КВАЗИКЛАССИЧЕСКИЕ УРОВНИ ЭНЕРГИИ ЭЛЕКТРОНОВ В МЕТАЛЛАХ С ЛИНИЯМИ ВЫРОЖДЕНИЯ ЗОН

Г. П. Микитик*, Ю. В. Шарлай

Физико-технический институт низких температур им. Б. И. Веркина Национальной академии наук Украины 310164, Харьков, Украина

Поступила в редакцию 7 августа 1997 г., после переработки 27 февраля 1998 г.

Показано, что при расчете квазиклассических уровней энергии электронов в магнитном поле H необходимо учитывать, зацеплены или нет за линию вырождения зон соответствующие электронные траектории в пространстве волновых векторов \mathbf{k} . Результаты расчета в этих двух случаях отличаются друг от друга на величину $|e|h/2m^*c$, где e — заряд электрона, а m^* — его циклотронная масса. Подобный сдвиг уровней энергии имеет топологическую природу, и его существование не зависит ни от конкретного вида закона дисперсии электронов $\varepsilon(\mathbf{k})$ в окрестности траектории, ни от ее формы и размеров. Он связан с тем, что электрононая орбита зацеплена за линию особых точек блоховских волновых функций, какой является линия вырождения зон. Описанный эффект во многом аналогичен эффекту Ааронова-Бома, если линию вырождения зон рассматривать как бесконечно тонкий «соленоид». Упомянутый сдвиг уровней энергии должен проявляться при изучении осцилляционных явлений в металлах. Приведены примеры металлов, в которых условия для обнаружения такого сдвига, по-видимому, наиболее благоприятны.

1. ВВЕДЕНИЕ

Вырождение электронных энергетических зон вдоль линий зоны Бриллюэна — достаточно распространенное явление в кристаллах. Помимо закономерного вырождения на осях симметрии кристалла весьма часто имеет место и случайный контакт зон либо вдоль некоторых замкнутых линий в зоне Бриллюэна, либо на кривых, оканчивающихся на ее границах [1]. Возможность подобного случайного вырождения зон для кристаллов с центром инверсии (большинство металлов относятся к их числу, и только такие из них мы рассматриваем в этой работе) вытекает из следующего утверждения. Если на оси симметрии кристалла существует точка случайного контакта зон и межзонный матричный элемент оператора скорости отличен от нуля в этой точке, то через нее обязательно проходит и линия вырождения зон [1]. Отсюда же следует и утверждение о распространенности подобных линий, поскольку численные расчеты зонной структуры металлов часто обнаруживают точки случайного вырождения зон на осях симметрии зоны Бриллюэна (см., например, [2]). При этом, зная представления группы волнового вектора, по которым преобразуются волновые функции соответствующих зон, можно сразу установить, отличен от нуля межзонный матричный элемент оператора скорости или нет. Примерами кристаллов, в которых имеются линии случайного контакта зон,

^{*}E-mail: mikitik@ilt.kharkov.ua

могут служить алюминий, бериллий, магний, цинк, кадмий и ряд других. Строго говоря, случайное вырождение зон существует только в пренебрежении спин-орбитальным взаимодействием, а его учет приводит к снятию вырождения. Однако если это взаимодействие слабое, то по-прежнему будет происходить сильное сближение зон в окрестности той линии, на которой имел место их контакт без учета взаимодействия. Таким образом, понятие линии вырождения зон вполне физически оправдано и при наличии спин-орбитального взаимодействия, если только вызванное им характерное расщепление Δ энергий вырожденных электронных состояний значительно меньше E_0 — типичного зазора между зонами в кристалле ($E_0 \sim 1$ –10 эВ).

Квазиклассическое квантование энергии электрона в металле при наличии внешнего магнитного поля H рассматривалось в целом ряде работ [3–12]. Квазиклассическая электронная траектория в пространстве волновых векторов k представляет собой, как известно, линию пересечения изоэнергетической поверхности $\varepsilon = {\rm const}\ {\rm c}$ плоскостью, перпендикулярной магнитному полю, направление которого здесь и ниже выбираем за ось z. Для замкнутых электронных орбит без самопересечения правило квантования имеет вид

$$S(\varepsilon, k_z) = 2\pi \frac{|e|H}{\hbar c} \left(n + \gamma \pm \frac{gm^*}{4m} \right), \tag{1}$$

где S — площадь сечения изоэнергетической поверхности плоскостью k_z = const; n — большое целое положительное число; γ — постоянная $(0 \le \gamma < 1)$; g — электронный g-фактор, который в пренебрежении спин-орбитальным взаимодействием (и фермижидкостными эффектами) равен двум; e и m — заряд и масса электрона, а m^* — его циклотронная масса. В том случае, когда при анализе того или иного физического эффекта допустимо пренебречь не только спин-орбитальным взаимодействием, но и спином электрона, последний член в правой части (1) опускают, т. е. полагают g = 0 (по определению g-фактор характеризует энергетическое расшепление состояний частицы в магнитном поле, связанное с ее спином). Если квазиклассическая траектория в k-пространстве проходит в достаточном удалении от особых точек функции $\varepsilon(k)$, описывающей закон дисперсии электрона в кристалле, и нигде вблизи траектории не нарушается условие квазиклассичности (в частности, не обращаются в нуль x- и y-проекции скорости электрона), то постоянная γ имеет универсальное значение [5] (см. также [13]):

$$\gamma = 1/2. \tag{2}$$

Именно оно обычно используется в формулах, которыми описываются осцилляционные эффекты в металлах (эффекты де Гааза-ван Альфена, Шубникова-де Гааза и др.) [14]. Указанным выше условиям на квазиклассическую траекторию, при которых справедливо (2), можно придать наглядный геометрический вид. Помимо естественного требования к величине площади сечения,

$$\frac{|e|H}{hcS} \approx \frac{1}{n} \ll 1,\tag{3a}$$

они сводятся к тому, чтобы исключить из рассмотрения квазиклассические орбиты, которые слишком близко подходят к каким-либо иным траекториям в k-пространстве, принадлежащим той же или другим зонам. Условие не слишком сильного сближения

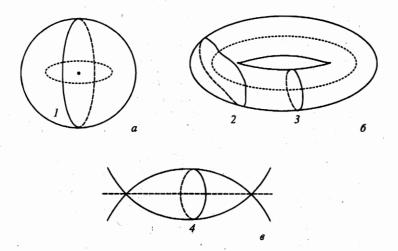


Рис. 1. Некоторые случаи взаимного расположения квазиклассических траекторий (кривые 1–4) и линий вырождения зон (штрихи) в случаях односвязной (a), неодносвязной (b) и самопересскающейся (a) поверхностей Ферми. Траектории 3 и 4 зацеплены за линию вырождения зон, а траектории b и b — нет

траекторий означает, что вероятность магнитного пробоя (как внутризонного, так и межзонного) должна быть мала, т. е.

$$\frac{|e|H}{\hbar c\delta S} \ll 1,\tag{36}$$

где $\delta S \sim (\delta k)^2$, δk — минимальное расстояние, на которое сближаются траектории (или разные участки одной орбиты) в зоне Бриллюэна, а δS — характерная площадь «перешейка» их разделяющего. В той области энергий или k_z , где нарушается (36), система квазиклассических орбит в пространстве волновых векторов близка к тому, чтобы изменить свою топологию, а величина γ существенно зависит от ε и k_z [6,7,10]. Мы не будем рассматривать такие случаи и в дальнейшем всегда предполагаем выполненными условия (3).

