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Field dependences of the magnetic susceptibility of crystals are investigated theoretically in two
cases of degeneracy of their electron energy bands in which these dependences are strong. In the
first case, the degeneracy is lifted linearly in the wave vector k measured from the degeneracy
point in the Brillouin zone. In the second case, the degeneracy takes place along a line, and the
degeneracy is lifted linearly in k in the directions perpendicular to this line. In both cases, the
electron energy spectrum in the magnetic field H is obtained exactly. With the spectrum, we
analyze the magnetic susceptibility χ for an arbitrary H. It is shown that in strong magnetic
fields for a chemical potential close to the degeneracy energy, the value of χ is proportional to
logH in the first case and to H−1/4 in the second case of the band degeneracy.

INTRODUCTION

If the chemical potential ζ of electrons in a crystal lies far away
from the critical points of their energy spectrum, the smooth com-
ponent of the electron magnetic susceptibility (which does not os-
cillate with the magnetic field H) is virtually independent of H,1
see Refs. 1-6. When the chemical potential is close to the crit-
ical energy (|ζ − εcr| ∼ δεH), the field dependence of magnetic
susceptibility χ is determined by the relation between the tem-
perature T and δεH . In weak fields δεH<< T , this dependence
is still weak (the field corrections are of the order of (δεH/T )2).
In strong fields, δεH>> T , the value of χ generally depends on H
significantly, and it becomes impossible to present the magnetic
susceptibility as the sum of the smooth and oscillating compo-
nents.

Critical points of the electron spectrum in crystals can be of
two types. The first type includes energy values for which the 2 1

2
order electron topological transitions occur.7 The second type of
critical points in the spectrum is associated with degeneracy of
electron energy bands. The field dependences of magnetic suscep-
tibility for values of ζ close to points of the 2 1

2 order electron topo-
logical transition were analyzed theoretically by Nedorezov.3,4 For
the second type of critical points, H-dependences of χ have not
yet been investigated. The dependence χ(H) was calculated only
for one model of the spectrum8 in which the band degeneracy of
a special type can take place.

It was shown in Ref. 9 that giant anomalies in the magnetic
susceptibility can take place for certain types of energy-band de-
generacy. In other words, the absolute value of χ calculated at
a low temperature (T → 0) in the limit of weak field (H → 0)
increases unlimitedly as the chemical potential approaches the de-
generacy energy εd. In the same paper, all such types of the band

degeneracy were indicated. In all these cases, electron states with
energies close to εd are responsible for the giant anomaly in the
magnetic susceptibility. Since the same states also determine field
dependences of the magnetic susceptibility for ζ → εd, its field
dependences must be strong in the cases when the giant anoma-
lies in χ are possible. Aluminum, beryllium, graphite, and the
alloys Bi0.96Sb0.04 and Pb0.65Sn0.35Te are examples of the crys-
tals in which the band-degeneracy points of the appropriate types
exist near the Fermi level. It should be noted that strong field
dependences of χ were indeed observed for Bi and its alloys with
Sb.10

In this research, field dependences of the magnetic suscepti-
bility of electrons are investigated in all the cases of the band
degeneracy in which the giant anomalies in χ are possible. In
order to calculate these dependences, we must first determine the
electron spectrum in a magnetic field. Therefore, we will proceed
as follows. In the first section, a model spectrum describing all
the cases of the band degeneracy of interest will be given. In Sec.
2, this spectrum will be used for obtaining the exact electron en-
ergy levels in a magnetic field. In Sec. 3, field dependences of
the magnetic susceptibility of crystals with different types of the
band degeneracy will be calculated on the basis of the obtained
spectrum.

1. MODEL SPECTRUM
According to Ref. 9, the giant anomalies in magnetic susceptibil-
ity are possible for the following cases of the band degeneracy.

Case I. Band degeneracy takes place at a certain point of the
Brillouin zone and is lifted linearly in the wave vector k in all
directions (the value of k is measured from the degeneracy point
in all cases). Such a situation can take place both for a symmetry-

1The relative value of field corrections to magnetic susceptibility is of the order of δε2H/(ζ − εcr)2 where δεH is the characteristic separation between
electron energy levels in a magnetic field and εcr is the critical point in the spectrum, which is the closest to ζ.



enforced and an accidental band degeneracy if the spin-orbit inter-
action is not weak ( Bi0.96Sb0.04 and Pb0.65Sn0.35Te ). Besides,
accidental band degeneracy of this type can be observed in crys-
tals without an inversion center even if the spin-orbit interaction
can be neglected.

