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Abstract. Using the orbital approach to the entropy theory we extend from Z-
actions to general countable amenable group actions T (or provide new short proofs
to) the following results: (1) relative and absolute Krieger theorem about finite gener-
ating partitions (and its infinite Rokhlin counterpart in case h(T ) = ∞), (2) relative
and absolute Sinai theorem about Bernoullian factors, (3) Thouvenot theorem that
every intermediate factor of a relatively Bernoullian action is also relatively Bernoul-
lian, (4) Thouvenot theorem that a factor of T with the strong Pinsker property
enjoys this property, (5) Smorodinsky-Thouvenot theorem that T can be spanned
by three Bernoullian factors, (6) Ornstein-Weiss isomorphism theory for Bernoullian
actions of the same entropy (provided that they possess generating partitions with
at least 3 elements), (7) there are uncountably many non-equivalent CPE extensions
of T of the same relative entropy, etc.

In proving these theorems, we were able to bypass the machinery from [OrW]
except of the Rokhlin lemma. It is shown that the language of orbit equivalence
relations and their cocycles (unlike the standard dynamical one) is well suited for the
inducing operation needed to settle (1), (5) and (6).

0. Introduction

The purpose of the present paper is to extend the classical entropy theory to the
framework of general amenable actions by exploiting the language of equivalence
relations and their cocycles. This method enables us to bypass the machinary of
[OrW]. Thus our work is a natural continuation of the previous paper [Da3] of
the first named author. While most of the principal results in [Da3] are about
the Pinsker algebras and CPE actions, our research here is concerned mainly with
Bernoullian factors and generating partitions for actions of countable amenable
groups (both in the relative and absolute setting) and related topics.

Recall that the entropy theory of general amenable group actions was initiated in
[Ki] and developed later in depth for isomorphism theorems in [OrW] (see also [Ol]).
Recently Rudolph and Weiss [RW] applied the orbit theory to settle a (difficult)
problem of purely entropic nature: amenable actions of completely positive entropy
(CPE) are uniformly mixing. The way the orbit theory was involved in [RW] (as well
as in [Da3] and the present paper) comes from a crucial observation that the relative
entropy of an amenable process is invariant under the factor orbit equivalence.
Recall that two triplets of the form {an amenable group, an ergodic action of
this group and a factor of this action} are factor orbit equivalent if there exists
an orbit equivalence which “respects” the factors. Since the actions of countable
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amenable groups have the same orbit structure like a Z-action [CFW], we thus
can establish some “relative entropy” theorems for general amenable actions by
deducing them directly from their classical (i.e. Z-) counterparts. Recall that the
standard approach requires an independent proof by following the classical one.

This orbital approach in the entropy theory was further investigated in [Da3]
which leads, among others, to new short (orbital) proofs of the main theorems
from [WaZ] and [GTW]. Moreover, the cited above results of Rudolph and Weiss
were reproved there in more algebraic language of measurable equivalence relations
and their cocycles, independent of the Rokhlin lemma, Shannon-McMillan theorem,
ergodic theorems for amenable actions, etc. i.e. the standard machinery from [OrW]
or [Ki].

Now we state the main results of this work together with some comments and
short historical remarks (we excuse for their incompleteness). The proofs will be
given in Sections 2–7. The precise definitions and preliminary material from the
orbit theory and the entropy theory for amenable actions will be given in Section 1.

The Kolmogorov-Sinai theorem says that the entropy of a measure preserving
transformation is equal to its entropy with respect to any generating partition.
In [Rok], Rokhlin proved the existence of countable generating partition for every
aperiodic transformation. This result was later strengthened by Krieger [Kr]: if the
entropy of an ergodic transformation is less than log k then there is a finite generator
of cardinality k. The Krieger theorem was extended to Zd-actions with positive
entropy by Thouvenot [Th1, Proposition 6] but the cardinality of his generator
is k + 1 (see also [KaW]). Finally Rosental extended the Krieger theorem to the
ergodic free actions of general countable amenable groups. For every such action,
he constructed in [Ro] some special—uniform—generator of cardinality k + 2.

We first demonstrate the relative versions of the Kolmogorov-Sinai, Krieger and
Rokhlin theorems for general amenable actions as follows:

Theorem 2.7. Let T be an ergodic action of a countable amenable group and F a
class-bijective factor of T .

(i) If P is a finite F-relative generator for T then h(T, P | F) = h(T | F).
(ii) If h(T | F) < log k then there is a finite F-relative generator P for T with

#P = k.
(iii) If h(T | F) = ∞ then there is a countable F-relative generator for T .

We say that a factor is class-bijective if the corresponding factor map does not
collapse the points on the same T -orbit. We remark that Kifer and Weiss proved
recently (i) and (ii) for Z-actions in [KW]. Their proof is quite different in the sense
that it is longer and uses some classical technique that is specific to Z-actions. On
the other hand their proof is independent of [Kr] and [RW].

From Theorem 2.7 and some other facts (to be explained below) we deduce (at
the very end of the paper) its absolute counterpart:

Theorem 7.2. Let T be an ergodic free G-action. If 0 < h(T ) < log k for some
integer k then there exists a finite generator P of T with #P = k if k is not prime
and k +1 otherwise. If h(T ) = ∞ then there exists a countable generating partition
for T .

Thus we improve the upper estimation for the cardinality of the generators ob-
tained in [Ro].
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The Ornstein isomorphism theory was relativised by Thouvenot in [Th1] (see
also [Li] for the infinite entropy case). It was extended later from Z-actions to R-
and (

∑∞
n=1 Z/2Z)-actions in [Fi] and [FiH] respectively. Ornstein and Weiss ask

in [OrW] if it is possible to extend the Thouvenot relative theory to actions of
general amenable groups? We give a partial answer to this question affirmatively
by demonstrating

Theorem 4.9. Let T be an ergodic action of G and F ⊂ H two factors of T . If F
is class-bijective and T is F-relatively Bernoullian then so is T ¹ H.

and

Corollary 4.16. Every two relatively Bernoullian extensions of T with the same
relative entropy are equivalent.

We say that T (or a T -factor containing F) is F-relatively Bernoullian if it splits
into Cartesian product of F and some complementary Bernoullian factor of T . We
show in Proposition 3.8 that the property of relative Bernoulicity is invariant under
the factor orbit equivalence. This is true for general—not necessarily amenable—
countable group actions.

Of course the above two claims can be restated in the equivalent language of
relative finitely determined (FD) processes and we conclude, in particular, that
the relative FD-property is invariant under the factor orbit equivalence. However
we would not explore the relative FD concept since we achieve our results like
Theorem 4.9 and Corollary 4.16 independent of it. It is worthwhile to remark
that we establish Corollary 4.16 without applying the Ornstein-Weiss isomorphism
theorem (or any other technique from [OrW]). Just the contrary, we will deduce
the isomorphism theorem from it (see Theorem 7.1 below).

We also extend another result of Thouvenot [Th2] to amenable actions. Recall
that a G-action T satisfies the strong Pinsker property if it is isomorphic to the
Cartesian product of a Bernoullian factor and a 0-entropy factor E.

Theorem 4.12. Let T be an ergodic free G-action satisfying the strong Pinsker
property and F a factor of T such that the factor F ∩ E is class bijective. Then
T ¹ F satisfies the strong Pinsker property.

