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In the framework of the McClure model, which describes the electronic energy spectrum of
bismuth and its alloys in the neighborhood of theoint of the Brillouin zone, an expression is
obtained for the electron energy levels in a magnetic field. This expression is used to
calculate the magnetic susceptibility of bismuth alloys at arbitrary magnetic fields. It is shown
that the theoretical results are in good agreement with the entire set of published
experimental data on the field, temperature, and concentration dependences of the magnetic
susceptibility of bismuth—antimony alloys. ®000 American Institute of Physics.
[S1063-777X0000501-9

INTRODUCTION limit H—O0 were done in Ref. 8—10. The models of the elec-
tronic band structuré*?used in Refs. 8 and 9 would later be
The electronic band structure of bismuth and its alloysfound to give a poor description of the spectrum of bismuth
with antimony has been the subject of many pagses, e.g., alloys in the neighborhood of the point. In Ref. 10 the
Refs. 1 and 2 and the references cited therdinhas been magnetic susceptibility was calculated using a spectrum
established that the Fermi surface of bismuth and its alloysvhich is intermediate in accuracy between those proposed in
(at low concentrations of antimohgonsists of one hole el- Ref. 13 and in Refs. 14 and 15; both of these last provide a
lipsoid, located at th& point, and three closed electron sur- good description of the entire set of experimental data on
faces of nearly ellipsoidal shape, centered atlth@oints of  oscillation and resonance effects in bismuth alloys. However,
the Brillouin zone. Another circumstance that is extremelyin Ref. 10 the theoretical and experimental results were com-
important for understanding many of the properties of bis-pared only for the dependences of the magnetic susceptibility
muth is that in the neighborhood of thepoint the conduc-  y on ¢ andx, and the comparison was done using vatfies
tion band is separated by only a small energy gap from anthe spectrum parameters that were later revised
other, filled band. The detailed study of the energy spectra ofonsiderably. In Ref. 17 the same model of the spectrum as
the charge carriers near theandT points is done mainly by in Ref. 10 was used to calculate the field dependence of the
methods based on oscillation and resonance effects. By nomiagnetic susceptibility, but only in low magnetic fields. For
the values of the main parameters characterizing the barlsigh magnetic fields a calculation gfwas done in Refs. 6
structure of bismuth and its alloys with antimony have beerand 9, but with the use of unrealistic, oversimplified models
determined by these methots. of the spectrunt®'2 Thus, at the present time there is no
The smoothinonoscillatory with respect to the magnetic complete quantitative description of the experimental curves
field H) part of the magnetic susceptibility of the solid solu- of the magnetic susceptibility of bismuth alloys as a function
tions Bi; _,Sh, exhibits noticeabléand often nonmonotonic  of H, T, ¢, andx.
changes upon variations &f, the temperaturd, the anti- It was shown in Ref. 18 that under conditions of degen-
mony concentratiorx, and the admixture of dopants that eracy of the electronic energy bands of the crystal in a weak
shift the level of the chemical potentigl of the alloy>~’  magnetic field H—0) there can be giant anomalies of the
These changes in the susceptibility are due to electronimagnetic susceptibility, and the types of degeneracy of the
states located near thepoints and belonging to two bands bands which can lead to such anomalies were listed. In Ref.
separated by a small energy ¢ap°’ The rest of the elec- 19 the problem of the electron energy levels in a magnetic
tronic states all give a contribution to the magnetic susceptifield was solved exactly for two of these typ@ghose most
bility that is practically independent dof, ¢, H, andx and  often encountered in crystaJ&nd the special contribution to
represents a constant background. The study of the “varithe magnetic susceptibility was calculated for arbitrary val-
able” contribution to the magnetic susceptibilifiye., its de- ues ofH. As expected, this contribution depends strongly on
pendences offi, £, H, andx) will make it possible to check H, ¢, andT. The spectrum of bismuth—antimony alloys in
and refine the data on the electronic band structure in th&he neighborhood of thie point of the Brillouin zone is close
neighborhood of th& point as obtained from investigations to degenerate and is characterized by the circumstance that
of oscillation and resonance effects. for a nonzero gap in the spectrum, the type of degeneracy is
Calculations of the specidbr “variable”) contribution intermediate between those considered in Ref. 18. This is
to the magnetic susceptibility of bismuth and its alloys in thewhat accounts for the strong field, temperature, and concen-
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tration dependences gfin these alloys. However, a detailed Bj,_,Sh, alloys the dependences of the parametgrsasy