В настоящей работе показано, что в том простейшем случае, когда полностью пренебрегается спином электрона (g=0), кроме (2) на самом деле может иметь место и

$$\gamma = 0, \tag{4}$$

если электронная траектория охватывает либо линию случайного контакта двух зон, либо ось симметрии третьего порядка, на которой осуществляется закономерное вырождение рассматриваемой зоны и некоторой другой. Этот результат не зависит ни от конкретного вида закона дисперсии электрона $\varepsilon(\mathbf{k})$ в окрестности его квазиклассической траектории, ни от формы и степени удаленности этой траектории от линии контакта зон и имеет топологическую природу. Он связан с тем, что эта траектория зацеплена [15] (рис. 1) за линию особых точек блоховских электронных функций (и функции $\varepsilon(\mathbf{k})$), какой является линия вырождения зон. Если же подобного зацепления нет, то справедливо равенство (2). При «включении» слабого спин-орбитального взаимодействия и учете спина электрона для тех траекторий, для которых имело место (4), вновь восстанавливается значение (2), но при этом g-фактор оказывается существенно отличным

от двойки:

$$g \approx 2 \pm 2 \frac{m}{m^*},\tag{5}$$

где знак в правой части определяется электронными состояниями на линии контакта зон. Отметим, подстановка в (1) второго чисто орбитального слагаемого в этом выражении приводит к энергетическому спектру, совпадающему с тем, что получается в простейшем бесспиновом случае (при этом необходимо иметь в виду, что значения $\gamma=0$ и $\gamma=1$ эквивалентны). Таким образом, хотя при учете спин-орбитального взаимодействия вырождение зон на линии, строго говоря, снимается, результат (4) устойчив по отношению к включению этого взаимодействия, если только оно не слишком сильное, $\Delta \ll E_0$ (заметим, что критерий слабости взаимодействия совпадает с условием, при котором само понятие линии вырождения зон имеет смысл).

Во втором разделе настоящей работы приведена сводка формул, позволяющих определять γ и g-фактор для любой замкнутой траектории без самопересечений, удовлетворяющей условиям (3). Эти формулы используются в следующих разделах для анализа случая, когда в металле имеется линия вырождения зон. При этом для выяснения существа вопроса в третьем разделе работы рассматривается простейший случай (спин-орбитальным взаимодействием и спином электрона пренебрегается). Учет спина и спин-орбитального взаимодействия выполнен в четвертом разделе. В Заключении обсуждаются возможные экспериментальные проявления полученных результатов.

2. ПАРАМЕТР γ И g-ФАКТОР

Правило квантования энергии (1) и выражения для γ и g-фактора могут быть получены по следующей схеме. С использованием соответствующего гамильтониана находится волновая функция электрона во втором порядке по малому параметру (3a). Затем накладывается условие ее однозначности (при обходе по квазиклассической траектории изменение фазы волновой функции должно сводиться к $2\pi n$), которое и дает все необходимые результаты. Выражения, позволяющие рассчитывать γ и g-фактор для замкнутых орбит как без учета, так и с учетом спин-орбитального взаимодействия, были получены в $[9]^{1)}$ на основе эффективного однозонного гамильтониана блоховского электрона в магнитном поле [16,17]. Для нас важно, что при выполнении условий (3) этот гамильтониан может быть использован в случае вырождения зон [17]. Приведем некоторые результаты работ Рос [9] и Блаунта [17], которые потребуются при дальнейшем анализе.

Эффективный однозонный гамильтониан блоховского электрона в магнитном поле представим в виде ряда по степеням H [17]. Для определения интересующих нас γ и g-фактора достаточно удержать в этом ряде два первых члена. Тогда в K-представлении этот гамильтониан имеет вид

$$\hat{H} = \varepsilon_0^{(s)} \left(\hat{\mathbf{k}} \right) + \frac{e}{c} H m_0^{(s)} \left(\hat{\mathbf{k}} \right), \tag{6}$$

¹⁾ В [9] схема вывода соответствующих формул несколько отличается от описанной, но результаты, конечно, совпадают в обоих случаях.

где $\varepsilon_0(\mathbf{k})$ — закон дисперсии электрона в рассматриваемой зоне, которую мы здесь и далее отмечаем индексом «нуль». Символ «s» у функций $\varepsilon_0(\hat{\mathbf{k}})$ и $m_0(\hat{\mathbf{k}})$ означает, что эти функции должны быть полностью симметризованы по компонентам оператора $\hat{\mathbf{k}} = \mathbf{K} - (e/\hbar c)\hat{\mathbf{A}}(i\partial/\partial\mathbf{K})$, где $\mathbf{A}(\mathbf{r})$ — векторный потенциал магнитного поля. Функцию $m_0(\mathbf{k})$ можно представить в виде

$$m_0(\mathbf{k}) = (\mathbf{i}_z[\mathbf{v}\Omega]) + \frac{\hbar}{2i} \sum_{l \neq 0} \frac{(v_x)_{0l}(v_y)_{l0} - (v_y)_{0l}(v_x)_{l0}}{\varepsilon_l(\mathbf{k}) - \varepsilon_0(\mathbf{k})},\tag{7}$$

где \mathbf{i}_z — орт вдоль направления магнитного поля, $\mathbf{v} = (1/\hbar)(\partial \varepsilon_0/\partial \mathbf{k})$, $(\mathbf{v})_{0l}$ — межзонный матричный элемент оператора скорости, вычисленный в точке \mathbf{k} , а $\mathbf{\Omega}$ — периодическая по \mathbf{k} часть оператора координаты:

$$\mathbf{\Omega}(\mathbf{k}) = i \int_{\mathbf{k}} u_{\mathbf{k}0}^{*}(\mathbf{r}) \frac{\partial}{\partial \mathbf{k}} u_{\mathbf{k}0}(\mathbf{r}) d\mathbf{r}.$$
 (8)

Здесь $u_{\mathbf{k}l}(\mathbf{r})$ — периодический множитель, входящий в блоховскую волновую функцию электрона l-й зоны, а интегрирование проводится по ячейке v кристаллической решетки. Приведенные выше формулы непосредственно применимы в случае, когда пренебрегается спином электрона. При его учете все электронные состояния в кристалле с центром инверсии двукратно вырождены, и зонный индекс теперь следует рассматривать как совокупность собственно зонного l и спинорного ρ (ρ = 1, 2) индексов. Соответственно периодический блоховский множитель $u_{\mathbf{k}l}(\mathbf{r})$ переходит в периодический спинор $u_{\mathbf{k}l\rho}(\mathbf{r})$, а все входящие в (7), (8) величины являются двумерными матрицами по индексу ρ . Кроме того, в (7) должен быть добавлен чисто спиновый вклад в гамильтониан:

$$\frac{\hbar}{m} s_{\rho\rho'} = -\frac{\hbar}{2m} \int u_{\mathbf{k}0\rho}^*(\mathbf{r}) \sigma_3 u_{\mathbf{k}0\rho'}(\mathbf{r}) d\mathbf{r}, \tag{9}$$

где σ_3 — матрица Паули.

Как уже отмечалось, g = 0 в том простейшем случае, когда полностью пренебрегается спином электрона. В этом случае при выполнении условий (3) квазиклассическое квантование энергии приводит к следующему результату [9]:

$$\gamma - \frac{1}{2} = -\frac{1}{2\pi} \oint_{\Gamma} \frac{m_0(\mathbf{k})}{v_{\perp}(\mathbf{k})} d\kappa, \tag{10}$$

где интеграл берется по замкнутой квазиклассической траектории Γ в k-пространстве, т. е. по линии пересечения поверхности $\varepsilon_0 = \mathrm{const}$ с плоскостью $k_z = \mathrm{const}$ ($d\kappa$ — элемент дуги этой траектории), а v_\perp — абсолютная величина проекции вектора \mathbf{v} на плоскость (k_x, k_y). Обычно считается, что в кристалле с центром инверсии $m_0 = 0$, и поэтому $\gamma = 1/2$. Однако в следующем разделе работы будет показано, что при наличии в кристалле линии вырождения зон второй член в (6), вообще говоря, не равен нулю.