Next, we extend the Sinai theorem about Bernoullian factors to general amenable
actions both in the relative and absolute setting.

Corollary 4.6 (see also Proposition 4.5). Given a class-bijective factor F of a
free ergodic action T of G and a finite distribution I such that H(I) ≤ h(T | F),
there exists a Bernoullian factor E ⊥ F having a finite Bernoullian generator Q
with distQ = I. The same is true for a countable distribution I, and if H(I) = ∞
we can claim in addition that h(T | F ∨∨

g∈G TgQ) = 0.

Theorem 5.5. Let T be an ergodic G-action. Then for each finite or countable
distribution I with H(I) ∈ (0, h(T )) there exists a Bernoullian factor F of T with
a Bernoullian generator Q such that distQ = I. Moreover, there is a Bernoullian
T -factor H of the full entropy, i.e. h(T | H) = 0. (Notice that in case h(T ) < ∞
the last formula is equivalent to h(T,H) = h(T ).)

Note that our proof of Theorem 5.5 is much shorter that the original one from
[OrW].
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Ornstein and Shields constructed in [OrS] an example of uncountably many
non-conjugate CPE-transformations of the same entropy. Then Swanson [Sw] and
Hoffman [Ho] produced a relative version of this example. We extend this relative
version to general amenable actions as follows.

Proposition 4.15(ii). Let T be an ergodic free action of G. Then there exist
uncountably many non-equivalent relatively CPE extensions of T with the same
entropy.

Following [Ho] we also show

Proposition 4.18 (ii). Given an ergodic free action T of G, there exists an ergodic
extension of T which is relatively prime.

Notice that even in the case G = Z our results (Propositions 4.15(ii) and 4.18(ii))
are different from those of Hoffman. They are more general in what our T is
arbitrary ergodic instead of only Bernoullian in [Ho]. But on the other hand they
are a bit weaker, since we do not control the “absolute properties” of the extensions
of T while in [Ho] the extensions are proved to be Bernoullian.

In [STh] Smorodinsky and Thouvenot proved that every ergodic transformation
of positive entropy can be spanned by three Bernoullian factors. This was extented
to R-actions in [Pa]. Using the orbit technique we are now able to prove

Theorem 6.1. Let T be an ergodic action of a countable amenable group G on
(X, BX , µ) with 0 < h(T ) ≤ ∞. Then for every ε > 0, there are three Bernoullian
factors F0, F1 and F2 of T such that F0∨F1∨F2 = BX and h(T ¹ Fi) < ε, i = 1, 2.

The crucial point of the original proof in [STh] is to consider some special trans-
formation induced by T . However the inducing on a subset is not possible for
actions of groups other than Z. Nevertheless, it is well defined for equivalence rela-
tions and their cocycles. We study the properties of such an inducing in Lemma 6.4.
Then we show how it works to complete the proof of Theorem 6.1. Remark that
even in the case of Z-actions our proof is simpler than that from [STh], since we do
not use directly the successive approximation argument which is the most technical
ingredient of the Smorodinsky-Thouvenot paper.

Furthermore, the cocycle inducing technique is applied to prove in a short way
Theorem 7.2 about absolute generators (we stated it above) and the following
Ornstein-Weiss isomorphism theorem for countable amenable actions:

Theorem 7.1. Let T and T ′ be two Bernoullian G-actions. They are conjugate if
one of the following is satisfied:

(i) h(T ) = h(T ′) = ∞,
(ii) h(T ) = h(T ′) < ∞ and each of T and T ′ has an independent generator with

at least 3 elements (as a partition).

To prove Theorems 5.5, 6.1 and 7.2 we need an auxiliary fact that every ergodic
free G-action of positive entropy has a free factor of arbitrarily small entropy. We
present elementary proofs of this fact for several important classes of amenable
groups, for instance: (a) G is torsion free, (b) G is Abelian, (c) G is locally finite,
etc. (see Proposition 5.1). However, to settle the general case (see Theorem 5.4)
we use the Rokhlin lemma from [OrW].
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1. Notation. Preliminaries

Orbital background. Let (X, BX , µ) be a standard probability space. Through-
out this paper we do not distinguish the objects (like subsets, maps, partitions,
etc.) which agree on a µ-conull subset. The trivial sub-σ-algebra of BX is denoted
by NX .

Let Aut(X,µ) stand for the group of µ-preserving invertible transformations
of X. A measure preserving discrete equivalence relation R on X is the orbit
equivalence relation of a countable subgroup G ⊂ Aut(X,µ) (see [FM] for details).
This generating subgroup is highly non-unique. If #R(x) < ∞ a.e. we say that R
is of type I.
R is hyperfinite if there exists a sequenceR1 ⊂ R2 ⊂ . . . of type I subrelations of

R with
⋃

nRn = R. The sequence (Rn)n is called a filtration of R. It follows from
[Dy] that a measure preserving discrete equivalence relation is hyperfinite if and
only if it is generated by a single transformation. The orbit equivalence relation of
a measure preserving action of a countable amenable group is hyperfinite [CFW]. R
is ergodic if every R-invariant subset belongs to NX . Any two ergodic hyperfinite
measure preserving discrete equivalence relations are isomorphic in the natural sense
(i.e. there exists an isomorphism of the underlying measure spaces that intertwines
bijectively the corresponding equivalence classes) [Dy].

Everywhere below R is an ergodic measure preserving discrete equivalence rela-
tion on (X, BX , µ). We let

[R] := {γ ∈ Aut(X, µ) | (x, γx) ∈ R a.e.},
N [R] := {θ ∈ Aut(X, µ) | θR(x) = R(θx) a.e.}

for the full group of R and the normalizer of [R] respectively. Clearly, [R] is a
normal subgroup in N [R].

Let A be a Polish group. A Borel map α : R→ A is called a cocycle if

α(x, x′′) = α(x, x′)α(x′, x′′) for all (x, x′), (x′, x′′) ∈ R.

Two cocycles α, β : R → A are cohomologous if there is a Borel map φ : X → A
with

α(x, x′) = φ(x)β(x, x′)φ(x′)−1 for all (x, x′) ∈ R ∩ (B ×B),

where B is a µ-conull subset.
For a transformation θ ∈ N [R], we define a cocycle α ◦ θ of R by setting

α ◦ θ(x, x′) = α(θx, θx′).

Two cocycles α, β : R → A are weakly equivalent if α is cohomologous to β ◦ θ for
a transformation θ ∈ N [R]. Clearly, the cohomology and the weak equivalence are
equivalence relations on the set of A-valued cocycles of R.

Let (Y, BY , ν) be another standard probability space. Given a cocycle α : R →
Aut(Y, ν), we associate a measure preserving discrete equivalence relation R(α) on
(X × Y, µ× ν) by setting

(x, y) ∼R(α) (x′, y′) if (x, x′) ∈ R and y′ = α(x′, x)y.
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Then a one-to-one group homomorphism [R] 3 γ 7→ γα ∈ [R(α)] is well defined via
the formula

γα(x, y) = (γx, α(γx, x)y), (x, y) ∈ X × Y.

The transformation γα is called the α-skew product extension of γ. The equivalence
relation R(α) is called the α-skew product extension of R.