comparison of the theoretical and experimental results musindA on the antimony concentrationare well described by
be done with allowance for the aforementioned feature of theéhe linear functions

spectrum of bismuth alloys. Therefore, generalizing the re-

sults of Ref. 19, in Sec. 1 of the present paper we give a J1=0.457-0.188;  a3,=0.615+0.4x;
solution to the problem of the energy levels of an electron in
a magnetic field for the McClure spectrdfhand in Sec. 2

we obtain the corresponding expressions for the magnetic
susceptibility, valid for arbitraryH. In Sec. 3 we use these
expressions to compare the theoretical and published expellg; anda$,’ are given in atomic units, ayuIn addition, as
mental results for the field, temperature, and concentratioincreases, the parametep(x) generally acquires a real
dependences of in Bi;_,Sh, alloys. We conclude with a part!® A nonzero Ref,) causes the long direction of the
summary of our findings. electronic isoenergy surfaces to deviate from the axis 2 by an
angle o~ (Re(@,)/qz). Such a deviation was actually ob-
served in Ref. 16, and it follows from the data of that study
that

Im(q,)=0.03-0.04&; al,=1.1+0.7x; 3)

q3=0.344; 2A=(10-242%) meV

1. SPECTRUM

As we said in the Introduction, the dependences of the Re(q2)~0.0.
magnetic susceptibility on the field and on temperature, imThe band energies,(k) ande, (k) are found from the equa-
purity concentration, and other external parameters are gotjons
erned mainly by the electronic states located in the neighbor-

hoods of thel. points of the Brillouin zone and belonging to . }(ac —al)k2 2: E2 (4
two bands which lie close to each other and to the level of 4722 T2 :
the chemical potential. These electronic states are describe o

using several models of the energy spectrum which havé"®

different degrees of accuracy in terms of the parameter , 1 Vo 2 . .
e E=|A+ Z(a22+a22)k2 +a1ki+ [0z 7k3
5=E—<1, b o
0 +03k3+ 203 Re(qz)kaks. ()

whereg, is the characteristic energy scale for the two nearbyl-he relative position of these bands as a function of the
bands, andE is the energy distance from these bands to th%ntimony concentratio is shown in Fig. 1

nearest of the remaining bands. The most complete
modeld®1*1% have an accuracy of ordef. However, at
present the values of the parameters of the spectrum have all
been determined for the simpler McClure motfelyhich
describes the spectrum with an accuracy of oréfé?. We 50F
will use the McClure model here. In it the Hamiltonian of the T,\
electrons in the neighborhood of &npoint has the form \

A+K, 0 t u \ \/
0 A+K, —u* t*
H=| -u  —A—K, 0 - @

u* t 0 -A—-K,

E, mev

Here and below the energy and chemical potergtate reck- ~N
oned from the center of the energy gap Zhere g
~2A,|¢|) which separates the two bands, denateahdv,
which are nearly twofold degenerate at this point. The quan-
titiest, u, K., andK, are given by the formulas -50r

" 1
c,v
a2é 2 0 0.1
5 k>, (2 X
FIG. 1. Diagram of the changes in the electronic energy spectrum of
in whichqq, g3, and aSQ’ are real parameters of the model, Bi,_,Sh, alloys at theL and T points of the Brillouin zone. The dashed
andq, is a complex number. The origin of coordinates for lines indicate the path of the band edgeé0) ande, (0) at theL points and
the wave vectok is at theL point. The axis 1 is along the e1(0) at theT point asx is changed. The lines were constructed using
formulas (3) and (10). At x~0.04 the gap in the spectrum at thepoint

blnary axis, and axis 2 is along the length of the Fermi sur_goes to zero, and for>0.07 the alloy undergoes a transition to a semicon-

face O_f pure biSmUth at the point, i.e., _at anangle~6°1t0  qycting state. The solid curves show a schematic illustratiors k),
the bisector direction. For pure bismuth B9EO. In  &,(k), ande(k) at the respective points.