В случае, когда мы учитываем спин электрона, m_0 есть двумерная матрица. Эту матрицу удобно представить в виде линейной комбинации матриц Паули σ_i [18]:

$$(m_0)_{\rho\rho'} = -\frac{\hbar}{4m} \sum_{i=1}^3 G_{zi}\sigma_i,$$
 (11)

где зависящие, вообще говоря, от ${\bf k}$ коэффициенты G_{zi} определяются выражениями

$$\frac{\hbar}{4m} G_{zx} = -\operatorname{Re}(m_0)_{12}, \quad \frac{\hbar}{4m} G_{zy} = \operatorname{Im}(m_0)_{12}, \quad \frac{\hbar}{4m} G_{zz} = -(m_0)_{11}.$$

Отсутствие в разложении (11) единичной матрицы следует из поведения матрицы m_0 при преобразовании $U=(i\sigma_2)KI$ [18], где I, K, $i\sigma_2K$ — соответственно операторы пространственной инверсии, комплексного сопряжения и обращения времени. При этом также учитывается, что $u_{\mathbf{k}|2}=Uu_{\mathbf{k}|1}$. Равенство нулю следа матрицы (11) приводит к тому, что $\gamma=1/2$, и m_0 дает вклад только в g-фактор. Последний может быть рассчитан с помощью выражения (см. формулу (64) в [9])

$$g = \frac{\hbar}{2\pi m^*} \oint_{\Gamma} \frac{d\kappa}{v_{\perp}} \left[G_{zz} + G_{zy} \operatorname{Im} \tau + G_{zx} \operatorname{Re} \tau \right], \tag{12}$$

где циклотронная масса m^* определяется хорошо известной формулой:

$$m^* = \frac{\hbar^2}{2\pi} \frac{\partial S(\varepsilon, k_z)}{\partial \varepsilon} = \frac{\hbar}{2\pi} \oint_{\Gamma} \frac{d\kappa}{v_{\perp}}.$$

Комплексная функция $\tau(\kappa)$ определена на квазиклассической траектории Г. Она задает направление единичного вектора е в спинорном пространстве,

$$\mathbf{e} = \frac{1}{\sqrt{1+|\tau|^2}} \begin{pmatrix} 1 \\ \tau \end{pmatrix},$$

который входит множителем в волновую функцию электрона ($\psi_{sc} \propto \exp(-i\hbar cS/eH)$ е). Функция $\tau(\kappa)$ находится из уравнения (оно может быть получено из уравнения (52) работы [9])

$$i\frac{4m}{\hbar}v_{\perp}\frac{d\tau}{d\kappa} + \left[G_{-}\tau^{2} + 2G_{zz}\tau - G_{+}\right] = 0,$$
 (13)

где $G_{\pm} \equiv G_{zx} \pm i G_{zy}$. Граничным условием к (13) служит равенство

$$\tau(0) = \tau(\kappa_0),\tag{14}$$

в котором κ_0 — длина квазиклассической траектории в **k**-пространстве. Можно показать, хотя мы на этом не будем здесь останавливаться, что комплексное уравнение Риккатти (13) с условием (14) имеет решение при любом κ_0 . Однако при произвольных $G_{zi}(\mathbf{k})$ невозможно найти это решение в квадратурах и, соответственно, нельзя получить явное выражение для g-фактора. В том частном случае, когда все G_{zi} можно считать постоянными [18], решениями уравнения (13) с граничным условием (14) являются

$$\tau = -\frac{G_{zz} \pm \sqrt{G_{zz}^2 + G_+ G_-}}{G_-}.$$

Подстановка этого выражения в (12) дает

$$g^2 = G_{zz}^2 + G_+ G_-,$$

что совпадает с результатом, полученным в [18].

3. ПРОСТЕЙШИЙ СЛУЧАЙ

В этом разделе, используя приведенные выше результаты, определим допустимые значения γ в том простейшем случае, когда полностью пренебрегается как спин-орбитальным взаимодействием, так и спином электрона. Казалось бы, уже из достаточно общих соображений следует, что в этом случае в кристаллах с центром инверсии всегда можно считать, что $m_0=0$. Действительно, в отсутствие спина введенный в предыдущем разделе оператор U есть просто произведение операторов пространственной инверсии и комплексного сопряжения [19]. Этот U переводит электронное состояние с волновым вектором $\mathbf k$ в себя $\mathbf u$, следовательно, подходящим выбором фаз волновых функций можно добиться, чтобы было выполнено условие

$$Uu_{kl}(\mathbf{r}) = u_{kl}(\mathbf{r}). \tag{15}$$

Известно (см., например, [19] или [20]), что при таком выборе фаз все матричные элементы оператора скорости — вещественные величины, а $\Omega = 0$. Тогда из (7) сразу получаем $m_0 = 0$. Проанализируем теперь характер зависимости m_0 от выбора фаз блоховских множителей. Если изменить эти фазы так, что

$$u_{\mathbf{k}l} \to u'_{\mathbf{k}l} = u_{\mathbf{k}l} \exp\left(i\varphi_l(\mathbf{k})\right),\tag{16}$$

где $\varphi_l(\mathbf{k})$ — произвольные гладкие функции, заданные во всей зоне Бриллюэна, то

$$\mathbf{v}_{ll'} \rightarrow \mathbf{v}'_{ll'} = \mathbf{v}_{ll'} \exp \left\{ i \left[\varphi_{l'}(\mathbf{k}) - \varphi_{l}(\mathbf{k}) \right] \right\}$$

и входящая в (7) сумма по l останется равной нулю. Что касается первого слагаемого в (7), представляющего собой полностью диагональный по номерам зон вклад в орбитальный момент электрона, то он не является величиной инвариантной к преобразованиям (16). Действительно, согласно (8) при таком преобразовании имеем

$$\mathbf{\Omega} \to \mathbf{\Omega}' = \mathbf{\Omega} - \frac{\partial \varphi_0}{\partial \mathbf{k}}.\tag{17}$$

Следовательно, новое значение Ω , а вместе с ним и соответствующее значение m_0 будут, вообще говоря, отличны от нуля. Однако подобная неинвариантность m_0 не сказывается на физически измеримых величинах. Чтобы показать это в отношении параметра γ , перепишем формулу (10) с учетом того, что сумма по l в (7) равна нулю. В итоге находим

$$\gamma - \frac{1}{2} = -\frac{1}{2\pi} \oint_{\Gamma} \mathbf{\Omega} \, d\mathbf{k},\tag{18}$$

где $d\mathbf{k} \equiv d\kappa [\mathbf{i}_z \mathbf{v}]/v_\perp$, а интегрирование идет по квазиклассической орбите Γ (поскольку скорости электрона в обычном и **k**-пространствах взаимно ортогональны, $d\mathbf{k}$ направлен вдоль элемента орбиты в последнем из них). Из (17), (18) немедленно следует инвариантность γ при преобразованиях (16).