For a finite partition P of X×Y , we denote by (Px)x∈X the associated measurable
field of finite Y -partitions (Px stands for the restriction of P onto the Y -fiber over
x). More generally, given a sub-σ-algebra F of BX ⊗BY , we denote by (Fx)x∈X

the associated measurable field of sub-σ-algebras of BY . It is well known that
the family of all sub-σ-algebras of BY endowed with the strong operator topology
is a Polish space (we identify a sub-σ-algebra with the orthogonal projector onto
the corresponding L2(Y, ν)-subspace of invariant functions). Moreover, the map
X 3 x 7→ Fx is measurable. Notice that for two sub-σ-algebras F and F′, we have
Fx = F′x for a.e. x ∈ X if and only if F ∨ (BX ⊗NY ) = F′ ∨ (BX ⊗NY ).

Definition 1.1. For a finite partition P of X × Y and a type I subrelation S of
R, we set

h(S, α, P ) :=
∫

X

1
#S(x)

H

( ∨

x′∈S(x)

α(x, x′)Px′

)
dµ(x),

and define the entropy of (α, P ) as

h(α, P ) := inf{h(S, α, P ) | S is a type I subrelation of R}.
For a sub-σ-algebra P of BX ⊗BY , we set

h(α, P) := sup{h(α, P ) | P is a finite P-measurable partition of X × Y }.
The entropy of α is h(α) := h(α, BX ⊗ BY ). We say that α is CPE (i.e. of
completely positive entropy) if h(α, P ) > 0 for every finite partition P that is not
contained in BX ⊗NY .

It was shown in [Da3] that if R is hyperfinite and (Rn)n≥1 a filtration of R then
the sequence h(Rn, α, P ) converges to h(α, P ) as n →∞. This is true even without
the ergodicity assumption on R. In our case—R is ergodic—we can prove more.

Proposition 1.2. If R is hyperfinite then

1
#Rn(x)

H

( ∨

x′∈Rn(x)

α(x, x′)Px′

)
→ h(α, P ) for a.a. x

as n →∞ for every filtration (Rn)n≥1 of R.

Proof. Let fn(x) := 1
#Rn(x)H

(∨
x′∈Rn(x) α(x, x′)Px′

)
, x ∈ X, n > 0. It was

shown in the proof of [Da3, Proposition 2.6] that fn+1 ≤ E(fn | Rn+1) a.e., where
E(. | Rn+1) stands for the conditional expectation with respect to the σ-albebra
of Rn+1-invariant subsets. By the submartingales convergence theorem [Lo, § 32],
fn converges a.e. (and in L1(X, µ)) as n →∞. Since fn is Rn-invariant, the limit
function is R-invariant and hence constant, say c. Then∫

fn dµ = h(Rn, α, P ) →
∫

c dµ = c

and hence c = h(α, P ). ¤
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Entropy concepts for group actions. Let G be a countable group, T = {Tg}g∈G

an ergodic measure preserving action of G on (Y, BY , ν). A T -invariant sub-σ-
algebra E of BY is called a factor of T . The restriction of T to (E, ν ¹ E) will be
denoted by T ¹ E. We also call T an extension of T ¹ E.

A T -factor E is class-bijective if for a measurable map f : Y → R with E =
f−1(BR), we have that f is one-to-one on the T -orbits a.e.. Clearly if T is free then
E is class-bijective if and only if the factor-action T ¹ E is free (with respect to the
measure ν ¹ E).

Given a cocycle β of the T -orbit equivalence relation with values in Aut(Z, κ),
denote by T β = {(Tg)β}g∈G the β-skew product extension of T . Then BY ⊗ NZ

is a class-bijective factor of T β . Conversely, if E is a class-bijective factor of an
ergodic action T then T is isomorphic to a skew product extension of T ¹ E.

Let Q be a finite partition of Y and E a factor of T . The E-relative entropy of
the process (T,Q) is

(1-1) h(T, Q|E) := inf
{

1
#F

H

( ∨

g∈F

T−1
g Q

∣∣∣∣E
) ∣∣∣∣ F is a finite subset of G

}
.

If G is amenable then h(T, Q|E) = limi→∞ 1
#Fi

H(
∨

g∈Fi
T−1

g Q|E) for each Følner
sequence (Fi)i≥1 in G (see [Ol], [OrW], [Da3]).

For a sub-σ-algebra P of BY (not necessarily a factor of T ), we set

h(T, P | E) = sup{h(T, Q | E) | Q is a finite P-measurable partition of Y }.
The E-relative entropy of T is h(T |E) := h(T, BY | E) and the E-relative Pinsker
algebra of T is

Π(T |E) = ∨{Q ⊂ BY | h(T, Q|E) = 0}.
If Π(T | E) = E then T is called E-relatively CPE. We will write h(T ), Π(T ) and
h(T, P) instead of h(T | NY ), Π(T | NY ) and h(T,P | NY ) respectively.

It is easy to verify that T is Π(T )-relatively CPE.
The next important statement is of constant use in the paper. Originally it

was proved in [RW] in a different but equivalent form. Another purely orbital
(independent of the machinery from [OrW]) proof of it is given in [Da3].

Lemma 1.3. Let α be a cocycle of a hyperfinite ergodic equivalence relation R on
(X, BX , µ) with values in Aut (Y, ν). If T is a free G-action on X generating R
then

h(Tα, P | BX ⊗NY ) = h(α, P )

for every finite partition P of X ×Y . This implies h(Tα,P | BX ⊗NY ) = h(α, P)
for every sub-σ-algebra P ⊂ BX ⊗BY . Moreover, α is CPE if and only if Tα is
(BX ⊗NY )-relatively CPE.

2. Relative generators

In this section we prove the relative Kolmogorov-Sinai, Krieger and Rokhlin
theorems about generating partitions for amenable group actions (see Theorem 2.7).
But first we establish their orbital counterparts.

Let (X, BX , µ) and (Y, BY , ν) be standard probability spaces. Recall that
throughout the paper R is an ergodic µ-preserving countable equivalence relation
on X and α : R→ Aut(Y, ν) a cocycle of R.
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Definition 2.1. A sub-σ-algebra P of BX ⊗BY is a generator for α if

∨

x′∈R(x)

α(x, x′)Px′ = BY for a.e. x.

We state also the dynamical analogue of this notion.

Definition 2.2. Let F be a factor of an action T = (Tg)g∈G of a countable group
G on (X, B, µ). A sub-σ-algebra P of BX is called an F-relative generator for T if
F ∨∨

g∈G TgP = BX for a.e. x.

Remark 2.3. It is easy to see that P is a generator for α if and only if it is a
(BX ⊗NY )-relative generator for the α-skew product extension of any action of a
countable group generating R.

The following statement is the orbital version of the relative Kolmogorov-Sinai
theorem.

Lemma 2.4. Let R be hyperfinite. Given a generator P for α, we have h(α, P) =
h(α).

Proof. Suppose that the contrary holds: there exists a finite partition Q of X × Y
with h(α, Q) > h(α, P). By the Dye theorem [Dy] there is a transformation γ of
X that generates R. It is ergodic since so is R. We deduce the following from
Lemma 1.3 and the relative Pinsker formula for Z-actions:

h(α, P) < h(α, Q) = h(γα, Q | BX ⊗NY )

≤ h(γα, Q ∨P | BX ⊗NY )

= h(γα, P | BX ⊗NY ) + h

(
γα, Q

∣∣∣∣(BX ⊗NY ) ∨
∨

i∈Z
γi

αP

)

= h(α, P) + 0,

since P is a (BX ⊗NY )-relative generator for γα (see Remark 2.3). Recall that γα

stands for the α-skew product extension of γ. ¤

Definition 2.5. α is ergodic if so is the α-skew product equivalence relation R(α).