t=q:1ky, U=k t+0qsks, K¢,=
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The spectrum of electrons in a magnetic fieldlirected 2. CALCULATION OF THE MAGNETIC SUSCEPTIBILITY
along the k, axis can be obtained from the general

expressiol The magnetic susceptibility of_bismuth_anq its alloys can
be written as the sum of a special contribution due to the
2meH electronic states near the threepoints and a background
S(8n1k2): nv (6)

ch term due to all the remaining states. The background term is

where e is the absolute value of the electron charge, practically independent of the magnetic field and temperature
(e ,K,) is the cross-sectional area of the isoenergy surfacend even remains constant upon variations of the chemical
on a planek,—const, anch is a nonnegative integer. Here it potential| 5| ~|A|. The special contribution to the magnetic
should be k2e £ in m,ind that the ener Ievelswith.n>0 susceptibility consists of a sum of three terms due to the

P nergy states near the respectikepoints. Each of this terms can be
are twofold degenerate. In the derivation(6f we neglected

obtained from the following expression for tlf& potential

the direct interaction of the electron spin with the magnetic (per unit volume:
field, since the purely spin contribution to the magnetic sus- P '
ceptibility is of order § (but the spin—orbit interaction is

!

taken into account in all the formulas given abpwe note Q(Hy)=— eH(,T 2 dk2
that, although the quantization conditio®) has the quasi- cv n=0
classical form, in this case it gives the exact eigenvalues for 7—e%V(Ky Hyp)
the energy of an electron with the Hamiltoni@h, (2). From xIn 1+exp( “—29) ] ’ (12)
Egs.(4)—(6) we obtain T
v a%z— as, 5 as,tay, ) 2 where the prime on the summation sign means that in taking
en (Ko, H)=| ——]ke*| aHn+| A+ ——k; the sum oven the terms withn>0 must be doubled , is
the projection of the magnetic field on the axis at the
o2 2 givenL point. In an experiment one measures the quantity
+(Im(a2)ks| (7)

x=h, th” )

where a=2e|q,q3|/ch. If the magnetic field is directed at

an angleg to thek, axis, then, as was shown in Ref. 19, to anwhereh=H/H is a unit vector in the magnetic field direc-
accuracy of 5tar? 6 the eigenvaluess®V(ky,,H) are de- tion, and the differential magnetic susceptibiligy is given
scribed, as before, by formul@) but with H cosé substi- by the expression

tuted forH. )
Besides the electronic states in the neighborhoods of the ;¢ Q
L points of the Brillouin zone, bismuth also has hole states in dHoH; "
the neighborhood of th& point. These states have the en- ) _
ergy spectrurh Since the() potential(12) depends o only throughH 4, in
ﬁ ) our approximatior(to accuracys*?) we have
er(k)=Er= 5 (k2+k) (8) 3
3

x=2> cof 6,x*%(H cosé,),
h ‘ [ [
Here the values of the effective massm'%, andm; are =1

=0.212 a.u., m3=0.0639 a.u., (99 whereg, are the angles between the magnetic flélend the
k, axis for the thred. points.

In the case of weak magnetic fields, for which the char-
acteristic distance between energy levels in the magnetic
field obeys dsy<T, we integrate(12) by parts, use the
Euler—Maclaurin summation formula, and differentiate with
E;+=(46.9-601.2&) meV. (100 respect to the magnetic field to obtain for the susceptibility
an expression of the formp= xo+ x;H?, where the expres-
§|ons for theH-independent termg, and y; are the same as
those obtained prewously in Refs. 10 and 17.

