
Physics Letters A 380 (2016) 3678–3682
Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Spin-current resonances in a magnetically inhomogeneous 2D 

conducting system

O.V. Charkina a, A.N. Kalinenko a, A.I. Kopeliovich a, P.V. Pyshkin b,c,∗, A.V. Yanovsky a

a B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Prospekt Nauky 47, Kharkiv 61103, Ukraine
b Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
c Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), PO Box 644, 48080 Bilbao, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 June 2016
Received in revised form 12 August 2016
Accepted 29 August 2016
Available online 1 September 2016
Communicated by M. Wu

Keywords:
Spintronics
Spin transport

The high-frequency transport in a two-dimensional conducting ring having an inhomogeneous collinear 
magnetic structure has been considered in the hydrodynamic approximation. It is shown that the 
frequency dependence on the radial electric conductivity of the ring exhibits resonances corresponding 
to new hybrid oscillations in such systems. The oscillation frequencies are essentially dependent on the 
applied electromagnetic field and the spin state of the system.
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1. Introduction

Spin accumulation in conducting nanosystems remains a prob-
lem of continuous keen interest [1]. Its dynamic aspect was in-
vestigated for the first time in [2]. In a conductor with inhomo-
geneous magnetic properties a nonequilibrium spin concentration 
generates forces acting on the spin components of the carriers and 
exciting coupled spin-current oscillations (we call them a “spin 
pendulum”). In this study we consider the possibility of spin-
current resonances in a two-dimensional conducting ring in a non-
quantizing magnetic field. As an example, the above effects are 
examined in a nondegenerate electron system on the liquid he-
lium surface (ESLH) and in two-dimensional semiconducting het-
erostructures. Magnetic inhomogeneity of these systems can be 
induced in various ways, for example, by introducing nonequilib-
rium concentrations of magnetic impurities, applying spatially in-
homogeneous magnetic fields or inhomogeneous electrostatic gate 
fields commonly used in experiments on heterostructures [3]. Ex-
perimental observation of resonances investigated in the article is 
the way to reveal of previously predicted by us [2] “spin pendu-
lum” oscillations of the conductor spin system, and study effects 
associated with them.

For the experimental realization of the predicted effects, one 
can use materials which are widely used in experiments with 2D 
electronic conductors in heterostructures [4] based on GaAs and 
ESLH. The problem is only in the creation of the spatial inhomo-
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geneity of the spin polarization conductor by methods suggested 
above.

Previously we investigated closely the transport and the spin-
electric effect in the ESLH employing the quasi-equilibrium ap-
proximation [5], i.e., in external electromagnetic fields whose fre-
quencies were low enough to permit the spin diffusion to form 
the equilibrium electron distribution under the influence of the 
forces of the inhomogeneous magnetic field acting on the spins. It 
was shown that within the range used the longitudinal and lateral 
electrical resistances in the magnetic field were determined not 
only by the momentum-loss scattering of electrons, but also by the 
electron–electron collisions generally dominant in the ESLH [6] and 
important in low-dimensional semiconducting structures [7]. This 
study is concerned with the transport properties of the mentioned 
inhomogeneous systems at relatively high frequencies of the exter-
nal field. It is shown that new resonances can be formed involving 
the spin degree of freedom. The conditions of their observation 
have been studied.

2. Two-liquid hydrodynamics of conducting spin systems

The description of conducting systems possessing the spin de-
gree of freedom in the two-liquid hydrodynamic approximation 
was substantiated in [2]. A similar approach was employed ear-
lier in [8]. For simplicity, we consider a system with collinear 
magnetization. To put it differently, the system is an incoherent 
mixture of “spin-up” and “spin-down” states, i.e., two electron spin 
components. The hydrodynamic approximation is valid when the 
momentum–conservation collisions in the electron system (normal 
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collisions) dominate over other possible ones [9]. We assume that 
the inequality νee � ν (νee is the frequency of electron–electron 
collisions, ν is the frequency of electron collisions with possi-
ble structure imperfections) is obeyed and the mean free path is 
lee � L and νee � ω, where L and ω are the characteristic lengths 
and frequencies of the problem, respectively. This condition holds 
true in the ESLH [6] and heterostructures [10].