Clearly, if two cocycles are cohomologous or weakly equivalent and one of them
is ergodic then so is the other one.

Now we state the orbital versions of the relative Krieger and Rokhlin theorems
about generators.

Lemma 2.6. Let R be hyperfinite and α ergodic.
(i) If h(α) < log k for an integer k ≥ 2 then there exists a finite generator P

for α with #P = k.
(ii) If h(α) = ∞ then there exists a countable generator for α.

Proof. (i) Let γ be a zero entropy transformation that generates R. We deduce
from the Abramov-Rokhlin entropy addition formula [AR] and Lemma 1.3 that

h(γα) = h(γ) + h(γα | BX ⊗NY ) = h(α).
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Since α is ergodic and the transformation γα generates R(α), we deduce that γα is
ergodic. Then by the Krieger theorem [Kr], there exists an (absolute) generator P
for γα with #P = k [Kr]. Clearly, P is a (BX ⊗NY )-relative generator for γα as
well. It remains to apply Remark 2.3.

(ii) can be demonstrated in a similar way: just apply the Rokhlin theorem about
countable generators [Rok] instead of the Krieger theorem. ¤

From Lemmas 2.4 and 2.6 we deduce respectively the relative Kolmogorov-Sinai,
Krieger and Rokhlin theorems for amenable group actions (see Remark 2.3).

Theorem 2.7. Let T be an ergodic action of a countable amenable group and F a
class-bijective factor of T .

(i) If P is a finite F-relative generator for T then h(T, P | F) = h(T | F).
(ii) If h(T | F) < log k then there is a finite F-relative generator P for T with

#P = k.
(iii) If h(T | F) = ∞ then there is a countable F-relative generator for T .

3. Bernoullian cocycles and relatively Bernoullian group actions

In this section we introduce the concept of Bernoullicity for cocycles. We dis-
cuss how it is linked with the concept of relative Bernoullicity for countable group
actions. Such actions split into the product of the original factor and a Bernoullian
one. We show that a cocycle is Bernoullian if and only if the corresponding skew
product extension of every group action generating the underlying equivalence rela-
tion is relatively Bernoullian. This holds in the general setting of countable group
actions and discrete equivalence relations. Then we study the case of amenable
groups and hyperfinite relations in more detail. We prove the “uniqueness” the-
orem for Bernoullian cocycles of equal entropy and demonstrate the existence of
Bernoullian generators with prescribed distributions for Bernoullian cocycles. As
a corollary, we deduce similar results for relatively Bernoullian amenable group
actions.

Definition 3.1. We say that a finite partition P of X × Y is Bernoullian for α
if h(α, P ) = H(P ). A sub-σ-algebra P of BX ⊗ BY is Bernoullian for α if so is
every finite P-measurable partition of X ×Y . We call α Bernoullian if there exists
a Bernoullian generator for it.

Clearly, if two cocycles are cohomologous or weakly equivalent and one of them
is Bernoullian then so is the other one.

Remark 3.2. It follows from Lemma 2.4 that if R is hyperfinite then a finite gen-
erator P is Bernoullian if and only if H(P ) = h(α).

Proposition 3.3. A sub-σ-algebra P is Bernoullian for α if and only if it is in-
dependent of BX ⊗NY and the sub-σ-algebras α(x, x′)Px′ of BY , x′ ∈ R(x), are
independent for a.e. x ∈ X.

Proof. It is enough to consider only P finite. The general case can be deduced
from this via the standard approximation of P by an increasing sequence of finite
sub-σ-algebras.
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Thus suppose that P is a finite Bernoullian partition for α. Given a type I
subrelation S ∈ R, we have

(3-1)

H(P ) = h(α, P ) ≤ h(S, α, P )

=
∫

1
#S(x)

H

( ∨

x′∈S(x)

α(x, x′)Px′

)
dµ(x)

≤
∫

1
#S(x)

∑

x′∈S(x)

H(Px′) dµ(x)

=
∫

E(H(Px)|S) dµ(x)

=
∫

H(Px) dµ(x) = H(P |BX ⊗NY ) ≤ H(P ),

where E(.|S) stands for the conditional expectation relative to the σ-algebra of
S-invariant subsets. It follows that the finite Y -partitions α(x, x′)Px′ , x′ ∈ S(x),
are independent for a.e. x. Since by [FM] every discrete equivalence relation is
the union of a countable family of type I subrelations, the partitions α(x, x′)Px′ ,
x′ ∈ R(x), are independent for a.e. x ∈ X. From (3-1) we deduce as well that
H(P |BX ⊗NY ) = H(P ) which yields P ⊥ (BX ⊗NY ).

To prove the opposite claim it suffices to notice that h(S, α, P ) = H(P ) for every
type I subrelation S ⊂ R. This fact follows straightforward from our assumptions
on P and (3-1) (now with =’s instead of ≤’s). ¤
Example 3.4. Let G be a countable (not necessarily amenable) group, T =
(Tg)g∈G a free G-action generating R and L = (Lg)g∈G a Bernoullian action of
G on (Y, ν). We set

(3-2) β(Tgx, x) = Lg, g ∈ G, x ∈ X.

Then β is a Bernoullian cocycle and if a sub-σ-algebra Q ⊂ BY is a Bernoullian
generator for L then NX ⊗Q is a Bernoullian generator for β.

Now we state the dynamical counterparts of the Bernoullicity concepts from
Definition 3.1.

Definition 3.5. Let F be a factor of an action T = (Tg)g∈G of a countable group
G on (X, B, µ). A finite partition P of X is called F-relatively Bernoullian if
h(T, P | F) = H(P ). A sub-σ-algebra P of BX is F-relatively Bernoullian if so is
every finite P-measurable partition of X.

If there exists an F-relatively Bernoullian generator for T then T is called F-
relatively Bernoullian.

Remark 3.6. It follows from (1-1) that T is F-relatively Bernoullian if and only if
there exists a sub-σ-algebra P of BX with the following properties (cf. Proposi-
tion 3.3):

(i) P is independent under T , i.e. the sub-σ-algebras TgP, g ∈ G, are inde-
pendent,

(ii) F ⊥ ∨
g∈G TgP and

(iii) F ∨∨
g∈G TgP = BX .
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Hence there exists a measure space isomorphism

τ : (X, BX , µ) → (X, F, µ ¹ F)× (Y, BY , ν)

such that the following are satisfied:
(i) there are a Bernoullian G-action L on (Y, ν) and a Bernoullian generator

Q ⊂ BY for L with τ(P) = NX ⊗Q,
(ii) τ(A) = A for every subset A ∈ F,
(iii) τTτ−1 = (T ¹ F)× L.

To put it in other way, T splits into the Cartesian product of the factor action T ¹ F
and another (Bernoullian) factor of T generated by P. Clearly,

h(T, P | F) = h(L, Q) = H(Q).

Remark 3.7. Notice that if T is F-relatively Bernoullian then it is free (provided
that F 6= BX).

We explain the interplay between the orbital and dynamical Bernoullicity in the
next statement. Notice that in the particular case of amenable group actions (and
hyperfinite R) it follows easily from Lemma 1.3.