На самом деле, приведенные выше соображения о возможности обращения m_0 в нуль подходящим выбором фаз волновых функций полностью применимы только для

невырожденной зоны. Проанализируем теперь случай, когда в кристалле имеется линия контакта рассматриваемой зоны l=0 с некоторой другой зоной $l=\lambda$. Оказывается [20], в этом случае невозможно выбрать фазы блоховских множителей так, чтобы, с одной стороны, имело место (15), а с другой — эти множители были непрерывными функциями ${\bf k}$ в зоне Бриллюэна. Более конкретно утверждение можно сформулировать следующим образом. Если выполнено (15), то в ${\bf k}$ -пространстве существует поверхность с краем, на которой $u_{{\bf k}\lambda}$ и $u_{{\bf k}0}$ испытывают разрыв, а величина ${\bf \Omega}$ сингулярна, причем край упомянутой поверхности совпадает с линией вырождения зон. Чтобы показать это, возьмем некоторую точку- ${\bf O}$ на линии вырождения зон за начало отсчета ${\bf k}$ и запишем гамильтониан электрона в отсутствие магнитного поля в представлении Латтинжера-Кона [21], т.е. используем в качестве базисных функции

$$e^{i\mathbf{k}\mathbf{r}}u_{0l}(\mathbf{r}),$$

которые отличаются от блоховских функций только тем, что множители $u_{\mathbf{k}l}$ взяты в точке $\mathbf{k}=0$ (в самой этой точке оба набора функций совпадают). В этом представлении гамильтониан не диагонален по l. Чтобы не усложнять рассуждения техническими деталями, учтем в этом гамильтониане пока только две зоны: l=0 и $l=\lambda$. Тогда он запишется в виде

$$\hat{H} = \begin{pmatrix} E_{00} & E_{0\lambda} \\ E_{0\lambda}^* & E_{\lambda\lambda} \end{pmatrix},\tag{19}$$

где

$$E_{ij} = \hbar \mathbf{k} \mathbf{v}_{ij}(0) + \delta_{ij} \hbar^2 \mathbf{k}^2 / 2m, \quad i, j = 0, \lambda,$$

 δ_{ij} — символ Кронекера; $\mathbf{v}_{ij}(0)$ — матричные элементы оператора скорости, вычисленные при $\mathbf{k}=0$. Энергию отсчитываем от энергии вырождения зон в точке $\mathbf{k}=0$. Матрица перехода от представления Латтинжера–Кона к представлению Блоха имеет вид

$$S_{ij}(\mathbf{k}) = \langle u_{0i} | u_{\mathbf{k}j} \rangle = \int_{\mathbf{r}} u_{0i}^* u_{\mathbf{k}j}(\mathbf{r}) d\mathbf{r}.$$
 (20)

Эта унитарная матрица диагонализует гамильтониан (19), собственные значения которого определяют законы дисперсии электронов в блоховском представлении для зон 0 и λ :

$$\varepsilon_{0,\lambda} = \frac{1}{2} (E_{00} + E_{\lambda\lambda}) \pm \sqrt{\frac{1}{4} (E_{00} - E_{\lambda\lambda})^2 + |E_{0\lambda}|^2}.$$
 (21)

Если выполнены условия (15), то как E_{ij} , так и все $S_{ij}(\mathbf{k})$ вещественны, и, следовательно, матрица S ортогональна. Для гамильтониана (19) ортогональная матрица S находится непосредственным расчетом (о степени произвола в выборе S смотри ниже) и может быть представлена в следующей форме:

$$S = \begin{pmatrix} \cos(\phi/2) & -\sin(\phi/2) \\ \sin(\phi/2) & \cos(\phi/2) \end{pmatrix}, \tag{22}$$

где

$$\sin \phi = E_{0\lambda}/\delta\varepsilon,$$

$$\cos \phi = (E_{00} - E_{\lambda\lambda})/2\delta\varepsilon,$$

$$\delta\varepsilon = \sqrt{\frac{1}{4}(E_{00} - E_{\lambda\lambda})^2 + E_{0\lambda}^2}$$
(23)

 $u - \pi \le \phi \le \pi$. С ее помощью нетрудно определить зависимость блоховских множителей u_{kl} от k, поскольку, согласно (20),

$$u_{ki} = (S')_{i0}u_{00} + (S')_{i\lambda}u_{0\lambda}, \tag{24}$$

где S' — матрица, транспонированная по отношению к S. Теперь сформулированное утверждение легко обосновывается. Проведем через точку О плоскость, пересекающую линию контакта зон. В этой плоскости имеются две прямые, проходящие через точку О, на одной из которых обращается в нуль $E_{0\lambda}$, а на другой — разность $E_{00}-E_{\lambda\lambda}$ (рис. 2). Рассмотрим в плоскости замкнутый контур AA', охватывающий точку O, и проследим за изменениями блоховских множителей при обходе по нему. Из (23) следует, что при таком обходе ϕ изменяется от $-\pi$ до π . При этом все элементы матрицы S, а значит, и u_{kl} — гладкие функции k. Однако в результате обхода, согласно (22), (24), получаем, что $u_{\mathbf{k}i}|_{A'} = -u_{\mathbf{k}i}|_{A}$. Таким образом, на луче OA функции $u_{\mathbf{k}i}(\mathbf{k})$ испытывают разрыв. Несложно понять, что на самом деле имеется поверхность разрыва функций $u_{\mathbf{k}\lambda}$, а луч является пересечением этой поверхности с выбранной нами плоскостью. Отметим, что при вычислении матрицы S остается произвол, связанный с тем, что при любом ${f k}$ собственные векторы H определены с точностью до знака. Это отвечает возможности выполнить в некоторой области зоны Бриллюэна замену $u_{ki} \rightarrow -u_{ki}$, которая, очевидно, не нарушает условия (15). Подобным преобразованием можно деформировать поверхность разрыва (в формулах (22), (23) это будет означать задание нового интервала допустимых значений ϕ : $\phi_0 < \phi \le \phi_0 + 2\pi$, где ϕ_0 — некоторый угол). Однако сам факт существования разрывов функций $u_{\mathbf{k}i}$ при выполнении (15) не зависит от калибровки волновых функций (край поверхности разрыва всегда совпадает с линией вырождения зон). Всюду, где функции $u_{\mathbf{k}i}$ непрерывны, применимы соображения, приведенные в начале раздела, и $\Omega = 0$. На самой же поверхности разрыва величина Ω , как это следует из ее определения (8), сингулярна, и интеграл в (18) не равен нулю.

Строго говоря, с помощью двухзонного гамильтониана (19) можно достаточно хорошо описывать электронные состояния только в окрестности линии вырождения зон,

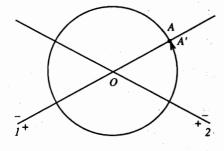


Рис. 2. Линии пересечения поверхностей $E_{0\lambda}=0$ и $E_{00}-E_{\lambda\lambda}=0$ с плоскостью, проходящей через точку O (соответственно прямые 1 и 2). Плюс и минус у линии 1 указывают знаки произведения $\mathbf{kv}_{0\lambda}(0)$ по обе стороны от нее. Около линии 2 указаны знаки $\mathbf{k}[\mathbf{v}_{00}(0)-\mathbf{v}_{\lambda\lambda}(0)]$

пока $|\varepsilon_0(\mathbf{k})-\varepsilon_\lambda(\mathbf{k})|\ll E_0$, где E_0 — введенный выше энергетический масштаб, характеризующий зазоры в электронном спектре кристалла. Чтобы распространить сформулированные выше утверждения на любые значения \mathbf{k} , необходимо в гамильтониане Латтинжера–Кона учесть и другие зоны. В этом случае матрицу S можно представить как произведение двух ортогональных матриц, S_1 и S_2 . Первая из них обращает в нуль все E_{0l} и $E_{\lambda l}$ с $l\neq 0, \lambda$, т.е. приводит гамильтониан к блочному виду. При этом интересующий нас блок гамильтониана будет по форме совпадать с (19), но теперь в нем величины E_{ij} ($i,j=0,\lambda$) имеют сложные зависимости от \mathbf{k} . Важно, однако, что как эти величины E_{ij} , так и элементы матрицы S_1 являются гладкими однозначными функциями волнового вектора (в том числе и на линии вырождения зон) [19], а $\mathbf{kv}_{ij}(0)$ есть просто первые члены разложений E_{ij} в ряды. Линия контакта зон представляет собой теперь линию пересечения двух поверхностей:

$$E_{0\lambda}(\mathbf{k}) = 0 \tag{25}$$

И

$$E_{00}(\mathbf{k}) - E_{\lambda\lambda}(\mathbf{k}) = 0. \tag{26}$$

Что касается матрицы S_2 , то она имеет блочный вид и та ее часть, которая представляет для нас интерес, может быть описана прежними формулами (22), (23). Сделанный выше вывод о существовании поверхности разрывов функций $u_{\mathbf{k}i}$ основывался на том, что при обходе линии вырождения зон угол ϕ изменялся на 2π . Это свойство остается верным и в общем случае, поскольку оно не связано с явным видом E_{ij} , а определяется только тем, что поверхности (25), (26) пересекаются друг с другом. Соответственно сохраняется справедливым и утверждение, что при наличии линий вырождения зон величины Ω можно обратить в нуль в окрестности любой точки, не принадлежащей этой линии, но нельзя это сделать сразу на всей замкнутой кривой, ее охватывающей. Отметим также, что в случае, когда вырождение зон отсутствует (поверхности (25) и (26) не пересекаются), при обходе по любому замкнутому контуру угол ϕ изменяется менее чем на 2π и в итоге возвращается к исходному значению. В такой ситуации можно добиться, чтобы при выполнении (15) $u_{\mathbf{k}i}$ были непрерывными функциями \mathbf{k} , а $\Omega = 0$ во всей зоне Бриллюэна.

Остановимся теперь на случае закономерного вырождения двух зон на оси симметрии зоны Бриллюэна. Если это ось четвертого или шестого порядка, то в разложениях левых частей выражений (25) и (26) по ${\bf k}$ отсутствуют линейные члены и один из рядов начинается с члена k_1k_2 , а другой — с $k_1^2-k_2^2$ (k_3 вдоль оси симметрии) [19]. Теперь каждое из равенств (25) или (26) определяет две поверхности, пересекающиеся по прямой $k_1=k_2=0$. Анализ, аналогичный изложенному выше, показывает, что при обходе по замкнутому контуру вокруг такой оси угол ϕ изменяется на 4π , и следовательно, $u_{\bf k}$, можно выбрать непрерывными функциями ${\bf k}$ при соблюдении (15). Отметим, что в этом специальном случае, как следует из (21), по мере удаления волнового вектора от оси энергии зон расщепляются квадратично по $k_\perp = \sqrt{k_1^2 + k_2^2}$. Если же закономерное вырождение зон происходит на оси симметрии третьего порядка, то, так же как и при их случайном контакте, разложение левых частей выражений (25) и (26) начинается с линейных по ${\bf k}$ членов [19] и справедливы приведенные выше результаты. Для этого случая характерно линейное по k_\perp расщепление зон.

Поскольку подходящим выбором фаз волновых функций можно сделать $\Omega = 0$ в

окрестности любой точки, не лежащей на линии вырождения зон, в этой точке

$$rot \Omega = 0 \tag{27}$$

(операция ротор выполняется в **k**-пространстве). При этом, ввиду инвариантности гот Ω по отношению к преобразованию (17), равенство (27) на самом деле справедливо при любом выборе фаз волновых функций. На линии же вырождения зон значение гот Ω не определено. Это следует из того, что такая линия представляет собой линию особых точек блоховского множителя $u_{\mathbf{k}0}$, если его рассматривать как функцию **k** [19] (см. формулы (21)–(24)). Что касается интеграла от Ω по замкнутому контуру, охватывающему линию контакта зон, то его значение не только инвариантно по отношению к преобразованию (16), но также, согласно (27), не зависит от формы и размеров контура. Чтобы определить это значение, откажемся от ограничения (15) и выберем фазы блоховских множителей исходя только из требования непрерывности $u_{\mathbf{k}l}$ в **k**-пространстве (последнее подразумевалось при выводе правила квантования энергии). Для этого в рассмотренном выше случае достаточно взять $\phi_l = q\phi/2$ для l = 0, λ и выполнить преобразование $u_{\mathbf{k}l}$, совпадающее по форме с (16). Здесь, вообще говоря, q — любое нечетное число, но учет спин-орбитального взаимодействия показывает (см. ниже), что следует ограничиться $q = \pm 1$. Тогда новая величина $\Omega = \pm (1/2)\partial \phi/\partial \mathbf{k}$, а

$$\oint \mathbf{\Omega} \, d\mathbf{k} = \pm \pi, \tag{28}$$

где интегрирование идет по любому контуру, охватывающему линию вырождения зон, а знак правой части определяется направлением интегрирования (и знаком q). В случае закономерного вырождения зон на оси симметрии четвертого или шестого порядка соответствующий интеграл равен нулю.

Полученных результатов достаточно, чтобы найти γ при любом взаимном расположении траекторий и линии контакта зон. Если квазиклассическая траектория зацеплена за линию случайного вырождения зон (или за ось симметрии третьего порядка, на которой имеет место закономерное вырождение), то, согласно изложенному выше, $\gamma - 1/2 = \pm 1/2$. Учитывая, что простое переобозначение в (1) n на n-1 переводит $\gamma = 1$ в $\gamma = 0$, приходим в рассматриваемом случае к результату (4). Если же зацепления нет, то, согласно известной теореме [15], обязательно существует поверхность с краем, совпадающим с траекторией, т.е. натянутая на траекторию пленка, которая не пересекается с линией контакта зон (на рис. 1 для траекторий I или I в качестве такой пленки может быть взята часть изображенной изоэнергетической поверхности). Преобразуя интеграл (18) с помощью формулы Стокса в интеграл по указанной поверхности и используя (27), получаем (2).

В заключение этого раздела отметим аналогию, которая существует между полученным здесь результатом и эффектом Ааронова-Бома [22]. Еще Блаунт [20] указал на сходство Ω с векторным потенциалом магнитного поля (см. формулы (16), (17)). Тогда равенства (27) и (28) позволяют рассматривать линию вырождения зон как бесконечно тонкий «соленоид», который несет определенный поток, создаваемый «полем» гот Ω . Как только такое соответствие понятий установлено, упомянутая аналогия легко прослеживается. Действительно, хотя электрон, двигаясь по квазиклассической орбите, охватывающей линию вырождения зон, не попадает в ту область, где сосредоточено «поле», он испытывает воздействие «векторного потенциала» Ω , который не может быть

сделан равным нулю на всей траектории. Квазиклассическое стационарное состояние электрона с энергией, определяемой (1), представляет собой стоячую волну, образованную интерференцией двух волн, бегущих в противоположных направлениях. Наличие линии вырождения зон, т. е. «соленоида», внутри траектории сдвигает интерференционную картину по сравнению со случаем, когда такой линии нет. Этот сдвиг проявляется как изменение γ . Отметим также, что этот сдвиг имеет такую величину, какую вызвало бы введение настоящего соленоида с потоком, равным кванту магнитного потока $\pi\hbar c/|e|$, внутрь орбиты электрона в реальном координатном пространстве.

4. УЧЕТ СПИНА И СПИН-ОРБИТАЛЬНОГО ВЗАИМОДЕЙСТВИЯ

Учтем сначала спин электрона, пренебрегая по-прежнему спин-орбитальным взаимодействием. Теперь все зоны двукратно вырождены по проекции спина на некоторую ось, и блоховские множители $u_{\mathbf{k}l\rho}$ представляют собой произведения рассмотренных выше функций для бесспиновой частицы $u_{\mathbf{k}l}$ на постоянные спиноры s_{ρ} , т. е. $u_{\mathbf{k}l1}=u_{\mathbf{k}l}s_1$, а $u_{\mathbf{k}l2}=Uu_{\mathbf{k}l1}=(KIu_{\mathbf{k}l})s_2$, где $s_2=i\sigma_2s_1$ (именно таким образом выбранная величина $u_{\mathbf{k}l2}$ получается в пределе бесконечно слабого спин-орбитального взаимодействия). Из ортогональности s_1 и s_2 следует, что орбитальные части G_{zx} и G_{zy} равны нулю. Если выбрать

$$s_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

то это же верно и для их спиновых частей, и в целом $G_{zx} = G_{zy} = 0$. Тогда формула (12) с учетом равенства нулю суммы в (7) может быть переписана следующим образом:

$$g = -\frac{2m}{\pi m^*} \oint_{\Gamma} \frac{d\kappa}{v_{\perp}} (m_0)_{11} = 2 - \frac{2m}{\pi m^*} \oint_{\Gamma} \Omega d\mathbf{k}.$$

Здесь первый член в правой части происходит от чисто спинового вклада (9) в m_0 , а интеграл во втором члене совпадает с интегралом в (18). Принимая во внимание (28), получаем формулу (5). При этом знак в (5) остается неопределенным, поскольку без учета спин-орбитального взаимодействия корреляция спина и орбитального движения электрона отсутствует.