Case II. Band degeneracy occurs along a certain line in the
Brillouin zone and is lifted linearly in k in directions perpendic-
ular to this line. Such degeneracy can be realized along the sym-
metry axes of the Brillouin zone (graphite). Besides, if we neglect
spin-orbit interaction in crystals with an inversion center, the ac-
cidental band degeneracy practically always occurs just on the
lines (aluminum and beryllium). The degeneracy of this type is
also possible in a symmetry plane of crystals without an inversion
center. The giant anomaly in χ is determined only by points on
the band degeneracy line, at which the energy εd of these bands
attains extremal values. Henceforth, we will be interested only in
these points when analyzing the case II.

One more type of the band degeneracy for which the giant
anomaly in χ can be observed was indicated in Ref. 9. However,
this type is probably rare in occurrence. At any rate, we do not
know a crystal with this type of the band degeneracy. For this
reason, this case will not be considered here.

For all the cases listed above, electron energy spectra in the
vicinity of the degeneracy points of interest can be described by
a universal model of band structure. This model was formulated
in Ref. 9 with the use of the Luttinger—Kohn representation for
describing the electron states in a crystal.11 In this model, the
electron Hamiltonian for the two bands under investigation (de-
noted by c and v) has the form (~ = 1)

Ĥ =


∆ +Kc R 0 S
R∗ −∆ +Kv −S 0
0 −S∗ ∆ +Kc R∗

S∗ 0 R −∆ +Kv

 (1)

where

Kc,v = vc,vk + qc,vk
2
3

R = rk +Qrk
2
3 (2)

S = sk +Qsk
2
3

Here vc,v are the intraband and r and s the interband matrix
elements of the velocity operator, which were calculated for k = 0.
The terms with the coefficients qc,v, Qr and Qs take into account
the effect of other bands on the spectrum. In formulas (2), the
quantities vc,v and qc,v are real, while Qr and Qs are generally
complex. The energy (and subsequently the chemical potential
also) will be measured from the degeneracy energy εd(k = 0).

In order to be able to analyze the effect of a small gap in
the spectrum on final results, we have introduced in (1) the band
splitting equal to 2∆ at the point k = 0. In case I, such a gap
can emerge due to a slight difference between the concentration
of the alloy (e.g., Bi1−xSbx ) and that in the case of the band
degeneracy. Such gap also necessarily exists in crystals with an
inversion center, for which the accidental band degeneracy on the
line takes place only if we neglect the spin–orbit interaction. In
formula (1), it is assumed that the crystal has an inversion center
so that each of the bands c and v is doubly degenerate. Here we
take into account the symmetry of matrix elements, which follows

from the properties of the time inversion operator. However, the
Hamiltonian (1) and (2) can be used for calculating the suscep-
tibility for crystals without the inversion center as well. In this
case, we must put S = 0, and the final result for χ should be
divided by two since the true Hamiltonian now coincides with any
of the two-dimensional blocks on the principal diagonal of (1).

If the spin-orbit interaction is small and can be neglected, one
should set S = 0. In this case, expression (1) takes into account
the twofold band degeneracy in spin. Besides, in the presence of
the inversion center, the quantities r and Qr are real.

Using relations (1) and (2), we derive the energy–momentum
relations for the bands in the vicinity of the degeneracy point:

εc,v = ak +Qk2
3 + Ec,v(k)

Ec,v(k) = ±
√

(∆ + a′k +Q′k2
3)2 + |R|2 + |S|2. (3)

In these relations, the following notations are used:

a =
vc + vv

2
; a′ =

vc − vv
2

;

Q =
qc + qv

2
; Q′ =

qc − qv
2

.

Henceforth, we choose the coordinate axes along the principal di-
rections of the quadratic form in the components of vector k
which appears in E2

c,v(∆ = 0) . Let bii be its principal values
(which can be expressed in terms of the components of the vectors
a′ , r , and s ), i.e.,

E2
c,v(∆ = 0) = b211k

2
1 + b222k

2
2 + b233k

2
3.

If one of the principal values is equal to zero as this occurs in the
case II, we will assume that it coincides with b33. For this reason,
we have retained only the terms of the type k2

3 among the terms
quadratic in ki in (2). Other quadratic terms are relatively small.
In the case I, all bii are nonzero, and the terms proportional to
k2

3 can be neglected in (2).