Proposition 3.8. Let R be generated by a free action T of a countable group G.
Then a finite partition P of X×Y is Bernoullian for α if and only if it is (BX⊗NY )-
relatively Bernoullian for the α-skew product extension Tα of T . Moreover, α is
Bernoullian if and only if Tα is (BX ⊗NY )-relatively Bernoullian.

Proof. (⇐=) Let F be a finite subset in G. Since P is (BX ⊗ NY )-relatively
Bernoullian for Tα, we have

H(P ) ≤ 1
#F

H

( ∨

g∈F

Tα
g P

∣∣∣∣BX ⊗NY

)

=
∫

X

1
#F

H

( ∨

g∈F

α(x, Tgx)PTgx

)
dµ(x)

≤
∫

X

1
#F

∑

g∈F

H(PTgx) dµ(x)

= H(P | BX ⊗NY ) = H(P ).

It follows that the partitions PTgx, g ∈ F , are independent for a.a. x ∈ X. Since T
generates R, it follows that the partitions Px′ , x′ ∈ R(x), are independent for a.a.
x. Hence P is Bernoullian for α.

(=⇒) Given a finite subset F ⊂ G, let X =
⋃

i Xi be a countable partition of
X such that for each i the subsets TgXi, g ∈ F , are disjoint. Existence of such a
partition is a simple corollary from the freeness of T . For the proof, see for instance
[OrW, p.57]—amenability of G is used nowhere in that proof. Define an equivalence
relation Si on X by setting x ∼Si x′ if x = x′ or x, x′ ∈ {Tgz | g ∈ F} for some
z ∈ Xi. Clearly, Si is a type I subrelation of R. It is easy to see that

h(Si, α, P ) =
∫

X\⋃g∈F TgXi

H(Px) dµ(x) +
∫

Xi

H

( ∨

g∈F

α(x, Tgx)PTgx

)
dµ(x).

11



On the other hand, h(Si, α, P ) = H(P | BX ⊗NY ) since P is Bernoullian for α. It
follows that

(3-3)
1

#F

∫

Xi

H

( ∨

g∈F

α(x, Tgx)PTgx

)
dµ(x) =

1
#F

∫
⋃

g∈F TgXi

H(Px) dµ(x).

Of course, ∑

i

1⋃
g∈F TgXi

=
∑

i

∑

g∈F

1TgXi
=

∑

g∈F

1X = #F a.e..

Hence summing (3-3) in i we obtain

1
#F

H

( ∨

g∈F

Tα
g P

∣∣∣∣ BX ⊗NY

)
= H(P | BX ⊗NY ) = H(P ),

as desired.
The second claim of the proposition follows from the first one and Remark 2.3. ¤
Since the Cartesian product of two Bernoullian G-actions is a Bernoullian G-

action, we conclude that Bernoullicity is preserved under extending by Bernoullian
cocycles (like the CPE-property of amenable group actions is preserved under ex-
tending by CPE-cocycles):

Corollary 3.9. Let R be generated by a Bernoullian action T of a countable group
and α a Bernoullian cocycle of R. Then the α-skew product extension Tα of T
is also Bernoullian. Moreover, if Q is an independent generator for T and P a
Bernoullian generator for α then (Q⊗NY )∨P is a Bernoullian generator for Tα.

The next assertion about “straightening” of cocycles follows from Proposition 3.8
and Remarks 3.6 and 3.2.

Corollary 3.10. Let R be generated by a free G-action and α a Bernoullian co-
cycle of R. Then there exists a Bernoulian G-action L on (Y, ν) such that α is
cohomologous to a cocycle β given by (3-2). Moreover, if R is hyperfinite then
h(α) = h(L).

In particular, we conclude from this that every Bernoullian cocycle is ergodic.
Furthermore, if R is hyperfinite then α is CPE. Actually, it is easy to verify that
the property of cocycles to be CPE is a cohomology invariant [Da3]. Since R is
generated by a single transformation γ, it follows from Corollary 3.10 and the last
assertion of Lemma 1.3 that α is CPE whenever the Cartesian product of γ with
some Bernoullian transformation of Y is (BX ⊗NY )-relatively CPE. But the last
claim is a well known classical fact.

It is easy to verify that the entropy of cocycles is a cohomology invariant (see
[Da3]). We show now that this invariant is complete in the class of Bernoullian
cocycles of hyperfinite equivalence relations.

Theorem 3.11. Let R be hyperfinite and α, β : R → Aut(Y, ν) two Bernoullian
cocycles. They are cohomologous if and only if h(α) = h(β).

Proof. Let γ be a transformation that generates R. By Corollary 3.10, there exist
cocycles α′ and β′ of R cohomologous to α and β respectively such that

α′(γx, x) = θ1, β′(γx, x) = θ2,
12



where θ1 and θ2 are two Bernoullian transformations. Moreover,

h(θ1) = h(α) = h(β) = h(θ2).

Hence by the Ornstein isomorphism theorem (see [Or1] and [Or2]), there exists a
transformation δ ∈ Aut(Y, ν) such that θ1 = δθ2δ

−1. It follows that α′ and β′ (and
hence α and β) are cohomologous. Actually, put φ(x) := δ for a.e. x ∈ X. Then φ
is a “transfer function” from α′ to β′. ¤
Remark 3.12. Let R be hyperfinite and α Bernoullian. It is easy to verify that for
any transformation θ ∈ N [R], the cocycle α ◦ θ (see § 2 for the definition) is also
Bernoullian. Moreover, h(α ◦ θ) = h(α) [Da3]. Hence α ◦ θ is cohomologous to α
according to Theorem 3.11. Thus the “symmetry group”

D(R, α) := {θ ∈ N [R] | α ◦ θ is cohomologous to α}
of α is the entire normalizer N [R], i.e. the largest possible. This is in a sharp
contrast with the cocycles taking values in compact groups (and, in fact with all
regular cocycles [Da2]): if the symmetry group of such a cocycle is N [R] then
this cocycle is a coboundary [Da1], [DG]. We conjecture that if R is hyperfinite, α
ergodic and D(R, α) = N [R] then α is Bernoullian.

Next we prove that a relatively Bernoullian amenable group action has a rel-
atively Bernoullian generator with any prescribed distribution (of fixed entropy).
To do this we first establish a similar result for Bernoullian cocycles. Recall first
that a k-element distribution I is a probability vector (I1, . . . , Ik). The entropy of
I is H(I) := −∑k

n=1 In log In. From now on we assume that a partition, say P
of (X, BX , µ), is ordered, i.e. P = (P1, . . . , Pk) with a fixed order. The associated
distribution (µ(P1), . . . , µ(Pk)) is denoted by dist P . In a similar way we can define
H(I) and dist P for a countable distribution I = (I1, I2, . . . ) and countable ordered
partition P = (P1, P2, . . . ) respectively.

Proposition 3.13. Let T be a free ergodic action of an amenable group G and F
a class-bijective factor of T . If T is F-relatively Bernoullian then for each finite
or countable distribution I with H(I) = h(T | F) there exists a finite or countable
F-relatively Bernoullian generator P of T with distP = dist I. In particular, if
h(T | F) = log k then there is a k-element F-relatively Bernoullian generator of T .
Conversely, if T admits a k-element generator P with h(T | F) = log k then P is
F-relatively Bernoullian.