Учет спин-орбитального взаимодействия приводит к тому, что блоховские множители $u_{\mathbf{k}l\rho}$ не сводятся теперь к произведениям $u_{\mathbf{k}l}s_{\rho}$, а представляют собой линейные комбинации функций $u_{\mathbf{k}l'}s_{\rho'}$ с разными l' и ρ' . Величина «подмешивания» этих функций к $u_{\mathbf{k}l}s_{\rho}$ оценивается как $\Delta/\delta\varepsilon(\mathbf{k})$, где $\delta\varepsilon(\mathbf{k})$ имеет порядок расстояния по энергии от рассматриваемой до ближайшей к ней другой зоны. Тот же порядок величины будут иметь и поправки к g-фактору, обусловленные спин-орбитальным взаимодействием. При $\Delta\ll E_0$ эти поправки малы ($\sim\Delta/E_0$) для квазиклассических орбит, удаленных от линии вырождения зон. Однако они могут стать довольно большими для траекторий, близких к указанной линии. Поэтому, чтобы оценить величину поправок к результату (5), проведем расчет g-фактора для наиболее «опасных» орбит. При этом используем двухзонную модель электронного энергетического спектра (19), в которой связанное со спин-орбитальным взаимодействием наиболее сильное перепутывание функций $u_{\mathbf{k}0}s_{\rho}$

и $u_{\mathbf{k}\lambda}s_{\rho'}$ учитываем точно, а «подмешиванием» волновых функций других зон пренебрегаем. Это обеспечит точность расчета g-фактора порядка Δ/E_0 , вполне достаточную для анализа больших поправок.

После учета спин-орбитального взаимодействия приходим к новому гамильтониану, заменяющему в представлении Латтинжера-Кона гамильтониан (19):

$$\hat{H} = \begin{pmatrix} \tilde{E}_{00} & \tilde{E}_{0\lambda} \\ \tilde{E}_{0\lambda}^{+} & \tilde{E}_{\lambda\lambda} \end{pmatrix}, \tag{29}$$

где $ilde{E}_{ii}$ — двумерные матрицы:

$$\tilde{E}_{00} = \left[\Delta + \frac{1}{2} (E_{00} + E_{\lambda\lambda}) \right] \hat{1},$$

$$\tilde{E}_{\lambda\lambda} = \left[-\Delta + \frac{1}{2} (E_{00} + E_{\lambda\lambda}) \right] \hat{1},$$

$$\tilde{E}_{0\lambda} = E_{0\lambda} \hat{1} + \frac{i}{2} (E_{00} - E_{\lambda\lambda}) (\beta\sigma).$$
(30)

Здесь 2Δ — величина спин-орбитального расшепления зон в точке $\mathbf{k}=0$ (для определенности предполагаем, что $\Delta>0$, т.е. рассматриваемая зона l=0 лежит выше по энергии, чем зона $l=\lambda$), $\hat{\mathbf{l}}$ — единичная матрица, σ_i — матрицы Паули, $\boldsymbol{\beta}$ — постоянный вещественный вектор единичной длины, характеризующий спин-орбитальное смешивание волновых функций рассматриваемых зон при $\mathbf{k}=0$. Будем считать, что квазиклассическая траектория зацеплена за линию вырождения зон (определенную без учета спин-орбитального взаимодействия), и за начало отсчета \mathbf{k} принимаем точку пересечения этой линии с плоскостью орбиты (плоскостью $k_z=0$). Считаем также, что при $\mathbf{k}=0$ выполнено условие (15), и элемент $E_{0\lambda}$ — вещественный. Кроме того, в формулах (30) пренебрегаем членом $\hbar^2\mathbf{k}^2/2m$, поскольку он становится существенным только в той области волновых векторов, в которой сама двухзонная модель уже плохо описывает энергетический спектр. Наконец, вводим следующие обозначения:

$$2\mathbf{a} = \hbar \left[\mathbf{v}_{00}(0) + \mathbf{v}_{\lambda\lambda}(0) \right],$$
$$2\mathbf{a}' = \hbar \left[\mathbf{v}_{00}(0) - \mathbf{v}_{\lambda\lambda}(0) \right],$$
$$\mathbf{t} = \hbar \mathbf{v}_{0\lambda}(0).$$

Тогда из (29), (30) следует, что закон дисперсии электрона $\varepsilon_0(\mathbf{k})$ может быть записан в виде

$$\varepsilon_0(\mathbf{k}) = \mathbf{a}\mathbf{k} + \sqrt{\Delta^2 + (\mathbf{a}'\mathbf{k})^2 + (\mathbf{t}\mathbf{k})^2},$$
(31)

а соответствующая формула для $\varepsilon_{\lambda}(\mathbf{k})$ отличается только знаком перед квадратным корнем. Укажем теперь путь вычисления величины m_0 , знание которой даст возможность рассчитывать g-фактор по формулам из разд. 2. Принимая во внимание определения Ω (8) и матрицы S (20), а также известную связь между межзонными матричными элементами оператора скорости и координаты [13], можно получить соотношение

$$\left(S^{+} \frac{\partial S}{\partial \mathbf{k}}\right)_{0,\rho,l,\rho'} = -i\delta_{0l} \mathbf{\Omega}_{\rho\rho'}(\mathbf{k}) - (1 - \delta_{0l})\hbar \frac{\mathbf{v}_{0,\rho,l,\rho'}(\mathbf{k})}{\varepsilon_{0}(\mathbf{k}) - \varepsilon_{l}(\mathbf{k})},$$
(32)

которое позволяет по известной матрице $S(\mathbf{k})$ находить $\mathbf{\Omega}_{\rho\rho'}$ и $\mathbf{v}_{0\rho,l\rho'}$ в любой точке зоны Бриллюэна, а по ним орбитальную часть $m_0(\mathbf{k})$. Что касается спинового вклада в m_0 (9), то он вычисляется на основе равенства

$$s_{\rho\rho'} = \left(S^+s(0)S\right)_{0\rho,0\rho'},$$

где s(0) — матрица, описывающая этот вклад в представлении Латтинжера–Кона, s(0) = $-(1/2)\langle u_{0l\rho}\sigma_3 u_{0l'\rho'}\rangle$. Эта матрица находится вместе с гамильтонианом (29) и в данном случае равна

$$s(0) = -\frac{1}{2} \begin{pmatrix} \beta_z(\beta\sigma) & [\sigma\beta]_z \\ [\sigma\beta]_z & \beta_z(\beta\sigma) \end{pmatrix}.$$

Таким образом, вычисление $m_0(\mathbf{k})$ сводится к определению преобразования S, которое диагонализует гамильтониан, записанный в представлении Латтинжера-Кона. Приведем теперь конечные результаты расчета g-фактора в двухзонной модели энергетического спектра (29), (30).