In the ESLH currents are generated in a noncontact way by ap-
plying an AC electric potential to the electrodes located near the 
ESLH. The same technique is applicable for low-dimensional het-
erostructures. In this case the polarized charges ρe induced by the 
electrodes in the electron system or the corresponding polarization 
currents related to the charges according to the continuity equa-
tion div je = −∂ρe/∂t can be taken as pre-assigned parameters.

According to [5], the following linearized system of hydrody-
namic equations can be written down:

iω(ρeσ + δρσ ) + divρσ uσ = −νs�
∗(μσ − μ−σ ) (1)

(iω + ν)muσ − e
[uσ H ]

c
+ ∇(μσ + eϕ)

= −m
ρ−σ

ρ
νee(uσ − u−σ ) (2)

∑
σ

δρσ = 0 (3)

�∗−1 =
∑
σ

�−1
σ (4)

This system is for a “good” conductor [5] in which the depar-
ture from electric neutrality is related only to the polarization 
charges providing in the first approximation a steady potential 
along the conductor; ϕ is the next approximation to the poten-
tial induced by the flowing current. We have δρeσ = 0 when the 
current source is connected directly. It is convenient to choose 
the spin components of the polarization charge in the equilib-
rium form: ρeσ = �σ ρe/�, � = ∑

σ �σ (however, the total den-
sity of the component ρeσ + δρσ can be far from equilibrium). In 
Eqs. (1)–(4) ω is the frequency of the applied electric field, δρσ is 
the non-equilibrium addition to the density of the electrons with 
the spin projections σ onto the chosen direction, ρσ is the equi-
librium density which is assumed to be spatially inhomogeneous 
due to the applied nonuniform electric and magnetic fields and 
nonequilibrium concentrations of magnetic impurities; νs is the 
frequency of the spin-flip processes, δμσ is the nonequilibrium 
addition to the chemical potential of the spin component in the 
ESLH case when the momentum distribution of electrons can be 
considered classical; δμσ = T (δρσ /ρσ ), T is the temperature; �σ

is the density of states of the spin component at the Fermi sur-
face; uσ = jσ /ρσ is the drift velocity, H is the magnetic field 
component perpendicular to the two-dimensional plane, ν is the 
frequency of momentum-loss collisions of electrons, νee is the fre-
quency of electron–electron collisions (see the description [11] of 
the processes of scattering in spin-polarized transport). It is found 
[5] that at relatively low frequencies the drift velocities of spin 
components can differ significantly even when the drift approxi-
mation is applicable.

At frequencies exceeding the inverse time of spin diffusion 
within the boundaries of the sample the rate variations in spin 
components are negligible. In this case it is convenient to multiply 
Eq. (2) by ρσ and sum it over σ :

(iω + ν)m j +
∑
σ

ρσ ∇μσ + ρe∇ϕ − e

c
[ j H ] = 0 (5)

Here ρ0 = ∑
σ ρ0σ is the total equilibrium charge density, j = ρ0u

is the total electron flow. On summation the right-hand side of 
Eq. (2) loses the term describing the mutual friction of the electron 
components.
Fig. 1. Scheme of the proposed experiment: 2D magnetically inhomogeneous con-
ducting ring with the width a and radius R . The annular geometry of the proposed 
experiment is fundamentally important for considered effect, because this allows 
current to flow in the direction perpendicular to the applied electric field direction.