In view of Proposition 3.8, Remarks 2.3 and 3.2, to settle Proposition 3.13 it
suffices to prove

Lemma 3.14. Let R be hyperfinite and α Bernoullian. Given a finite or countable
distribution I with h(α) = H(I), there is a finite or countable Bernoullian generator
P for α with distP = dist I. In particular, if h(α) = log k then there exists a
Bernoullian k-element generator. Conversely, if α admits a k-element generator P
and h(α) = log k, then α is Bernoullian.

Proof. The first assertion follows from Theorem 3.11 and Example 3.4. The second
one is obvious. We deduce the last assertion from the inequality

log k = h(α, P ) ≤ H(P ) ≤ log k.

¤
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4. Factors, extensions and relative Bernoulli theory

In this section we use the orbital approach to extend (a part of) the Thou-
venot relative isomorphism theory [Th1], [Th2] (see also [Li] for the case of infinite
entropy) and several results from [Ho] to amenable group actions. Among them
are relative Sinai theorem on Bernoullian factors, Thouvenot theorem about rela-
tive Bernoullicity of a factor of a relatively Bernoullian transformation, Thouvenot
theorem about factors of transformations with the strong Pinsker property, Hoff-
man’s uncountable family of non-relatively-isomorphic relatively CPE transforma-
tions with the same relative entropy, etc. To achieve this we introduce a concept
of factor for cocycles of measured equivalence relations. This concept correspond
exactly to that of relative factor for group actions (i.e. a factor which contains
another—fixed—one). Hence relative factors are invariant under the factor orbit
equivalence. The same is true for the subclass of relatively Bernoullian factors, i.e.
factors with a complementary Bernoullian factor. This enable us to deduce the
desired results from their classical counterparts.

From now on we will assume that R is hyperfinite and G amenable.

Definition 4.1. A sub-σ-algebra F = (Fx)x∈X ⊂ BX ⊗BY is called a factor of
α if F ⊃ BX ⊗ NY and Fx = α(x, x′)Fx′ at all (x, x′) ∈ R ∩ (B × B) for a µ-
conull subset B. (Recall that (Fx)x∈X stands for the associated measurable field of
sub-σ-algebras of BY —see § 1.)

Since F contains BX ⊗NY , the associated measurable field (Fx)x∈X determines
F uniquely, i.e. if F and F′ are two factors of α with Fx = F′x a.e. then F = F′.

Definition 4.2.
(i) A factor F = (Fx)x∈X of α is called Bernoullian if there exists a Bernoullian

sub-σ-algebra P ⊂ BX ⊗BY such that
∨

x′∈R(x) α(x, x′)Px = Fx for a.a.
x.

(ii) A factor of α is called prime if it has no proper factors except for BX⊗NY .

Remark 4.3.
(i) Let a sub-σ-algebra F of BX ⊗BY contains BX ⊗NY . Then F is a factor

of α if and only if F is a factor of the α-skew product extension Tα of any
countable group action T generating R.

(ii) A factor F is Bernoullian for α if and only if it is (BX ⊗ NY )-relatively
Bernoullian for every such a Tα.

(iii) A factor F of α is prime if it (BX ⊗ NY )-relatively prime for every Tα.
Recall that a G-action T is called relatively prime with respect to a factor
E if T has no proper factors containing E except for E itself.

(iv) Every sub-σ-algebra P ⊂ BX ⊗ BY is a generator of some factor of α.
This factor is determined uniquely by P. Actually, consider a measurable
field X 3 x 7→ ∨

x′∈R(x) α(x, x′)Px′ of sub-σ-algebras of BY . Clearly, this
measurable field determines uniquely a factor of α (see the remark just
after Definition 4.1).

We are going to establish the relative Sinai theorem (about Bernoullian factors)
for amenable group actions and—as a by-product—for cocycles of hyperfinite equiv-
alence relations. Recall first that the distance between two k-element distributions
I and I ′ is |I − I ′| :=

∑k
n=1 |In − I ′n| and the L1-distance between two k-element

partitions P and P ′ is ‖P − P ′‖1 :=
∑k

n=1 µ(Pn4P ′n).
14



Now we state the Ornstein’s version of the relative Sinai theorem for Z-actions
(see [Or2, Lemma 5] and [Th1, Proposition 2’]) in the following (a bit different but
equivalent) form:

Lemma 4.4. Let γ be an ergodic transformation of X, F is a factor of γ with
h(γ, F) < ∞ and I a k-element distribution with H(I) ≤ h(γ | F). Then for each
ε > 0 there is δ > 0 such that for every k-element partition P ′ with

(i) |dist P ′ − I| < δ and
(ii) |h(γ, P ′ | F)−H(I)| < δ

there exists a k-element F-relatively Bernoullian partition P such that
(iii) ‖P ′ − P‖1 < ε and
(iv) dist P = I.

Proposition 4.5. let T be a free ergodic action of G, F a class-bijective factor of
T and I a k-element distribution with H(I) ≤ h(T | F). Then for each ε > 0 there
is δ > 0 such that for every k-element partition P ′ with

(i) |dist P ′ − I| < δ and
(ii) |h(T, P ′ | F)−H(I)| < δ

there exists a k-element F-relatively Bernoullian partition P such that
(iii) ‖P ′ − P‖1 < ε and
(iv) dist P = I.

Proof. We first restate the claim of the proposition into the language of discrete
equivalence relations and their cocycles as follows:

Let α : R → Aut(Y, ν) be an ergodic cocycle ofR. Given a k-element distribution
I with H(I) ≤ h(α) and ε > 0 there is δ > 0 such that for every k-element partition
P ′ of X × Y with

(a) |dist P ′ − I| < δ and
(b) |h(α, P ′)−H(I)| < δ

there exists a k-element Bernoullian partition P of X × Y such that
(c) ‖P ′ − P‖1 < ε and
(d) dist P = I.

But this is surely true. Actually, just put F:=BX ⊗NY and γ := θα for a trans-
formation θ generating R and apply Lemma 4.4 and Remark 4.3(i, ii).

To complete the proof, notice that every group action having a class-bijective
factor can be represented as a skew product extension over this factor and that
the orbit equivalence relation of T is hyperfinite [CFW]. It remains to apply again
Remark 4.3(i, ii) but this time in the “opposite direction”. ¤

In particular, the following statement holds (and that is exactly what we need
for applications in the further sections):

Corollary 4.6. Given a class-bijective factor F of a free ergodic action T of G
and a finite distribution I such that H(I) ≤ h(T | F), there exists a Bernoullian
factor E ⊥ F having a finite Bernoullian generator Q with dist Q = I. The same is
true for a countable distribution I, and if H(I) = ∞ we can claim in addition that
h(T | F ∨∨

g∈G TgQ) = 0.

Proof. The first assertion follows immediatly from Proposition 4.5. To prove the
second one we consider separately two cases:
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(A) H(I) < ∞. Take a finite distribution I ′ with H(I ′) = H(I), apply the first
assertion of the corollary to I ′ and—to conclude—make use of Proposition 3.13.

(B) H(I) = ∞ and hence h(T | F) = ∞. By Theorem 2.7(iii), there exists
a countable F-relative generator P = (P1, P2, . . . ) for T . Let Fn stand for the
F-relative factor of T generated by the finite partition (P1, . . . , Pn, X \ ⋃n

i=1 Pi),
n = 1, 2 . . . and let F0 := F. By the first claim of the corollary, there exists a
Bernoullian factor En ⊂ Fn such that En ⊥ Fn−1 and

(4-1) h(T, En | Fn−1) = h(T, Fn | Fn−1).

