sb0.08 with two
different concentrations of the donor impurity tellurium:n imp53
31016 cm23 ~curve 1! and n imp5431017 cm23 ~curve 2!. The calculation
was done using formula~22!; T54.2 K, TD57 K and 11 K for curves1 and
2, respectively; s,n—the experimental data of Ref. 7 fo
Bi12xSbxTe0.000001 and Bi12xSbxTe0.00001, respectively, wherex50.076
60.005.
il-

y
Bi0.92Sb0.08 at H<500 Oe the characteristic distance betwe
electron energy levels in the magnetic fieldd«H is less than
or of the order of 10 K, and thex(T) curves in Fig. 7 and 8b
actually correspond to the low-field case, whend«H,T.
Here, as follows from the results of Ref. 18,uxu falls off
monotonically with increasing temperature ifz lies in the gap
of the spectrum or ifz2uDu&T. It is just such a situation
that is observed in the case withn imp51015cm23 ~Fig. 7!,
sincez2uDu&20 K in that case. For the alloy withn imp53
31016cm23 ~Fig. 8b! one hasz2uDu'120 K atT50.

As the temperature is raised, the chemical potentia
the degenerate electron gas decreases,z(0)2z(T)
;T2/(z(0)2uDu), approaching the bottom of the condu
tion band. As long asz(T)2uDu.T, the behavior ofx can
be explained by using the results of Ref. 18 for the funct
x(z,T50). According to those results,uxu increases with
decreasingz. Finally, whenT becomes greater thanz(T)
2uDu ~i.e., for T*70 K!, uxu, as we have said, begins to fa
off with increasingT. This explains the appearance of a
extremum ofx(T) in Fig. 8b. As to the data presented in Fi
8a, they correspond tod«H;600 K. As long asT!d«H one
can assumeT50 in all the formulas presented in this pape
andx is practically independent of temperature. It is only f
T*d«H , when a transition to the low-field case occurs, th
one should expect to see an appreciable decrease ofuxu with
increasingT. If it is assumed that the parameters of the sp
trum do not change as the temperature increases, then

s

FIG. 8. Temperature dependence ofx in constant magnetic fields applie
along the bisector direction, with a value of 52 kOe for the alloy Bi0.92Sb0.08

~a! and a value of 300 Oe for the alloy Bi0.92Sb0.08 with a concentration of
the the donor impurity telluriumn imp5331016 cm23 ~b!; curves1 are for
temperature-independent spectrum parameters; curves2 are for spectrum
parameters with temperature dependences described by formulas~23! and
~24!; s—experimental data of Ref. 7 for Bi12xSbx ~a! and
Bi12xSbxTe0.000001~b! with x50.07660.005.
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calculated functionsx(T) give a good quantitative descrip
tion of all the experimental data only forT,50 K. In Ref. 22
the temperature dependences of some of the paramete
the spectrum for pure bismuth were determined from m
netooptical measurements:

q1~T!q3~T!5q1~0!q3~0!21.3531024 T23.8

31027 T2 @a.u.#, ~23!

D~T!5D~0!12.131023 T12.531024 T2 @meV#.

These parameters indeed vary hardly at all forT
<50 K. The results of a calculation of the magnetic susc
tibility with allowance for formulas~23! are presented in Fig
7. It is seen that taking the temperature dependences~23!
into account noticeably improves the agreement with the
perimental data. Moreover, from the functionx(H) one can
determine the temperature dependence of those param
of the spectrum which cannot be found from magnetoopt
measurements. In particular, by fitting the theoretical cu
to the experimental data presented in Fig. 7, we obtain
temperature dependenceq2(T):

q2~T!5q2~0!18.931027 T2 @meV#. ~24!

Interestingly, the use of this temperature dependence
gether with~23! for calculatingx(T) at another value of the
magnetic field~Fig. 8a! or impurity concentration~Fig. 8b!
yields a satisfactory description of the other experimen
results as well.

CONCLUSION

The strong field, temperature, and concentration dep
dences of the magnetic susceptibility of bismuth–antimo
alloys is explained by the fact that the electronic ene
spectrum of these alloys is nearly degenerate. The magn
susceptibilityx calculated in this paper for Bi12xSbx solid
solutions with the use of the McClure model gives a go
quantitative description of all the aforementioned dep
dences, provided that one uses for the parameters of
spectrum the values reported in Ref. 2, which were obtai
from oscillation and resonance effects. Here, in analyzing
field dependence ofx for the semiconducting Bi–Sb alloys
one must take into account that these alloys are hea
doped even at relatively low concentrations of donor or
ceptor impurities. In particular, a comparison of the theor
ical and experimental results for the alloy Bi0.92Sb0.08 shows
that the Dingle temperature is a nonlinear function of
of
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e

dopant concentrationn imp , and forn imp;1015cm23 a mag-
netic freeze-out of the electrons occurs. The temperature
pendence ofx appears to give evidence of an apprecia
influence of the electron–phonon interaction on the magn
susceptibility of semiconducting alloys of bismuth atT
.50 K. The existing experimental data can be described
the framework of an extremely simple approach in whi
this interaction affects only the temperature dependence
the parameters of the spectrum.
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~1984! @Sov. Phys. JETP60, 1273~1984!#.
16N. B. Brandt, R. Hermann, G. I. Golysheva, L. I. Devyatkova, D. Kusn

V. Kraak, and Ya. G. Ponomarev, Zh. E´ksp. Teor. Fiz.83, 2151 ~1982!
@Sov. Phys. JETP56, 1247~1982!#.

17G. P. Mikitik, Fiz. Nizk. Temp.12, 955~1986! @Sov. J. Low Temp. Phys.
12, 541 ~1986!#.

18G. P. Mikitik and I. V. Sverchkarev, Fiz. Nizk. Temp.15, 295 ~1989!
@Sov. J. Low Temp. Phys.15, 165 ~1989!#.

19G. P. Mikitik and Yu. V. Sharla�, Fiz. Nizk. Temp.22, 762 ~1996! @Low
Temp. Phys.22, 585 ~1996!#.

20V. L. Bonch-Bruevich and S. G. Kalashnikov,Physics of Semiconductor
@in Russian#, Nauka, Moscow~1990!.

21M. I. Dyakonov, A. L. Efros, and D. L. Mitchell, Physica A180, 813
~1969!.

22M. P. Vecchi and M. S. Dresselhaus, Phys. Rev. B10, 771 ~1974!.

Translated by Steve Torstveit