2. ELECTRON SPECTRUM IN A
MAGNETIC FIELD
Let us consider the electron energy levels in a magnetic field H
whose direction is determined by the unit vector n for the model
spectrum described above. The Hamiltonian of an electron in the
magnetic field in the coordinate representation can be obtained
from (1) and (2) with the substitution11

ki → −i
∂

∂ki
+
e

c
Ai, (4)

where A is the vector potential of the magnetic field and e the
absolute value of the electron charge. We will neglect the direct
interaction of the electron spin with the magnetic field since the
giant anomaly in χ has an orbital nature, and the purely spin
contribution to magnetic susceptibility is relatively small. Let the
magnetic field be directed along the axis x3 , i.e., n = (0, 0, 1).
We choose the vector potential in the form

A = (−Hx2, 0, 0),

and search the solution of the eigenvalue equation

Ĥ ~ψµ = εµ ~ψµ (5)
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in the form

~ψµ(r) = exp{i(k1x1 + k3x3)}fl(x2), (6)

where ~ψµ, fl are the four-dimensional column vectors of the func-
tions, and the index µ indicates the set consisting of an integer
l and real-valued k1 and k3 . In the case of a discrete spectrum,
the vectors fµ, must satisfy the boundary condition

fl(x2)→ 0 for |x2| → ∞.

Such vectors do exist if

Rx3 ≡ b11b22(1− ã2
⊥) > 0, (7)

where ã2
⊥ ≡ ã2

1 + ã2
2 , ãi ≡ ai/

√
bii . The meaning of inequality

(7) is the following: The cross sections of the constant-energy sur-
face εc,v(k) = const (with εc,v from (3)) by the planes k3 = const
are second-degree curves described by a quadratic form in k1, k2.
The quantity Rx3 is an invariant of this form (the so-called
discriminant of its higher terms).12 A positive value of Rx3 in-
dicates that the above mentioned second-degree curves are closed
and are ellipses. When condition (7) is satisfied, we search the
eigenfunctions fl, in the form

fl(x2) = exp(−λ1x
2
2 − λ2x2)

[
C1Hl{λ3(x2 − x20)}

+ C2Hl−1{λ3(x2 − x20)}
]
, (8)

where l ≥ 0, Hl(x) is an l-th degree Hermite polynomial,
H−1 ≡ 0, and the parameters x20, λ1,2,3 as well as the con-
stant four-dimensional vectors C1 and C2 are determined by
the substitution of (6) and (8) into (5). It can be shown that such
types of solutions exist, with each energy level corresponding to
two sets of C1 , C2 for l > 0 and one set for l = 0. The
explicit form of the parameters and C1 , C2 is not used in the
further analysis and hence is not given here. The eigenvalues of
energy εl(k3) are determined from the equation

S(εl, k3) =
2πeH

c
l, (9)

where S(ε, k3) is the cross-section area of the constant energy
surface by the plane k3 = const. It should be noted that the
quantization condition (9) has a semiclassical form. In the given
case, however, it determines the exact eigenvalues of the electron
energy. The explicit form of these eigenvalues will be given below
for each case of the band degeneracy. Since the Hamiltonian in the
case I is linear in k , the above results can easily be generalized
to the case of an arbitrary directed magnetic field. In the case
II, such generalization is impossible, but we can find approximate
expressions for the energy levels of an electron in a magnetic field
which direction is not too close to the plane (x1, x2).

Case I. For an arbitrary direction of H , the condition for
the existence of a discrete spectrum generalizing (7) has the form

Rn = b11b22b33

(
ñ2 − [ñ× ã]2

)
> 0, (10)

where the vector ñ is defined as

ñi ≡ ni/
√
bii.

Condition (10) has the same meaning as (7). When (10) is sat-
isfied, the cross sections of the constant-energy surfaces by the
planes perpendicular to the magnetic field are ellipses.