Notice that h(T, Fn | Fn−1) ≤ h(T, Fn | F) ≤ log(n + 1). Since En, n = 1, 2, . . . ,
are pairwise independent, the T -factor E :=

∨∞
n=1 En is Bernoullian. Remark also

that En ⊥ F for all n > 0 and hence E ⊥ F. By Proposition 3.13, we can find a
countable Bernoullian partition Q of X with dist Q = I and

∨
g∈G TgQ∨F = E∨F.

It follows from (4-1) that h(T, Fn | Fn−1 ∨ En) = 0 and hence

h(T, Fn | F ∨ E) ≤ h(T, Fn | F ∨ E1 ∨ · · · ∨ En)

= h(T, Fn−1 | F ∨ E1 ∨ · · · ∨ En) + h(T, Fn | E1 ∨ · · · ∨ En ∨ Fn−1)

≤ h(T, Fn−1 | F ∨ E1 ∨ · · · ∨ En−1)
· · ·
≤ h(T, F | F) = 0.

Since F1 ⊂ F2 ⊂ · · · and
∨∞

n=1 Fn = BX , we obtain h(T | F∨E) = 0, as desired. ¤
Remark that now we do not need the condition h(T, F) < ∞ from [Th1, Propo-

sition 2’].
Our next objective is to extend the main results from [Th1] and [Th2] to the

general setting of amenable group actions (see Theorems 4.9 and 4.12). We recall
first

Lemma 4.7 ([Th1, Proposition 5] and [Li, Appendix]). Let γ be an ergodic trans-
formation, F ⊂ H two factors of it. If γ is F-relatively Bernoullian then so is
γ ¹ H.

Lemma 4.8 [Th2, Lemma 1]. Let γ be an ergodic transformation of (Z, BZ , κ) with
finite entropy and F and H two factors of γ such that the following are satisfied:

(i) F ∨ H = BZ ,
(ii) γ is H-relatively Bernoullian,
(iii) F ⊥F∩H H.

Then F is (F ∩ H)-relatively Bernoullian.

We extend these results (provided that the factors are class-bijective) as follows.

Theorem 4.9. Let T be an ergodic action of G and F ⊂ H two factors of T . If F
is class-bijective and T is F-relatively Bernoullian then so is T ¹ H.

Proof. We first establish an orbital version of this proposition. Namely, let α be a
Bernoullian cocycle of R. Then every factor F of α is Bernoullian.

Actually, let γ be a transformation of X that generates R. By Proposition 3.8,
the α-skew product extension γα of γ is (BX ⊗NY )-relatively Bernoullian. Since
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F ⊃ BX ⊗ NY , we deduce from Lemma 4.7 that γα ¹ F is (BX ⊗ NY )-relatively
Bernoullian. Hence F is Bernoullian for α (see Remark 4.3(ii)), as claimed.

Now to deduce the statement of the proposition from this claim do exactly like
at the final step of the proof of Proposition 4.5. ¤

Lemma 4.10. Let T be an ergodic free action of G on (X, BX , µ) and F and H
two factors of T such that the following are satisfied:

(i) F ∨ H = BX ,
(ii) h(T, H) < ∞,
(iii) T is H-relatively Bernoullian,
(iv) F ⊥F∩H H,
(v) the factor F ∩ H is class-bijective.

Then F is (F ∩ H)-relatively Bernoullian.

Proof. (A) First of all, let us extend Lemma 4.8 to a bit more general case where
h(γ, H) < ∞ instead of h(γ) < ∞. To this end we select an increasing sequence
F1 ⊂ F2 ⊂ · · · of factors of γ such that

(4-2)
⋃
n

Fn = F, Fn ∩ H = F ∩ H and h(γ, Fn | F ∩ H) < ∞.

By Theorem 4.9, γ ¹ (Fn ∨ H) is H-relatively Bernoullian. Moreover,

h(γ, Fn ∨ H | H) = h(γ, Fn | H) ≤ h(γ, Fn | F ∩ H)
(4-2)
< ∞.

Since h(γ, H) < ∞, it follows that h(γ, Fn ∨ H) < ∞. Hence we deduce from
Lemma 4.8 and the second formula in (4-2) that Fn is (F∩H)-relatively Bernoullian.
In view of the first formula in (4-2), F is F ∩ H-relatively Bernoullian.

(B) Now we state and prove the orbital version of the lemma:
let α, β : R → Aut (Y, ν) be two cocycles of R such that the following are

satisfied:

(i) the product cocycle α× β : R → Aut (Y × Y, ν × ν) is ergodic,
(ii) the cocycle β ⊗ 1 : R(α) → Aut (Y, ν) given by

β ⊗ 1((x, y), (x′, y′)) := β(x, x′),

is Bernoullian.

Then β is Bernoullian.
To prove this, pick a 0-entropy transformation θ of X which generates R. It is

easy to verify that (θα)β⊗1 = θα×β . Set (Z, κ) := (X×Y ×Y, µ×ν×ν), γ := θα×β ,
H := BX ⊗BY ⊗NY , F := BX ⊗NY ⊗BY and apply (A). Notice that the relative
disjointness condition (iii) of Lemma 4.8 corresponds now to the product measure
ν × ν on Y × Y .

(C) To deduce the lemma from (B), use the same (standard now) argument as
in Proposition 4.5 and Theorem 4.9. ¤

We introduce the concept of the strong Pinsker property for countable group
actions exactly like it was done in [Th2] for Z-actions with finite entropy.
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Definition 4.11. An ergodic free G-action T on (X, BX , µ) satisfies the strong
Pinsker property if there are two factors F1 and F2 of T such that the following
properties are fulfilled

(i) F1 ∨ F2 = BX ,
(ii) F1 ⊥ F2,
(iii) T ¹ F1 is Bernoullian,
(iv) h(T, F2) = 0.

Now we can extend the main result from [Th2] to amenable group actions of
arbitrary (including infinite) entropy (under some restriction related to the class-
bijectiveness of factors). The idea of the proof is similar to that from [Th2, Propo-
sition] but we use different tools: Theorem 4.9, Lemma 4.10 and [Da3, Theo-
rem 0.4(i)] or [GTW].

Theorem 4.12. Let T be an ergodic free G-action satisfying the strong Pinsker
property and F a factor of T such that the factor F ∩ F2 is class bijective. (The
factor F2 is “taken” from Definition 4.11.) Then T ¹ F satisfies the strong Pinsker
property.

Proof. Since Π(T ) = F2, we have Π(T ¹ F) = Π(T ) ∩ F = F2 ∩ F and hence T ¹ F
is (F ∩ F2)-relatively CPE. On the other hand, h(T, F2 | F ∩ F2) = h(T,F2) = 0. It
follows from the relative Pinsker theorem for amenable group actions (see [GTW]
or [Da3, Thorem 0.4(i)]) that

(4-3) F ⊥F∩F2 F2.

Next, the factor F∨F2 is F2-relatively Bernoullian by Theorem 4.9. We deduce from
this, (4-3) and Lemma 4.10 that T ¹ F is (F∩F2)-relatively Bernoullian. According
to Remark 3.6, there exists a Bernoullian T -factor F′ ⊂ F such that F′ ⊥ (F ∩ F2)
and F′ ∨ (F ∩ F2) = F. ¤

We complete this section by extending some results from a recent paper [Ho] to
amenable group actions. Remark at once that these extensions are partial, i.e. not
verbatim (see the comment at the end of the section).