Let us now analyzey?? in the case of high magnetic
fields, e y>T. The contribution of the electrons in the con-
duction band to the magnetic susceptibility can be calculated
T fieH 1 ﬁzkg directly using formula12), since the number of filled levels
en(ky)=Er— \/—Tﬁ ( n+ E) - (1) ¢S s finite. To calculate the contribution of the filled band
CVmiMs to x?2, we once again integratd?) by parts as many times
However, while neglecting the contribution of these states t@s necessary, use the Poisson summation formula, and set
the susceptibility, one must take into account their influencel =0 (Sey>T). The resulting formula includes one summa-
on the position of the chemical potential of the electrons intion and integrations over andk,. If the quantity @e;/dn)
bismuth—antimony alloys. in this formula[wheree/ is defined in Eq(7)] is written as

k is reckoned from thd point, the axes 1 and 2 coincide
with the binary and bisector axes, respectively, Brds the
energy of the band edge, which in,BiSh, alloys falls off
linearly with increasing (see Fig. L

The contribution toy from the hole states at thE point is
small compared to the contribution from the electronic state
near theL points and is of orde®. This is because of the
relatively large massem?’3 and, accordingly, the small dis-
tances between energy Ieve&, in a magnetic field:

2m;
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de) 2 o de) -2 of the bands rapidly deviates from linearity and approaches a
anl= \/—_J dtexp{ - (W tz], quadratic law. This leads to a more complicated dependence
™ J0 of y(H) than in Ref. 19see Eq(13)]. The limiting expres-
then the summation and integration overand k, can be  Sion (16) corresponds to the case when the initiaiear in
done in explicit form. As a result, we obtain fafj<|A| k,) part of the band splitting can be neglected, and one can
assume thas(k,) — &, (k,)| k3 (we note that this approxi-

1Q vz mation is justified even foA #0). Thus formula(16) actu-
m|A(a5,+ o)) ally describes the behavior g{H) for the third type of band
degeneracy® for which a giant anomaly of the magnetic
><detf(itz)e(Qz‘Z“ZKlM(taz), (13) susceptibility can occur and which was not considered in
0 A Ref. 19. Here Eq(15) corresponds to the condition when
e:(k,) ande, (k,) have different signs. I§.(k,) ande, (ky)
had the same sign, i.e., #<1, then, as one can show, for
H>H,Q2y?/(1—y?) the magnetic susceptibility is de-
2(Im(qy))? ) scribed as before by formuld6) but with a different con-

A( agz+ a\zlz)

1 e
22 __
X (H)= 4772(Cﬁ)a

whereQ is the following dimensionless combination of pa-
rameters:

Q= sgrA(abyr azz>1(1+ L@ coma

H, is the characteristic magnetic field, at whiéh,~|A|, _ 21 {(714)cog m/8) 12 (E _1s yz) (19)
X . o . = = ST I~ 1 , v ,
i.e., Hy=A%«a; Ky4(x) is a modified Bessel function, and 16 2471 (1/4) 4° 4°4
x cothx— 1 whereF is the hypergeometric function. In the limiting case
f(x)=2 “SinfPx y=0 (and|q,|=0) we would arrive at a line of degeneracy

o _ of the bands, i.e., at the second case according to the classi-
In the derivation of expressio(L3) we have assumed that fication of Ref. 18. Then expressidfi6) with the factorA

the parameter from (18) agrees with the expression obtained in Ref. 19.
St ol Finally, we note that in the case of band degeneracy &t an
y=| 22 =1 (159 point or for smallA the parameteQ>1, and there is a
A0 A region of magnetic field$l,<H<Q?H, in which the part
We note that this condition is satisfied for,BiSh, alloys ~ ©Of the band splitting that is linear ik, plays the governing
for any antimony concentrations role in y(H). Then it follows from Eq.(13) that
If the magnetic fields are such thbt<H,, then the ” 1 e o H, | M2
magnetic susceptibilityl3) is independent of the field, and it X“(H)=— 672 ok 2]im(ay)| In(W)

is described by the same expression as that given in Ref. 10
for T—0. On the other hand, iIH>Q?H, (for bismuth—  With an accuracy up to the background constant, this result
antimony alloysQ>1 for x~0.04, while for other antimony agrees with that obtained in Ref. 19 for the first type of band

concentration®=1 in the regionx<0.2), then degeneracy. Thus the strong field dependence of the mag-
o 34 netic susceptibility of bismuth alloys is a manifestation of the
2y~ A - fact that the spectrum of these alloys is close to those cases
X“(H) A 5 1a v |12 ) (16) . .
Ch |ag,+ azy of band degeneracy which lead to a giant anomaly of the
where magnetic susceptibility?