It was shown in Ref. 9 that the giant anomaly in χ exists if

ã2 ≡ ã2
⊥ + ã2

3 < 1 . (11)

This requirement is stronger than the condition for the existence
of a discrete spectrum for a given direction of H (10). It can
be proved that when condition (11) is satisfied, inequality (10) is
valid for any n , i.e., the constant-energy surfaces are ellipsoids.
In other words, condition (11) can be formulated as the require-
ment that the energy bands εc(k) and εv(k) must have points of
minimum and maximum in k , respectively. If in this case ∆ 6= 0
and ã 6= 0, then the band extrema occur at different points of the
Brillouin zone, and the spectrum contains an indirect gap

2∆min = 2∆(1− ã2)1/2(1− (ã′)2)1/2

where
ã′i ≡

a′i√
bii

(the inequality (ã′)2 < 1 follows from the definition of the quan-
tities bii). The minimum value of εc(k) is equal to ε0 + ∆min,
while the maximum value εv(k) is ε0 −∆min, where

ε0 = −(ã · ã′)∆.

If condition (10) is satisfied, the energy levels of an electron in
the magnetic field are

εc,vl (δkn) =ε0 + vδkn

±
√
eHα

c
l + L(δkn)2 + ∆2

n, (12)

where

δkn = kn − k0
n, kn = kn, k0

n = −∆(ã′ñ),

v =
(ãñ)

ñ2
, α =

2R
3/2
n

b11b22b33ñ2
, (13)

L =
Rn

b11b22b33ñ4
, ∆2

n = ∆2Rn[1− (ã′)2]

b11b22b33ñ2
,

and l is an non-negative integer. The two signs in (12) correspond
to the two spectral branches. Note that although ∆n ≥ ∆min,
under condition (11) one has L ≥ v2, and the minimum value of
εc0(δkn) is still equal to ε0 + ∆min, while the maximum value of
εv0(δkn) is equal to ε0 −∆min.

Case II. In this case, b33 = 0. Let the magnetic field be
directed along the axis x3, that is, along the tangent to the line of
the band degeneracy at the given point of the Brillouin zone. The
giant anomaly in χ is associated only with the points on this line
at which, in addition to (7), the following condition is satisfied: 9

a3 = 0.

Using (9), we can obtain the following explicit expression for the
eigenenergy values of electron states in the vicinity of these points:

εc,vl (k3) = Bk2
3 ±

√
eHα

c
l, (14)
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where l is a non-negative integer, and the two signs correspond to
the two spectral branches;

α =
2R

3/2
x3

b11b22
;

B = Q−Q′(ã⊥ã′⊥)−Qr(ã⊥r̃⊥); (15)

r̃⊥ is the vector perpendicular to the axis x3:

r̃⊥ = (
r1√
b11

,
r2√
b22

, 0)

and ã⊥, ã′⊥ are defined similarly. Another expression for the
coefficient B (which is equivalent to (15)) is given in Ref. 9.

When the band degeneracy on a certain line in a crystal with
an inversion center takes place only if one neglects the spin-orbit
interaction, then this interaction leads to ∆ 6= 0 in expression (1)
and to changes in the values of the parameters appearing in (2).
However, these changes are such that in the leading order in ∆,
the values of a and Q remain the same as for ∆ = 0, and

E2
c,v(∆,k) = ∆2 + E2

c,v(∆ = 0,k).

The minimum indirect gap will be equal to

2∆min = 2∆(1− ã2
⊥)1/2,

and the spectrum in a magnetic field is

εc,vl (k3) = Bk2
3 ±

√
eHα

c
l + ∆2

min (16)

with the previous values of the parameters B and α .
Let us now suppose that the magnetic field is directed at the

angle θ 6= 0 to the axis x3 . In this case, the eigenvalue equa-
tion cannot be solved exactly in view of the presence in (2) of
the terms quadratic in k3. After the substitution (4) and sim-
ple transformations, these terms make contributions of the type
q(eH/c)2 sin2 θ to the Hamiltonian, where q is a certain com-
bination of qc,v, Qr, and Qs. However, these contributions are
relatively small in the parameter η2, where η = tan θ(ε/E0)1/2

and E0 is the characteristic energy separation between the two
bands under consideration and other bands that are not consid-
ered explicitly in (1). Dropping all the terms that are small in
parameter η, we obtain formulas (14) and (16) in which H should
be replaced byH cos θ. Note that the electron-band model (1), (2)
itself is valid in the leading order in (ε/E0)1/2, which implies that
this parameter is small. Hence the obtained approximate results
can, in fact, describe εc,vl (k3) quite well for nearly all values of the
angle θ except the small neighborhood of π/2. Before concluding
this section, we note that formulas (9), (12), and (16) obtained
above are in complete agreement with the results obtained in Refs.
8, 13-15 in which electron energy levels were studied in a magnetic
field for specific crystal structures.