3. Spin-current and combined spin–cyclotron resonances

Consider a two-dimensional conducting ring with the radius R
and width a (see Fig. 1). The ring is connected, directly or in a 
noncontact way, to an AC current source along its outer and in-
ner boundaries. Apart from the mentioned small parameters of 
the problem, we take into account the geometric small parame-
ter a � 2π R = L which normally corresponds to the experimental 
conditions on the ESLH. The properties of the conductor and the 
magnetic field are assumed to be homogeneous along the radial 
coordinate r.

Note that in the main approximation with respect to the ge-
ometric small parameter the polarization charge density ρeσ can 
be taken as an odd function of the r-coordinate (−a/2 < r < a/2). 
Therefore, on averaging the sought-for values over r the term for 
polarization charges drops out of Eq. (1). Assuming equal drift ve-
locities for the spin components (see above) we have jσ = ρσ u =
jρσ /ρ . Averaged Eq. (1) gives:

δρσ = −(iω + νs)
−1 jl

d

dl

(
ρσ

ρ

)
. (6)

Here l is the coordinate along the ring. The equation takes into 
account the absence of a current flow through the sample bound-
aries on a noncontact connection. In the case of direct connection 
equation (6) is also valid if densities of the in- and out-currents at 
the same l are equal to each other. The latter may be provided by 
the homogeneity of the lead-in and the lead-out when the resis-
tivity of the material of the contacting leads is much higher than 
that of the ring. jl is the l-projection of the width-averaged total 
electron flow in the ring. It is l-independent by virtue of electric 
neutrality (result of σ -summed Eq. (1) and Eq. (3)). Henceforward 
the notation of averaging is omitted since we use only r-averaged 
quantities (except for Eq. (12)).

Averaging Eq. (5) over r we obtain in the r- and l-projections:

(iω + ν)mjr + e

a
ρ
[
ϕ(a/2) − ϕ(−a/2)

] + eH

c
jl = 0 (7)

(iω + ν)mjl −
∑
σ

ρσ
d

dl

[
(iω + νs)

−1�−1
σ

djl(ρσ /ρ)

dl

]

+ eρ
dϕ

dl
− eH

c
jr = 0 (8)

According to Eqs. (4) and (6), μσ in Eqs. (7) and (8) is expressed 
in terms of the flows. The l-independent parameter jl in the sec-
ond term of Eq. (8) is kept under the derivative sign for using the 
equation in the next section. The term for the pressure difference 
at the ring edges is omitted from Eq. (7): according to estimation, 
this quantity is lower in parameter a � L than the other contribu-
tions to the potential ϕ . After dividing both sides of Eq. (8) by ρ
and performing integration over l within the boundaries of the ring 
we obtain:
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(iω + ν)〈m/ρ〉 jl − jl

〈∑
σ

ρ−1ρσ (iω + νs)
−1 d

dl

[
�−1

σ

dρσ

dl

]〉

− e

c
jr〈H/ρ〉 = 0 (9)

〈A〉 = L−1
�

Adl

This equation describes the forced oscillations of the oscillator 
(“spin pendulum” [2]) whose eigenfrequency is

ω2
s = 〈m/ρ〉−1

∑
σ

〈
�−1

σ

[
d

dl

(
ρσ

ρ

)]2〉
(10)

ν and νs are the frequencies responsible for the oscillation damp-
ing and the term ejr〈H/ρ〉/c is the driving force.

We can obtain from Eq. (9)

jl = −(iω + νs)
e

c
jr

〈H/ρ〉
〈m/ρ〉(o2 − ω2

s )

o2 = −(iω + νs)(iω + ν) (11)

It is clear that the l-component of the polarization current can be 
neglected on account of the parameter a � L and the component 
jr is taken equal to the polarization current:

jr = jer = −iω

r∫
−a/2

ρedr′ (12)

In the case of a noncontact connection jr is the source-allowed 
input current. By substituting Eq. (11) into Eq. (7), dividing the 
obtained equation by ρ and integrating it with respect to l we 
can find the electrical resistance of the ring, i.e., the correlation 
between the mean voltage in the ring U = 〈ϕ(−a/2)〉 − 〈ϕ(a/2)〉
and the current ejr :