The chemical potentiaf of the electrons in the crystal,
generally speaking, itself depends on the magnetic field. This
dependence is determined from the condition that the total
electron density is constant:

21 ¢(7/4)cog 7/8)I'(1/4) .
=32 5341374 ~6.21x10° % 17

{(x) is the Riemann zeta function, adf{x) is the gamma
function. Formulag16) and (17) agree with those obtained a0
in Ref. 9. y=— ——=const. (19

J

In Ref. 19 the field dependence of the magnetic suscep- ¢ ] o ]
tibility of electrons was investigated for two of the three 10 €valuate the magnetic susceptibility at constantt is
types of degeneracy of the energy bands of crystals IeadinEeCessary to 9o over from tiée pogennal to the free energy.
to strong field dependence. According to E)—(5), in s a result, fory')(H,») we havé
Big.0eShy 04 @lloys there is band degeneracy of the first type - dv dv [ov\ 1
according to the classification of Ref. 18, i.e., a band spliting  x"(H,v)= A, m(&—g)
that is linear in the wave vectdrin the neighborhood of the e (20
degeneracy point. However, bismuth alloys are character-
ized by relatively small values of the matrix elemeptre-  When obtaining the functioi(H, v) using formula(19) it is
sponsible for this linear splitting along the axis. That is necessary to take into account the contributions to (he
why we took terms quadratic ky, into account in the Hamil-  potential not only from the electronic states nearlthgoints
tonian (1)—(3). According to Eqgs.(3)—(5), as the pointk but also the states near tiiepoint, and also the influence of
moves away from th& point along thek, axis, the splitting  donor and acceptor impurities. The states atfthmint give

x(H,0)— .
{={(H,v)
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a term in the() potential which is determined by formula 0
(12) with the energy levels fronill). Impurities, first, cause
scattering of the charge carriers and, second, give an addi-
tional impurity contribution to the) potential in semicon-
ducting alloys. The scattering of charge carriers can be taken
into account in a simple way by the introduction of a Dingle
temperatureTp, i.e., by replacingT by T+Tp in all the
formulas. In semiconducting alloys of Bi,Sh, (x>0.07)

we consider the impurity contribution to th@ potential,
Qimp, in the limiting case of lightly and heavily doped
n-type semiconductors. The case of light doping is charac-
terized by the presence of carrier—impurity bound states, the
energies of which form a narrow impurity band lying in the
gap of the spectrum. In bismuth—antimony alloys these en-
ergieseg; practically coincide with the band edge, i.e;,
~|A|. We then have

1+exp( ') ) V=V, (2)
T FIG. 2. Low-field magnetic susceptibility as a function of the antimony

. . . . . concentrationx in Bi;_,Sh, alloys. The magnetic field is applied in the
where Vimp 1S the denS|ty of d0pmg impurities. As we basal plane of the crystal=4.2 K. y is normalized to a unit volume;

know,*® the main condition for the existence of impurity lev- O—experimental data of Ref. 7; solid curve—calculation according to the
els is that the average sizkof the carrier—impurity bound formulas of Ref. 10 with the use of the parameter values given in @gs.
state be small compared to the distance between impuritie@v (10); dashed gurve—calculation done in Ref. 10 using the spectrum
i.e., the conditiord vilrf,;< 1. The dimension is of the order ~Prameters given in Ref. 16.
of the “Bohr” radius d~a} = x#?/e’m*, where « is the
dielectric constant of the crystal amif' is the effective mass
of a charge carrier. For a heavily doped semiconductopressions for the magnetic susceptibility in low fields were
dvﬁ{%z 1, and carrier—impurity bound states do not arise. Inobtained previously® In the present paper, however, the cal-
this case we have culations using these expressions were done with the new