3. COMPUTATION OF MAGNETIC
SUSCEPTIBILITY
If the chemical potential is close to the energy of the band degen-
eracy, the magnetic susceptibility of a crystal can be represented

as the sum of a special contribution associated with the electron
states that are close to the degeneracy point, and a background
term associated with all other states. The special contribution
determines the dependence of χ on T, |H| , and ζ , while the
background term is practically independent of the magnetic field
and temperature, and remains practically unchanged as ζ varies
in the vicinity of the degeneracy energy. In order to compute the
special contribution to the magnetic susceptibility of the crystal
(which is the only quantity in which we shall be interested), we
use the following expression for the Ω-potential per unit volume:

Ω(H) =− eHT

4π2c

∑
c,v

∑
l=0

′
∫
d(δkn)

× ln

{
1 + exp

(
ζ − εc,vl (δkn)

T

)}
(17)

In this expression, the limits of integration with respect to δkn
and of summation over l are determined from the condition
εc,vl (δkn) ≥ −ζ0, where it is assumed that the spectral cutoff
parameter ζ0 satisfies the condition

E0 >> ζ0 >> T, ζ, δεH ,∆.

The prime on the summation over l indicates that terms with
l > 0 must be doubled.

In weak magnetic fields (δεH << T ), integration of (17) by
parts and the application of the Euler-Maclaurin summation for-
mula give results for magnetic susceptibility that are in complete
agreement with formulas obtained in Ref. 9. Hence we will con-
sider only the case of strong magnetic fields, δεH >> T , below.
This case can be easily realized in the vicinity of band degener-
acy points. Indeed, formulas (12) and (16) give δεH ≈

√
eHα/c.

Hence the condition for strong field is H >> HT ≡ (cT 2/eα).
Assuming that T = 4 K and using typical values for matrix el-
ements of the velocity operator (mα ∼ 1 eV, where m is the
electron mass), we obtain HT ≈ 10 Oe.

In order to analyze formula (17), we integrate it by parts sev-
eral times and use Poisson’s summation formula and put T = 0
(due to δεH >> T ). Eventually we obtain the following results:

Case I. Suppose that |ζ − ε0| < ∆min, i.e., the chemical po-
tential is in the gap of the spectra (3) and (12). In this case

Ω(H) =
1

24π2

(e
c

)2 α√
L
H2
{

ln

(
2ζ0

∆min

)
+

3

π2

∞∑
l=1

1

l2
[sin(ϕl)si(ϕl) + cos(ϕl)Ci(ϕl)]

}
, (18)

where ϕl = 2πl(H∆/H),

H∆ =
c∆2

n

eα

is the characteristic magnetic field for which δεH ∼ ∆n; si(ϕ) and
Ci(ϕ) are the integral sine and cosine defined by the expressions16

si(ϕ) =

∫ ϕ

∞

sin(t)

t
dt, Ci(ϕ) =

∫ ϕ

∞

cos(t)

t
dt.

In formula (18), we have dropped the contribution that does not
depend on magnetic field, as well as terms that are small in the
parameter (δεH/ζ0). 2

2These terms also include the terms oscillating in (1/H) at a high frequency proportional to ζ20 . Although these terms could make a large contribution
to magnetic susceptibility, they appear here as a result of artificial introduction of a sharp energy boundary for electron states, which is equal to −ζ0.
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Another equivalent representation of Ω(H),

Ω(H) =
1

24π2

(e
c

)2 α√
L
H2
{

ln

(
2ζ0

∆min

)
− 3

π2

∫ ∞
0

tL2(e−t)

t2 +
(

2πH∆

H

)2 dt},
which is convenient for studying limiting cases, is obtained with
the expression

sin(ϕ)si(ϕ) + cos(ϕ)Ci(ϕ) = lnϕ

− 1

2

∫ ∞
0

e−t ln(t2 + ϕ2)dt (19)

where

L2(z) =

∞∑
n=1

zn

n2
.

Using this representation, one can show that the magnetic sus-
ceptibility tensor defined as

χij = − ∂2Ω

∂Hi∂Hj
.

is a monotonically decreasing function of H. For H << H∆, we
obtain the following expression for it:

χij =− 1

6π2

(e
c

)2 1

(b11b22b33)1/2

{
κij ln

(
2ζ0

∆min

)
− π2

20

H2

H2
∆

ϕij
}

(20)

where

ϕij =

3∑
k=1

3∑
l=1

κijκkl + 2κikκjl

3Rn
nknl,

κij =
b11b22b33

(biibjj)1/2

{(
1− ã2

)
δij + ãiãj

}
.