U = (ejr)
a

e2
〈m/ρ〉(iω + ν)

(o2 − ω2
s − �′ 2)

(o2 − ω2
s )

�′ 2 = �2(iω + νs)/(iω + ν) (13)

where the cyclotron frequency is � = |e|〈H/ρ〉/c〈m/ρ〉.
It follows from Eqs. (11) and (13) that when scattering is ab-

sent and ω = ωs , we get the resonance with singularities of the 
current along the ring and its resistance, while at ω = � + ωs

we get the resonance with the singularity in the conductivity of 
the ring (zero resistance). The first resonance occurs at the fre-
quency of the “spin pendulum”. In [2] this kind of oscillations was 
excited by a variable magnetic flux through the ring section. In 
our case they are excited by the Lorentz force acting on the cur-
rent in the radius direction. At ω = � + ωs we have a combined 
resonance in which the cyclotron resonance oscillations [12] are 
coupled with the first-type eigenmodes. When the magnetic prop-
erties of the ring are homogeneous, the combined oscillations turn 
into cyclotron ones. Note that a combined oscillation cannot exist 
as a pure eigenmode in the ring analyzed: we get jr = 0 when the 
current source is disconnected. This is due to the electric neutral-
ity requirements. However, a such type oscillations are possible if 
the ring edges, are short-circuited r = ±a/2.

It is interesting to discuss the prerequisites to the formation 
of the above resonances. In the ESLH an inhomogeneous mag-
netic field can induce the inhomogeneity of the equilibrium spin 
polarization: ρσ /ρ = exp(σμB Ht/2T )/2 cosh(μB Ht/2T ) where, 
in contrast to the foregoing formulas, Ht is the total magnetic 
field strength rather than its perpendicular component; μB is 
the Bohr magneton, T is the temperature, σ = ±1. Then ωs ∼
μB Htδ/(mT )1/2L at μB Ht < T , where δ is the relative variation 
of the magnetic field in the ring. The highest frequency attainable 
Fig. 2. The imaginary part of resistance R = U/aejr in the case of strong relaxation 
ν � ωs (ESLH). The distinction between the blue (solid line) and red (dashed line) 
curves demonstrates the role of magnetic nonuniformity. ρ = 1012 cm−2, m = 0.64 ·
10−28 g, νs � 108 Hz.

Fig. 3. The real part of resistance. The parameters are typical for 2D heterostruc-
tures; ρ = 1012 cm−2, m = 0.64 · 10−28 g, νs � 108 Hz.

at T = 1 K, μB Ht ∼ T , δ ∼ 1, L ∼ 1 cm is of the order of 106 Hz, 
which is about two orders of magnitude lower than the relaxation 
frequency ν at this temperature [6]. It is therefore impossible to 
observe in full the above discussed resonances in the ESLH, but the 
imaginary part of electrical resistance demonstrates a “combined 
resonance”: Im R = 0 at νs � ωs (see Fig. 2).

In semiconducting heterostructures the spin polarization inho-
mogeneity can be induced by a nonuniform field of gates. In the 
case of degenerate electron statistics, ωs ≈ v F δ/L (v F is the Fermi 
velocity) and the ratio between ω and ν is determined by the cor-
relation between the size of the ring and the mean free path with 
respect to momentum-loss collisions. Fig. 3 illustrates the effect 
of current attenuation along the ring at ω < ωs , which suppresses 
magnetoresistance at decreasing frequency. The reason is that the 
current-produced spin nonuniformity accumulates and retards the 
current.