0 =0 v=wp 22) valu.es of the para.mete(S), (9), (10). In comparing the the-

fmp- = 'mp oretical and experimental results we chose the constant back-

i.e., the semiconductor is transformed into a “poor” metal ground in the susceptibility so as to obtain coincidence with
with an intrinsic electron density;,,. If the semiconductor the corresponding values for pure bismuth. In the calculation
is in a magnetic field, then we must take into account the it is necessary to find the dependence of the chemical poten-
dependence ohl of the average sizd of a localized state. tial £ on x for the semimetallic alloys Bi,Sh, (x<0.07)
In a weak magnetic field we hawe~ag , as before. How- from the condition that there be equal numbers of electrons
ever, when the magnetic length=(%c/eH)*? becomes and holes at the andT points, respectively. In the region of
smaller tharaj , the size of the localized state in the direc- semiconducting alloysx(t>0.07) the chemical potential is
tions perpendicular tél is determined by the value af and  assumed to lie in the gap of the spectrum between the va-
the average size~(\2%a})'” falls off with increasingH.  lence band and conduction band, and the impurity concen-
Therefore, in  sufficiently  high  fields H=H tration v, is taken equal to zero. From the results presented
~(hcle) vimpag there occurs a magnetic “freeze-out” of the in Fig. 2 it follows that the use of the parameter €3t (9),
electrons! and the heavily doped semiconductor is trans-(10) provides a better description of the experimental data
formed into a lightly doped one. for the semiconducting alloys than does the set from Ref. 16.
In addition, we have calculated the dependencey af a
weak fieldH on the level of the chemical potentiafor the
alloys Biy 9,5y og and B o7Shy o3. The results of the calcu-
lation with the new parameter values agreed with the results

In Refs. 3-7 significant changes jnwere observed in  of Ref. 10 to within the limits of experimental error.
bismuth—antimony alloys upon variations in the magnetic  Figure 3 shows the field dependence of the magnetiza-
field, temperature, antimony concentration, or chemical potion M of pure bismuth in magnetic fields so high that the
tential, the level of the last being regulated by the introduc-only the lowest Landau level in the conduction band remains
tion of doping impurities in the alloy. Our theoretical analy- occupied, and there are no de Haas—van Alphen oscillations.
sis of the dependence of the susceptibilitytbnT, x, and{  In accordance with Eq$13) and(16), this curve is nonlinear
will be done on the basis of the formulas obtained in Sec. 2in H. Here for a detailed comparison of the results of the
using the values i63), (9), and(10) for the parameters of the calculation with the experimental data of Ref. 6, we took into
spectrum. consideration that>A in bismuth, and we added to Eq.

Let us first consider the dependenceydH—0) on the  (13) the contribution due to the conduction electrons. The
antimony concentratiox in Bi;_,Sh, alloys (Fig. 2). Ex-  expression for this contribution was obtained directly from

Qimp: — Tvimp In

3. COMPARISON OF THE RESULTS OF THE CALCULATION
OF x WITH EXPERIMENTAL DATA



44 Low Temp. Phys. 26 (1), January 2000 G. P. Mikitik and Yu. V. Sharla

O] v}

- |
T 2

o -

x 1F =

[
=
I: -4 1 " M N N 1
b 0 25 50
< H, kOe

"o

FIG. 5. Magnetic susceptibility as a function of magnetic field for fields

0 260 + 4(;0 greater than 3 kOe, for the same alloy as in Fig. 4. The calculation was done
using formula(13) for two orientations of the magnetic field—along the
H, kOe binary axis and along the bisector direction. The results of the calculation

o . . o for the two cases practically coincidsolid curve; A ,O—the experimental
FIG. 3. MagnetizatiotM of pure bismuth as a function of the magnetic field y5t5 of Ref. 7 for the first and second of the indicated directions! of

H, directed along the binary axis, far=20K andH=20kOe; A—the  reqpectively. The values of vy, T, andTy, are the same as in Fig. 4.
experimental data of Ref. 6; solid curve—the calculation of the present

paper.

weak (H<500e) that the characteristic distance between

Eq. (12. We see that the agreement of the theoretical anélectronic energy levels at thepoints is much less than the
experimental results is quite good, and it is achieved withoutemperature T=4.2K), the aforementioned curve is ap-
the use of any adjustable parameters. proximated by the expressiop(H)= xo+ x1H2 and the