Here the tensor κij introduced in Ref. 9 was obtained using
Eq. (10) and the definition of κij ,

Rn ≡
∑
ij

κijninj .

The first term in (20) coincides with the magnetic susceptibility
in a weak magnetic field,9 which is finite due to the existence of
a gap in the spectrum, while the second term gives the first field
correction to it. For H >> H∆, we obtain for χij :

χij =− 1

6π2

(e
c

)2 1

(b11b22b33)1/2

{
κij ln

[
2ζ0

∆min

(
H∆

H

)1/2
]

+Aκij − 3

4
ϕij
}

(21)

where

A =
1

2
(ln(2π) + CEM ) +

3

π2

∞∑
l=1

ln l

l2
≈ 1.50 ,

and CEM ≈ 0.58 is the Euler-Mascheroni constant. Using
Eq. (13), we find that

√
H∆

∆min
=

(
c

2e
√
Rn (1− ã2)

)1/2

, (22)

i.e., the value of χij in this field region does not depend on the gap
in the spectrum. Formulas (21) and (22) describe the magnetic
susceptibility of the crystal with a point of band degeneracy at
T = 0. The general form of the dependence of χij on H is repre-
sented in Fig. 1. Note that, if T 6= 0 and ∆ < T the form of the
H-dependence of χij is approximately the same as for T = 0 and
∆ 6= 0. One must only replace H∆ by HT . But χij at H � HT

will be still described by Eq. (21) with substitution (22).
Let us now consider the region |ζ − ε0| > ∆min. In this case,

Ω-potential (17) can be represented as

Ω(H, ζ) = Ω(H) + δΩ(H, ζ) (23)

FIG. 1. Schematic form of the magnetic field dependence of the
magnetic susceptibility tensor χij of the crystal in the case I; T = 0,
and ζ is inside the gap in spectrum (3). The dashed curve corresponds
to ∆ = 0 and the solid curve to ∆ 6= 0.

where Ω(H) is described by Eq. (18), while the correction δΩ is
the sum of a finite number of terms:

δΩ(H, ζ) =− 1

4π2

(e
c

)2 αH2

√
L

M∑
m=0

′
{
x
√
x2 − x2

m

− x2
m ln

[
x+

√
x2 − x2

m

xm

]}
. (24)

Here

x2
m = m+H∆/H; x =

|ζ − ε0|
∆min

(
H∆

H

)1/2

;

M is the maximum integer for which x2
M ≤ x2. It follows from

(24) that the magnetic susceptibility is a symmetric function of
ζ − ε0. For large x, formulas (18), (23), and (24) lead to the
well-known result according to which the magnetization of a crys-
tal is the sum of χ(H → 0) · H and an oscillating de Haas–van
Alfen component. Qualitatively, this statement remains true even
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for x ∼ x1. With decreasing x the absolute value of the smooth
magnetization component increases, while the amplitude of the
oscillating component decreases, the former being considerably
larger than the latter for x ∼ x1. According to (23), we obtain
the following expression for the magnetization M of the crystal
in the gapless state (or at H >> H∆) for 0 < x < x1:

M(H, ζ) = M(H) + δM(H, ζ).

Here M(H) is independent of ζ and is obtained from (18)
[Mi(H) ∼ H logH, see Eq. (21)]. The additional term

δMi(H, ζ) =
1

4π2

e

c

κijnj
(b11b22b33)1/2

ζ2

(1− ã2)
√
Rn

describes the behavior of the magnetization upon variation of ζ in
the vicinity of the energy of the band degeneracy. If H << H∆,
this correction becomes proportional to (|ζ − ε0| − ∆min)3/2 for
x0 ≤ x < x1 and is in accordance with the result obtained from
formulas (41) and (42) of Ref. 3.