4. Plasma oscillations

In the previous section we considered the electric neutrality 
of a good conductor assuming that the condition ω � ωp (ωp is 
the plasma frequency) is obeyed. On discarding this assumption, 
Eq. (3) should be replaced by the Poisson equation or an equiva-
lent expression accounting for the nonequilibrium addition to the 
potential inside the ring:
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ϕ(r,α) = e

a/2∫
−a/2

2π∫
0

δρ
(
r′,α′) r′dr′dα′

|r′ − r| , δρ =
∑
σ

δρσ (14)

where α is the polar angle.
Plasma oscillations along the ring can be excited by applying AC 

current at the ring edges. This can be done in different ways: i) by 
providing nonuniform (l-dependent) densities of spin components 
or the total electron density; or ii) by inducing the inhomogeneous 
input current ejr , as a result of angle variation of the leads re-
sistances at direct current injection or due to different distances 
between ring and the exiting electrodes on noncontact current 
feed. At last, it is possible to make a ring of a variable width.

Using Eq. (16) we can obtain the width-averaged potential of 
the ring:

ϕ = eaKδρ, K ∼= 23/2

ε

[
3 + 2.5 ln 2 + ln

(
2R

a

)]
(15)

Here we disregard the weak dependence K (r′) and use the value 
at r′ = 0; ε is the dielectrical permittivity of the ring determined 
by the bound electrons.

It is evident from Eqs. (8), (15) and the continuity equation 
iωδρ + djl/dl = 0 that the forced plasma oscillations of electron 
density in a homogeneous ring can be written as:

δρ = − jr1� sinα/R
(
ω2 − ω2

p − iων
)

(16)

where the plasma frequency is ωp = (e2ρdK/mR2)1/2. Here we 
assume that the oscillations are excited by the inhomogeneity jr =
jr0 + jr1 cosα. The potential difference between the ring edges can 
be written as U = U0 +U1 sinα. Then U1 of Eq. (7) can be obtained 
as

U1 = (ejr1)ae−2 m

ρ
(iω + ν)

ω2 − ω2
p − iων − �2

ω2 − ω2
p − iων

(17)

In the absence of attenuation at zero voltage we observe the mag-
netoplasma resonance at ω2 = ω2

p + �2 [13].
To analyze the importance of the spin effects in a magneti-

cally inhomogeneous ring we assume that only the quantity ρσ =
ρ0σ + σρ1 cosα is dependent on the l-coordinate. Allowance for 
other inhomogeneous quantities is quite simple though it involves 
too cumbersome formalism. For simplicity, we assume that the in-
equality ρ1 � ρσ0 is obeyed and takes into account only the zero 
and first harmonics in the α-dependences of the sought-for mag-
nitudes. Then Eqs. (7), (8) and (15) give U = U0 + U1 cosα:

U0 = (ejr)ae−2 m

ρ
(iω + ν)

[
1 − �′ 2 (o2 − ω′ 2

p ) + C

(o2 − ω2
s )(o2 − ω′ 2

p ) − B2/2

]

(18)

U1 = −(ejr)ae−2 m

ρ
�′ 2(iω + ν)

[(o2 − ω′ 2
p ) + C]B

(o2 − ω2
s )(o2 − ω′ 2

p ) − B2/2

(19)

where C = 0 in this model. ω2
s = (2mρR2)−1 ∑

σ �−1
σ ρ2

1 , ω′ 2
p =

ω2
p + (mρR2)−1 ∑

σ �−1
σ ρ2

σ0, B = (mρR2)−1ρ1
∑

σ �−1
σ σρσ0.

Thus, if the “spin pendulum” and plasma resonances have es-
sentially different frequencies (ωs � ωp that is the case of a “good 
conductivity”), then for ω � ωp the difference between Eqs. (18)
and (13) is not higher than (ωs/ωp)2. Specifically, the combined 
resonance (see the previous section) is shifted about B2/ω2

p . As a 
result of the pressure of the inhomogeneous electron density the 
plasma frequency increases slightly in the case of “good conduc-
tivity”. In this case the magnetoplasma resonance is closely similar 
Fig. 4. The imaginary part of resistance in a nanowide ring; ρ = 1012 cm−2, m =
0.64 · 10−28 g, νs � 108 Hz.

to that described by Eq. (17) (the only difference is that the oscil-
lations are forced by the inhomogeneity of the magnetic structure 
rather than an inhomogeneous current).