The results of the calculations of the field dependence ofalues ofy, and y; agree with those calculated using the
the magnetic susceptibility of the semiconducting alloysformulas in Refs. 10 and 17. As the magnetic field is in-
Big.oShy 0g With a concentration of donor impurities;,,  creased a transition to the case of light doping occurs on
=10"cm 2 are presented in Fig. 4. The tweg(H) curves  account of the magnetic freeze-out of the electrons, and, ac-
shown differ in that they correspond to the dependencé of cordingly, in the regiorH>H,, the agreement with experi-
on H obtained for heavily and lightly doped semiconductors.ment is better for the other curve. As the magnetic field is
For the given value of,,, an estimate of the fielti, gives  increased further, the chemical potential of the electrons
Hg~1kOe. In accordance with the arguments set forth incomes to lie in the gap of the spectrum, and the field depen-
Sec. 2, at fields much smaller théh, the theoretical curve dence ofZ(H) ceases to influence the magnetic susceptibil-
corresponding to the case of heavy doping gives a good dety; then the theoretical curves in Fig. 4 practically coincide.
scription of the experiment. For magnetic fields that are stere one can fingy(H) directly using formula(13). The
results of this calculation are shown in Fig. 5. We see that, in
complete agreement with experiment, the magnetic suscepti-
bility is practically independent of the direction of the mag-
netic fieldH in the basal plane.

Figure 6 shows the results of calculationsafH) for
the alloy B g,Shy gg With admixtures of the dopant telluride
at concentrations,,~3x 10'® but 4x 10"’ cm™3. For the
first of these concentration$.,~ 30 kOe, and in fields lower
than this, the difference iy for the heavily and lightly
doped semiconductor practically vanishes. For the second of
these concentrationsl,~400kOe, and the alloy remains
heavily doped throughout the magnetic field region consid-
ered. Thus for an analysis of thgH) curves it suffices to
use the formulas corresponding to a heavily doped semicon-
ductor. The introduction of the donor impurity Te raises the
level of  significantly, and the first few de Haas—van Alphen
oscillations appear; these, however, cannot be described by
the quasiclassical formulas. We see that, although the mag-
netic susceptibility is a nonmonotonic function bff, the
FIG. 4. Magnetic susceptibility as a function of the magnetic field for ~ theoretical curves rather accurately describe both the posi-
the semiconducting alloy Bb,Sh, o5 With a concentration of donor impuri-  tions of the extrema of and the overall trend of the function
tTieS:i;T(: 1T015c3m5*1 The T‘ag”e‘ic fie_lgl_is direCte$ a'fl’”g thihbi”ary \;Xis? x(H). We note one final circumstance. In constructing the
and2.coryreston(-1 to ‘tfi(els(:;szss Lc;?(;)ee’::\llillyltgjlo%aﬁrqlfr(]éz\)/]oaunmdeli.ghtI;e/ gg[raeds theoretical curves in FI_gS. 4-6 the _Dlngle temperatt]?g_s
[Eq. (21)] semiconductors, respectivelys—the experimental datdor an ~ Were chosen so as to give the best fit of these curves with the
alloy Bi;_,Sh, with x=0.076+0.005. experimental data. In agreement with the existing ideas about

L 1 i A 1

0 1 2 3
H, kOe
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FIG. 6. Magnetic susceptibility as a function of magnetic fieldl for a
field directed along the bisector direction, for the alloy 88k, o5 with two
different concentrations of the donor impurity telluriumg;,,=3
x 10" cm™2 (curve 1) and v;,,=4X 10" cm~3 (curve 2). The calculation
was done using formul@2); T=4.2K, Tp=7 K and 11 K for curved and " 1

i 1 " i
2, respectively; O,A—the experimental data of Ref. 7 for 0 100 200 300
Bi;,_«ShTey 000001 @nd Bi_SbTey o001, respectively, wherex=0.076 T,K
+0.005.

FIG. 8. Temperature dependenceyofn constant magnetic fields applied
along the bisector direction, with a value of 52 kOe for the alloy B8k og

. . . . (8 and a value of 300 Oe for the alloy fi,Sh, og with a concentration of
the scattering of charge carriers in heavily dOpedthe the donor impurity telluriuny,,=3x 10 cm™ (b); curves1 are for

semiconductors? the values obtained foFy, are of the order temperature-independent spectrum parameters; ciha® for spectrum

of order of the characteristic Bohr energiegg parameters with temperature dependences described by for(@3)asnd

=m*e*/24%k? and depend approximately logarithmically on (24; O—experimental data of Ref. 7 for Bi,Sh (8 and

Vimp- Bi;_,Sb Tey ggogo1(b) with x=0.076+0.005.