The chemical potential of electrons in a crystal is generally a
function of the magnetic field. This dependence is obtained from
the condition of conservation of the total number of electrons. If,
in addition to the two bands under consideration, the crystal has
other partially filled bands with a high density of states, i.e., if
we are dealing with a metal, then the value of ζ remains practi-
cally constant, and we can directly use the above formulas. Let us
now consider the case when there are no other unfilled bands and
hence the crystal is a gapless semiconductor (or a semiconductor
with a narrow gap). In this case, the density of charge carriers
(electrons or holes) is described by the expression

ν =
1

2π2

(e
c

)3/2 α1/2H3/2

√
L− v2

M∑
m=0

′
√
x2 − x2

m (25)

which gives the dependence x(ν,H). In order to compute the mag-
netization or the magnetic susceptibility of electrons, we must use
the free energy instead of the Ω-potential. As a result, we obtain

M(H, ν) =M(H, x)
∣∣∣
x=x(ν,H)

,

χij(H, ν) =

[
χij(H, x)− ∂ν

∂Hi

∂ν

∂Hj

(
∂ν

∂ζ

)−1
]
x=x(ν,H)

.

For an intrinsic semiconductor (ν = 0), we find from (25) that
x = 0 for any H , while χij(H, ν) is still described by Eqs. (20)
and (21). For ν 6= 0, we restrict ourselves by an analysis of the
high field case

H > H0 =
c

e
(4π4ν2(L− v2)/α)1/3.

In such fields, x < x1, and the sums in (24) and (25) reduce to a
single term. If there is no gap in the spectrum, or if H >> H∆,
the magnetic susceptibility χij(H, ν) is described by formula (21)
in which the expression in curly braces is supplemented by the
term

(3/2)(H0/H)3(9ϕij − 5κij).

If, however, H0 < H << H∆, the additional term is proportional
to (H0/H)4, in accordance with the results of Ref. 1.

Finally, it should be noted that, if −ζ0 is taken as the value
of the chemical potential for which we know (say, experimentally)
the magnetic susceptibility tensor in a weak magnetic field, the
above formulas directly give the value of χij(H, ζ)−χij(H,−ζ0).
According to (20)-(24), the choice of another value of ζ0 will lead
to a change in the magnetic susceptibility by a constant value and
does not affect the dependences of this quantity on H and ζ.

Case II. In this case, we obtain the following expression for
the Ω-potential at T = 0 and H directed along the axis x3

Ω(H, ζ) =
1

π3

(e
c

)7/4

|B|−1/2H7/4α3/4
∞∑
l=1

1

l

×
{
Il +

∫ ∞
max(|x|,(H∆/H)1/2)

dt(t+ x)1/2

× sin
[
2πl

(
t2 −H∆/H

)]}
, (26)

where x ≡ sgn(B)ζ(c/eαH)1/2, H∆ ≡ (c∆2
min/eα), sgn(B) = ±1

depending on the sign of B, and the term Il differs from zero only
for positive x > (H∆/H)1/2 and is given by

Il =

∫ x

(H∆/H)1/2

dt
[
(x+ t)

1/2 − (x− t)1/2
]

× sin
[
2πl

(
t2 −H∆/H

)]
.

In view of convergence of all the integrals in (26), we omitted
the contribution independent of H to the Ω-potential and set
|ζ0| → ∞. Let us now analyze various limiting cases with Eq. (26).

At first consider the case of the gapless spectrum for which
H∆ = 0. It follows from (26) that the special contribution to
magnetization of the crystal is

M3 = − 1

π2

(e
c

)7/4

|B|−1/2α3/4H3/4f(x), (27)

where the function of one argument f(x) does not depend on
spectral parameters, i.e., it is universal for all crystals with given
type of the band degeneracy. Evaluating the sum over l in (26)
and differentiating with respect to H, we arrive at the following
expression for f(x):

f(x) =
1

4

∫ ∞
−x

dt

(
1

2
− {t2}

)
sgn(t)

7t+ 6x√
x+ t

, (28)

where {t2} is the fractional part of the number t2. It can be
shown that for |x| >> 1, Eqs. (27), (28) describe a smooth con-
tribution to magnetization, which coincides with that obtained in
Ref. 9, and the oscillating component which can be found with
the Lifshits-Kosevich formula17 and expression (9). It is follows
from (28) that in contrast to the case I, the magnetization is not
symmetric in x, and the amplitude of oscillations of M3 is of the
order of the smooth magnetization component for x ∼ 1 (this re-
sult also remains valid in the presence of a gap in the spectrum).
In the region |x| << 1, we obtain the following expansion for f(x):

f(x) = f0 + f1x−
2

3
x3/2σ(x) +O(x2), (29)

where σ(x) = 1 for x > 0 and σ(x) = 0 for x < 0, and the
constants f0 and f1 are given by

f0 =
7 cos(π/8)ζ(7/4)

213/4π3/4Γ(1/4)
≈ 0.156
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and

f1 =
5 sin(π/8)ζ(5/4)

215/4π1/4Γ(3/4)
≈ 0.40 .