The proximity of spin and plasma frequencies and, hence, 
a quite intensive interference of the above oscillations are possi-
ble only for nanoscale width rings, when: ε�−1 ≈ e2a, (� = ρ/T
in the ESLH). In this case with scattering disregarded (ν = νs = 0), 
the mean electrical resistance of the ring is imaginary, and ac-
cording to Eq. (18) it has two “spikes” in frequency dependence 
determined by the equation (ω2 − ω2

s )(ω2 − ω2
p) = B2/2 and is 

zero at two frequencies of the combined resonance: (ω2 − ω2
s −

�2)(ω2 − ω2
p) = B2/2 + C (see Fig. 4). Note that the frequency of 

the plasma resonance is shifted even when the magnetic struc-
ture of the ring is homogeneous (ρ1 = 0). In the case of the ESLH
ω′ 2

p − ω2
p = T /mR2 (Maxwell statistics), which corresponds to the 

state equation of the ideal gas and it is independent of the mag-
netic field value. In the case of quantum statistics (T � �, � being 
the spin splitting of spectrum) the shift of the resonance frequency 
is dependent on the magnetic field. Really, the density of states 
of a two-dimensional system is considered to be σ -independent: 
�σ = m/2π�

2 for a quadratic isotropic spectrum and, when at 
� � εF, the magnitude 

∑
σ ρ2

σ0 increases with increasing H as �2

and the addition is of the order of (μB Ht�σ )2/4). Since L � lee is 
assumed throughout this consideration, the electron pressure must 
be taken into account.

Naturally, to perform further calculations in Eqs. (18)–(19) we 
need to specify our model. Thus, in the ESLH case, in the sake 
of simplicity let us assume that the inhomogeneous spin state 
is induced only by the inhomogeneity of that component of the 
magnetic field which is parallel to the conducting surface: H2

t =
H2 + H2‖ , H2‖ = H0 + H1 cosα. Then ω2

s = (μB Ht)
2/8T mR2, B = 0.

In the case of the degenerated statistics (e.g. for semicon-
ducting heterostructures) it seems reasonable to induce the spa-
tial inhomogeneity of the magnetic structure applying an inho-
mogeneous electric gate potential, V = V 0 + V 1 cosα, V 1 � V 0. 
The resulting inhomogeneity of the electron density is an addi-
tional factor responsible for excitation of plasma oscillations and 
we have ρ = ρ0 − �V 1 cosα, C = B�V 1/2ρ0, ω2

s = [V 1(ρσ0 −
ρ−σ0)]2/2π�

2ρ3
0 R2.

Since this consideration is restricted to only two harmonics in 
the α-dependence of the nonequilibrium density, it is impossi-
ble to examine resonances of the next series of plasma oscilla-
tions (the frequency of the nearest resonance is ωp1 = 2ωp[1 −
25/2/3K ]1/2). It is obviously that next resonances are less pro-
nounced as to compare with the discussed above in the measure 
of the small parameter ρσ1/ρσ0 � 1.
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In conclusion, we have discussed the high-frequency transport 
phenomena in a two-dimensional conducting rings with the mag-
netically inhomogeneous structure. It has been predicted an ex-
istence of a number of resonances in a.c. conductivity which are 
due to a new type hybrid oscillations of carriers caused by the in-
terrelated “spin pendulum”, cyclotron and plasma oscillations. The 
effect of current flow blocking due to spin inhomogeneity has been 
predicted.

Acknowledgements

This research was made possible in part by the NASU (National 
Academy of Sciences of Ukraine) Nanoprogram Grant No. 4/16-N 
and NASU Grant No. 1.4.10.26.3/F26-3/.

References

[1] Insight: Spintronics, Nat. Mater. 11 (2012) 367–416;
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