Пренебрегая спиновым вкладом в m_0 (9), проанализируем сначала орбитальную часть g-фактора. В этом случае можно найти такое S, что m_0 окажется диагональной матрицей по спинорному индексу и, соответственно, $G_{zx} = G_{zy} = 0$. Для G_{zz} получаем

$$G_{zz} = \frac{2m}{\hbar^2} \frac{(\mathbf{i}_z[\mathbf{a}'\mathbf{t}])(\varepsilon + \Delta)}{\delta \varepsilon (\delta \varepsilon + \Delta)},$$
(33)

где

$$\delta\varepsilon \equiv \sqrt{\Delta^2 + (\mathbf{a}'\mathbf{k})^2 + (\mathbf{t}\mathbf{k})^2}.$$

Результат для q-фактора представим в виде

$$g=g_1+g_2,$$

где g_1 — внутризонный вклад в эту величину, обусловленный первым слагаемым в (7), а межзонный вклад g_2 определяется входящей в m_0 суммой по l. Для g_1 и g_2 имеем

$$g_{1} = 2 \operatorname{sign}(\mathbf{i}_{z} \nu) \frac{m}{m^{*}} \left(1 - \frac{\Delta}{\sqrt{\varepsilon^{2} - \varepsilon_{min}^{2} + \Delta^{2}}} \right),$$

$$g_{2} = 2 \operatorname{sign}(\mathbf{i}_{z} \nu) \frac{m}{m^{*}} \frac{\Delta}{\sqrt{\varepsilon^{2} - \varepsilon_{min}^{2} + \Delta^{2}}}.$$
(34)

Здесь sign x=1 для x>0 и sign x=-1 для x.<0, $\nu\equiv [a't]$, а ε_{min} — минимальное значение выражения (31) при $k_z=0$. Такое минимальное значение обязательно существует, если орбита замкнута ($\varepsilon_{min}\propto \Delta$ и $0<(\varepsilon_{min}/\Delta)\leq 1$). Из формул (34) следует, что, хотя величина связанных со спин-орбитальным взаимодействием вкладов в g_1 и g_2 имеет порядок $g(\Delta/\varepsilon)$ и может быть достаточно большой, эти вклады точно компенсируют друг друга. Таким образом, не только для орбит, удаленных от линии вырождения зон, но и для квазиклассических траекторий, близких к ней, спин-орбитальное взаимодействие дает в целом лишь относительно малую поправку (порядка Δ/E_0) к рассмотренной здесь орбитальной части g-фактора. В связи с формулами (34) заметим еще

следующее. Уже довольно давно известен результат $|g|=2m/m^*$, полученный Коэном и Блаунтом [18] в рамках двухзонной модели электронного энергетического спектра. Однако в [18] рассматривались квазиклассические траектории, расположенные вблизи точки экстремума закона дисперсии электрона (т.е. при $\varepsilon \to \varepsilon_{min}$), и учитывался лишь межзонный вклад в g-фактор, поскольку \mathbf{v} , а значит, и g_1 равны нулю при $\varepsilon = \varepsilon_{min}$. Формулы (34) обобщают результат Коэна и Блаунта на орбиты с энергиями в интервале $\varepsilon_{min} \le \varepsilon \ll E_0$, причем при $\varepsilon \gg \Delta$ главным является внутризонный вклад в g-фактор. Отметим также, что для гамильтониана (29), (30) известен точный спектр электрона в магнитном поле [23], полученный без учета прямого взаимодействия спина с \mathbf{H} . Выражения (34) вместе с (1) и (2) определяют электронные энергетические уровни, которые совпадают с точным результатом при всех n, в том числе и n=0.

Если наряду с орбитальным учесть и спиновый вклад в m_0 (9), то в правую часть (33) добавится член

$$\delta G_{zz} = 2\beta_z,\tag{35}$$

а кроме того, теперь будут отличны от нуля G_{zx} и G_{zy} :

$$G_{zx} - iG_{zy} = 2(\beta_y + i\beta_x) \left[(\mathbf{tk}) + i(\mathbf{a'k}) \right] / \delta \varepsilon.$$
 (36)

В g-факторе помимо орбитального вклада (34) появится и спиновая часть g_s , которая может быть рассчитана по формуле (12), если в последней G_{zz} заменить на δG_{zz} . Непосредственным расчетом можно проверить, что при $\Delta = 0$ функция

$$\tau_0 = \frac{1 - \beta_z}{\beta_v + i\beta_x} \, \frac{(\mathbf{tk}) + i(\mathbf{a'k})}{\delta \varepsilon},$$

заданная на квазиклассической траектории: $k_z=0$, $\varepsilon_0(\mathbf{k})=\varepsilon$ является точным решением уравнения (13) с условием (14). Подстановка этой функции в формулу для g_s дает, как и должно быть, $g_s=2$. Из выражений (33), (35), (36) следует, что при $\Delta\neq 0$ решение уравнения (13) будет отличаться от τ_0 на величину порядка $\tau_0(\Delta/\varepsilon)$. Соответственно поправка к g_s будет $\delta g_s \sim (\Delta/\varepsilon)$. Учитывая, что $g \sim (m/m^*) \sim (E_0/\varepsilon)$, получаем оценку $(\delta g_s/g) \sim (\Delta/E_0)$, из которой следует, что в рассматриваемом приближении спин-орбитальное взаимодействие не влияет на спиновый вклад в g-фактор.

Принимая во внимание (34), окончательно находим

$$g = 2 + 2\operatorname{sign}(\mathbf{i}_z \mathbf{\nu}) \frac{m}{m^*}. \tag{37}$$

Отметим, что учет спин-орбитального взаимодействия позволил установить знак, с которым орбитальная часть входит в g-фактор (а также подтвердил выбор q, сделанный при получении (28)). При этом, хотя формула (37) выведена в области $\varepsilon \ll E_0$, из непрерывности функции $g(\varepsilon)$ следует, что знак орбитальной части не может измениться и вне указанной области. Поэтому эта формула будет справедлива и для квазиклассических траекторий, удаленных от линии контакта зон. Свойства вектора ν , от которого зависит упомянутый знак, могут быть установлены на основе анализа двухзонного гамильтониана (19) с учетом результатов работы [1]. Эти свойства сводятся к следующим утверждениям. Вектор ν направлен по касательной к линии вырождения зон, определенной без учета спин-орбитального взаимодействия. Он не зависит от выбора базисных функций u_{00} и $u_{0\lambda}$ в точке $\mathbf{k}=0$ и является в этом смысле инвариантной

характеристикой вырожденных электронных состояний. Он может обращаться в нуль только в точках пересечения (если такие есть) данной линии контакта зон с некоторой другой подобной линией, так что на участках между точками пересечения его ориентация не изменяется. Входящее в (37) скалярное произведение $\mathbf{i}_z \boldsymbol{\nu}$ не равняется нулю для рассматриваемых здесь зацепленных за линию контакта зон траекторий (оно обращается в нуль для орбит типа 2 на рис. 1).

В заключение еще раз остановимся на соотношении результатов, полученных здесь и в предыдущем разделе. В пренебрежении спин-орбитальным взаимодействием волновые функции электрона ϵ магнитном поле могут быть представлены как произведения постоянных спиноров s_ρ на чисто орбитальные волновые функции бесспиновой частицы. Нетрудно понять, что таким состояниям отвечают $\gamma=0$ и g=2. По существу, это есть просто другая классификация тех электронных состояний в магнитном поле, что получаются в пределе $\Delta \to 0$. Хотя подобный подход является приближенным при учете спин-орбитального взаимодействия, в области энергий $\epsilon \gg \Delta$ с его помощью можно достаточно хорошо описывать не только энергетический спектр, но и матричные элементы операторов. Лишь при $\epsilon \sim \Delta$ матричные элементы должны рассчитываться в рамках строгого подхода, использованного в этом разделе.