Here Γ(y) is the gamma function, and ζ(y) is the Riemann zeta
function. The term proportional to x3/2 in (29) describes the sin-
gularity in magnetization associated with the point of the band
degeneracy under consideration.

Formulas (27)-(29) give the dependence of the electron mag-
netization on the chemical potential for various values of the mag-
netic field H. These formulas can also be used for obtaining the
dependence M3(H) at fixed ζ. For example, for |x| << 1, we ob-
tain the following expression for the magnetic susceptibility χ33:

χ33(H) ≈ − 3

4π2

(e
c

)7/4 α3/4f0

|B|1/2
H−1/4. (30)

It should be noted that the dependence χ ∼ H−1/4 for strong
magnetic fields was also obtained earlier by Beneslayskii and
Fal'kovskii,8 although the spectrum considered by them does not
correspond to the case II (but is close to it in a certain respect:
the degeneracy is lifted linearly in k in two directions and quadrat-
ically in the third direction).

Let us now consider the influence of the presence of a gap in
the spectrum on the obtained results. It follows from (26) that
this influence is small for |ζ| >> ∆min. For this reason, we will
analyze only the case when ζ ∼ ∆min, i.e., |x| ∼ (H∆/H)1/2. This
influence can be neglected for H >> H∆, i.e. for |x| << 1 since
the coefficients f0 and f1 in (29) change by quantities of the order
of (H∆/H), while the term x3/2σ(x) is replaced by

x
3/2
+ σ(x+) + x

3/2
− σ(x−)

2
,

where
x± = x± (H∆/H)1/2.

The results will differ noticeably from those presented above only
for H 6 H∆ and |ζ| 6 ∆min. Indeed, for H << H∆, the smooth
component of magnetic susceptibility can be described by the
same formulas as in weak fields (H << HT ) everywhere excepting
the small neighborhood of the points ζ = ±∆min:

χ33 − χos33 =− 1

24π2

(e
c

)7/4

α3/4|B|−1/2 1

H
1/4
∆

×
{
ζ

1/2
+ σ(ζ+)− ζ1/2

− σ(ζ−)
}
, (31)

where ζ± = (sgn(B)ζ/∆min) ± 1, and χos33 is the oscillating com-
ponent existing only for |ζ| > ∆min (we do not give the explicit
form of this component here). It should be noted that, in contrast
to the case I, the magnetic susceptibility in the region |ζ| < ∆min

depends strongly on the chemical potential. As the magnetic field
increases from H << H∆ to H >> H∆, a crossover from (31)
to (30) occurs gradually. In the crossover region, the magnetic
susceptibility can change monotonically (curve 1 in Fig. 2) or
nonmonotonically (curve 2) depending on the value of ζ in the
interval |ζ| < ∆min. It should be recalled that in the case I the
field dependence of χij is always monotonic for |ζ| < ∆min.

FIG. 2. Field dependences of χ33 in the case II for T = 0. The
dashed curve corresponds to ∆ = 0 and the solid curves to ∆ 6= 0

(curve 1 is plotted for ζ = 0 and curve 2 for ζ = −0.75∆); χ33(0) is the
value of χ33 in a weak field (H → 0) for ζ = 0 and ∆ 6= 0.

If the angle θ between the magnetic field and the axis x3

differs from zero, all the formulas presented above for the Ω-
potential, M3, and χ33 remain valid if according to the results
of Sec. 2, we replace H by H3 = H cos θ. The expressions thus
obtained determine the dependences of all these quantities on the
direction of H (under condition η << 1). Other components
of magnetization and magnetic susceptibility tensor are relatively
small since they do not exhibit the giant anomaly.9 As to the de-
pendence of ζ on the magnetic field, it can be neglected since the
density of states is rather high for any ζ in the case II.

Finally, it should be noted that the electron spectrum in
the magnetic field and the magnetic susceptibility were calcu-
lated here in the one-electron approximation (no manifestations
of many-particle effects in the orbital magnetization have been es-
tablished experimentally so far). It is well known, however,18 that
the inclusion of electron-electron interaction can strongly modify
the electron spectrum, and hence the magnetic susceptibility for
certain types of the band degeneracy. This question will be ana-
lyzed in a separate publication.
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