The temperature dependence of the magnetic susceptibil-

ity of bismuth—antimony alloys is shown in Fig. 7 and 8. The

nonmonotonic behavior of(T) (Fig. 8D is easily explained Big 925y 0gat H<500 Oe the characteristic distance between

on the basis of qualitative arguments. For the alloyelectron energy levels in the magnetic fididy is less than
or of the order of 10 K, and thg(T) curves in Fig. 7 and 8b
actually correspond to the low-field case, whéa,<T.

0 Here, as follows from the results of Ref. 1§/ falls off

monotonically with increasing temperature’ifies in the gap

of the spectrum or it —|A|=<T. It is just such a situation

4t that is observed in the case withy,,=10cm™2 (Fig. 7),
2 since/—|A|<20K in that case. For the alloy with,,=3
I 3 X 10" cm™2 (Fig. 8b one has{—|A|~120K atT=0.
As the temperature is raised, the chemical potential of

1 the degenerate electron gas decreasé$0)—{(T)
~T?/(£(0)—|A|), approaching the bottom of the conduc-
tion band. As long ag(T)—|A|>T, the behavior ofy can
be explained by using the results of Ref. 18 for the function
x(£, T=0). According to those result$y| increases with
decreasing. Finally, whenT becomes greater thaf(T)
—|A| (i.e., forT=70K), | x|, as we have said, begins to fall
L . L . L off with increasingT. This explains the appearance of an
0 100 200 300 extremum ofy(T) in Fig. 8b. As to the data presented in Fig.
T. K 8a, they correspond tfe,~600 K. As long asl < ey one
FIG. 7. Magnetic susceptibility as a function of temperatufein a con- ~ €an assum&=0 in all the formulas presented in this paper,
stant magnetic fieltH =500 Oe applied along the bisector direction, for the and y is practically independent of temperature. It is only for

same alloy as in Fig. 4. Curvkis for temperature-independent parameters T > Sey when a transition to the low-field case occurs. that
of the spectrum; curve is for parameters having temperature dependences ' . '
described by formulag€3) and(24); curve3 is obtained for parametery, one should expect to see an appremable decred&é ofith

qs, and A depending onT according to Eq(23) but for g,(T)=0q,(0); increasingr. If it is assumed that the parameters of the spec-
O—experimental data of Ref. 7 for Bi, Sh, with x=0.076+0.005. trum do not change as the temperature increases, then the
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calculated functiong(T) give a good quantitative descrip- dopant concentration;y,, and for vjy,~ 10%cm~2 a mag-

tion of all the experimental data only far<50 K. In Ref. 22 netic freeze-out of the electrons occurs. The temperature de-
the temperature dependences of some of the parameters géndence ofy appears to give evidence of an appreciable
the spectrum for pure bismuth were determined from maginfluence of the electron—phonon interaction on the magnetic

netooptical measurements: susceptibility of semiconducting alloys of bismuth @t
91(T)Gs(T)=04(0)qs(0)— 1.35 104 T— 3.8 >b50K. The existing experlmental'data can be des'crlbeq in
the framework of an extremely simple approach in which
X107 T?[a.ul, (23)  this interaction affects only the temperature dependence of

A(T)=A(0)+2.1x 10 2 T+ 2.5} 104 T2 [meV]. the parameters of the spectrum.
These parameters indeed vary hardly at gll for DE-mail: mikitik@ilt kharkov.ua
<50K. The results of a calculation of the magnetic suscep-
tibility with allowance for formulag23) are presented in Fig.
7. It is seen that taking the temperature dependef2®s ;
into account noticeably improves the agreement with the ex-'V- S. Edel'man, Usp. Fiz. Nauli23 257 (1977 [Sov. Phys. Usp20, 819
perime_ntal data. Moreover, from the functigiH) one can 2(81.957r-1l).].Akhmedov, R. Herrmann, K. N. Kashirin, A. Krapf, V. Kraak, Ya.
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