5. ЗАКЛЮЧЕНИЕ

Предсказанное в настоящей работе значительное отличие g-фактора от двойки (или изменение γ) должно проявляться в осцилляционных эффектах. Для определенности будем говорить об осцилляциях намагниченности в эффекте де Гааза–ван Альфена. Как известно [14], амплитуда p-й гармоники этой величины пропорциональна множителю

$$\cos\left(\pi p \frac{g}{2} \, \frac{m^*}{m}\right),\tag{38}$$

который зависит от q-фактора. Подставляя в (38) формулу (5), находим, что для траекторий, зацепленных за линию вырождения зон, знак этого множителя для основной гармоники (p = 1) будет противоположным тому, который можно было бы ожидать при q = 2. Методы измерения абсолютной величины и знака косинуса (38) описаны в [14]. Из анализа, выполненного в этой монографии, следует, что с экспериментальной точки зрения определение знака множителя (38) наиболее просто осуществляется для малых экстремальных сечений поверхности Ферми. В связи с этим укажем несколько металлов, в которых квазиклассические траектории, отвечающие таким сечениям, зацеплены за линию контакта зон и, кроме того, в которых мало спин-орбитальное взаимодействие. Такими металлами являются, например, бериллий [24], магний [25], графит [26, 27] (последний — полуметалл). В бериллии и магнии, имеющих гексагональную плотноупакованную кристаллическую структуру, линия случайного вырождения второй и третьей зон расположена в базисной плоскости кристалла и проходит внутри неодносвязной дырочной поверхности второй зоны, так называемого «монстра» (Mg) или «короны» (Ве). Если магнитное поле лежит в этой же плоскости, то для орбит, отвечающих минимальным сечениям этой поверхности (находящихся на ее перешейках), будет иметь место (5). Отвлекаясь от несущественной здесь открытости «монстра» в определенных направлениях, можно сказать, что в качественном отношении рассматриваемая ситуация подобна изображенной на рис. 16. Отметим, что в изовалентных

с бериллием и магнием и имеющих ту же кристаллическую структуру цинке и кадмии линия случайного вырождения второй и третьей зон попадает внутрь электронной «линзы» третьей зоны [28] и не зацеплена за квазиклассические траектории (см. рис. 1a). В бериллии, магнии, а также графите на оси третьего порядка (вертикальное ребро HKHих зоны Бриллюэна, представляющей собой гексагональную призму) имеет место закономерное вырождение зон. В случае магнитного поля, направленного по этой оси, соотношение (5) должно выполняться для экстремальной орбиты, охватывающей точку К. В бериллии и магнии эта орбита расположена на так называемой «сигаре» третьей зоны. Необходимо, однако, иметь в виду, что в магнии при такой ориентации поля уже сравнительно небольшая его величина приводит к магнитному пробою между «сигарой» и «монстром», т.е. к нарушению условия (36). Этой трудности нет в графите, поверхность Ферми которого имеет самопересекающийся вид, подобный изображенному на рис. 1_6 (траектория 4 соответствует интересующей нас орбите в окрестности точки К). Поэтому этот полуметалл, по-видимому, более удобен для экспериментального изучения описанного здесь эффекта в случае закономерного вырождения зон. Отметим, наконец, что для всех упомянутых выше траекторий $m^* \ll m$ и косинус (38) при p=1близок к минус единице.

Что касается изучения g-фактора с помощью электронного парамагнитного резонанса, то таким способом едва ли возможно различить случаи, когда в металле имеются траектории, зацепленные за линию вырождения зон, и когда таких орбит нет. Действительно, как следует из результатов предыдущего раздела, в пренебрежении спин-орбитальным взаимодействием возбуждение переменным магнитным полем спиновых степеней свободы не будет влиять на орбитальное состояние электрона. Иными словами, резонанс будет наблюдаться на частоте, отвечающей g=2. Только в меру силы спин-орбитального взаимодействия возможно появление резонанса на частотах, соответствующих экстремальным по k_z значениям (37). Однако резонанс на таких частотах возможен в металлах и без линий вырождения зон [29].

В заключение приведем соображения, показывающие, что результаты (4), (5), полученные в одноэлектронном приближении, по-видимому, не изменятся и при учете ферми-жидкостного взаимодействия электронов (не считая хорошо известных перенормировок спиновой части g-фактора и циклотронной массы m^*). Поскольку величина $\delta \gamma$, которую определим как разность значений γ для зацепленной и не зацепленной за линию вырождения зон траекторий, изменяет знак при замене $H \to -H$ (см. (18)), то уже из условия инвариантности квазиклассического спектра при таком преобразовании поля следует, что величина $2\delta \gamma$ должна быть целым числом. Иными словами, $|\delta \gamma|$ либо 0, либо 1/2. В то же время $\delta \gamma$ зависит только от электронных состояний на поверхности Ферми, и в духе идей теории ферми-жидкости Ландау следует ожидать, что эта величина может лишь плавно изменяться при «включении» взаимодействия между электронами. Принимая во внимание, что формула (2) остается верной и при учете этого взаимодействия [13], приходим в итоге к сформулированному выше утверждению.

Литература

С. Herring, Phys. Rev. 52, 365 (1937) (имеется перевод в книге: Р. Нокс, А. Голд, Симметрия в твердом теле, Наука, Москва (1970), с. 253).

- D. A. Papaconstantopoulos, Handbook of the Band Structure of Elemental Solids, Plenum Press, New York (1986).
- 3. L. Onsager, Phil. Mag. 43, 1006 (1952).
- И. М. Лифшиц, А. М. Косевич, ЖЭТФ 29, 730 (1955).
- 5. Г. Е. Зильберман, ЖЭТФ 32, 296 (1957); 33, 387 (1957).
- Г. Е. Зильберман, ЖЭТФ 34, 748 (1958).
- 7. М. Я. Азбель, ЖЭТФ 39, 1276 (1960); 46, 929 (1964).
- Л. А. Фальковский, ЖЭТФ 49, 609 (1965).
- 9. L. M. Roth, Phys. Rev. 145, 434 (1966).
- 10. А. А. Слуцкин, ЖЭТФ 53, 767 (1967).
- 11. С. С. Недорезов, ФНТ 2, 1047 (1976).
- 12. Б. М. Горбовицкий, В. И. Перель, ЖЭТФ 85, 1812 (1983).
- Е. М. Лифшиц, Л. П. Питаевский, Статистическая физика. Ч. 2. Теория конденсированного состояния, Наука, Москва (1978).
- 14. Д. Шенберг, Магнитные осцилляции в металлах, Мир, Москва (1986).
- 15. Б. А. Дубровин, С. П. Новиков, А. Т. Фоменко, Современная геометрия, Наука, Москва (1979).
- 16. L. M. Roth, J. Phys. Chem. Solids 23, 433 (1962).
- 17. E. I. Blount, Phys. Rev. 126, 1636 (1962).
- 18. M. H. Cohen and E. I. Blount, Phil. Mag. 5, 115 (1960).
- Г. Л. Бир, Г. Е. Пикус, Симметрия и деформационные эффекты в полупроводниках, Наука, Москва (1972).
- 20. E. I. Blount, in Solid State Physics, Vol. 13, Academic Press, New York and London (1962), p. 305.
- 21. J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
- 22. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
- 23. Г. П. Микитик, Ю. В. Шарлай, ФНТ 22, 762 (1996).
- 24. J. H. Tripp, P. M. Everett, W. L. Cordon, and R. W. Stark, Phys. Rev. 180, 669 (1969).
- 25. J. C. Kimball, R. W. Stark, and F. M. Mueller, Phys. Rev. 162, 600 (1967).
- 26. J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 (1958).
- 27. R. O. Dillon, I. L. Spain, and J. W. McClure, J. Phys. Chem. Sol. 38, 635 (1977).
- 28. R. W. Stark and L. M. Falikov, Phys. Rev. Lett. 19, 795 (1967).
- 29. М. Я. Азбель, ФТТ 4, 568 (1962).