Definition 4.13. Let S and S′ be two ergodic free actions of G on (Y, BY , ν)
and (Y ′,B′

Y , ν′) respectively and π : Y → X and π′ : Y ′ → X two factor maps

intertwining S or S′ respectively with T . The extensions S
π→ T and S′ π′→ T of

T are called equivalent if there is a measure space isomorphism φ : (Y, BY , ν) →
(Y ′, BY ′ , ν

′) such that φ ◦ π′ = π ◦ φ and φ ◦ Sg = S′g ◦ φ for each g ∈ G.

It is well known that every extension S
π→ T can be represented in a skew product

form. Actually, let R stand for the T -orbit equivalence relation on X. Then there
exists a cocycle α : R → Aut(Y, ν) such that S

π→ T is equivalent to Tα πX→ T ,
where πX : X×Y → X is the projection onto the first coordinate. The cocycle α is
determined by S

π→ T up to cohomology. Moreover, two extensions are equivalent
if and only if the corresponding cocycles of R are cohomologous. It follows, in
particular, that equivalent extensions have the same relative entropy.

The following statement is a relative analogue of the Ornstein-Shields [OrS]
collection of uncountably many non-isomorphic K-transformations of the same en-
tropy. It was proved in [Sw] and [Ho].
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Lemma 4.14. There are two Bernoullian transformations t and t′ and uncountably
many factors Fθ, θ ∈ Θ, of t such that the following are satisfied:

(i) t is Fθ-relatively CPE,
(ii) h(t,Fθ) = h(t′) and hence there exists an isomorphism (conjugacy) φθ of

t ¹ Fθ and t′ (recall that a factor of a Bernoulli shift is itself a Bernoulli
shift),

(iii) the extensions t → φθ ◦ (t ¹ Fθ) ◦ φ−1
θ = t′, θ ∈ Θ, are pairwise non-

equivalent.

Using our approach we deduce from this

Proposition 4.15.
(i) For hyperfinite R, there exist uncountably many pairwise non-cohomologous

CPE-cocycles αθ : R → Aut (Y, ν), θ ∈ Θ, with the same entropy.
(ii) Let T be an ergodic free action of G. Then there exist uncountably many

non-equivalent relatively CPE extensions of T with the same entropy.

In contrast to Proposition 4.15(ii), it follows immediately from Theorem 3.11
that

Corollary 4.16. Every two relatively Bernoullian extensions of T with the same
relative entropy are equivalent.

Lemma 4.17 [Ho]. Every Bernoullian shift contains a factor with respect to which
it is relatively prime.

From this we deduce

Proposition 4.18.
(i) There exists an ergodic prime cocycle of R.
(ii) Given an ergodic free action T of G, there exists an ergodic extension of T

which is relatively prime.

5. Free factors of small entropy and “absolute” Sinai theorem

Our main purpose in this section is to prove that every ergodic free action of
a countable amenable group has a free (or, equivalently, class bijective) factor of
arbitrarily small entropy. At first we do that for several special classes of amenable
groups like Abelian, torsion free or locally finite ones. The proof in each of these
cases is in some way elementary since it does not use the machinery developed in
[OrW]. Then we settle the general case. However to do that we apply one (only)
statement from [OrW]—Rokhlin lemma for countable amenable group actions. We
complete this section with the “absolute” Sinai theorem about Bernoullian factors
for amenable actions. It follows from its “relative” counterpart (§ 4) and the main
theorem here.

For t ∈ (0, 1), we let E(t) := t log t + (1− t) log(1− t).

Proposition 5.1. Let T be an ergodic free action of G. If one of the following is
fulfilled:

(i) G is torsion free,
(ii) given g ∈ G of finite order, the T -action of the subgroup {h ∈ G | gh = hg}

is ergodic,
(iii) G is locally finite,
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then for each ε > 0, there exists a free factor F of T with h(T, F) < ε.

Proof. I. Suppose first that (i) holds. Let (εg)g∈G be a family of positive reals such
that

∑
g∈G εg < ε. For each g ∈ G, g 6= 1G, denote by Ag the sub-σ-algebra of

Tg-fixed subsets, i.e.
Ag := {A ∈ BX | TgA = A}.

Clearly, Ag is Tg-invariant. Let µ =
∫

µx d(µ ¹ Ag)(x) stand for the Tg-ergodic
decomposition of µ. Then µx ◦ Tg = µx for a.e. x. Since g is of infinite order and
T is free, µx is non-atomic. Take a tg ∈ (0, 1/2) with E(tg) < εg. Then we can
choose a subset Ag ⊂ X such that

µx(Ag) = tg for all x ∈ X, and(5-1)

TgAg ∩Ag = ∅.(5-2)

Now define a partition Pg of X and a factor F of T by setting Pg := (Ag, X \ Ag)
and F :=

∨
1G 6=g∈G

∨
ThPg. We have

h(T,F) ≤
∑

1g 6=g∈G

H(Pg) =
∑

1G 6=g∈G

E(tg) <
∑

1G 6=g∈G

εg < ε.

If T ¹ F is not free then there exist B ∈ F and g ∈ G \ {1G} such that µ(B) > 0
and TgB

′ = B′ mod µ ¹ F for every subset B′ ⊂ B from F. Clearly, B ∈ Ag and
hence µx(B) = 0 or 1 for a.e. x. We deduce from this and (5-1) that

µ(B ∩Ag) =
∫

µx(B ∩Ag) d(µ ¹ Ag)(x) =
∫

B

µx(Ag) d(µ ¹ Ag)(x) = tgµ(B) > 0.

Moreover, Ag ∈ Pg ⊂ F and Tg(B ∩Ag) ∩ (B ∩Ag) = ∅ by (5-2), a contradiction.
II. Assume now that (ii) is satisfied. Then we need to modify slightly our

argument. Namely, if g is of infinite order, we define Ag just like in the previous
case. But if g is a torsion then we let Ag to be an arbitrary subset of measure tg
satisfying (5-2). Define F as above. Then h(T, F) < ε and Tg ¹ F has no fixed points
mod µ ¹ F for each g of infinite order (see (I)). If g is of finite order, then it is easy
to deduce from (i) that either Tg ¹ F has no fixed points or Tg ¹ F = Id mod µ ¹ F.
The last contradicts to (5-2) since Ag ∈ F.

III. If (iii) holds then we can assume without loss of generality that G =⋃∞
n=1 Gn, where G1 ⊂ G2 ⊂ · · · is an increasing sequence of finite subgroups

with
∑∞

n=1 E(1/#Gn) < ε. Then there exists a sequence Xn of subsets in X such
that TgXn, g ∈ Gn, are disjoint and

⋃
g∈Gn

TgXn = X.
We define a partition Pn of X and a factor F of T by setting Pn := (Xn, X \Xn)

and F :=
∨∞

n=1

∨
g∈G TgPn. It is easy to verify that F is as desired. ¤

As it was already said, we are unable to prove Proposition 5.1 in the general
setting—i.e. without restrictions (i)–(iii)—in a way avoiding the use of Rokhlin
lemma from [OrW]. To apply this lemma we need first to recall two concepts from
[OrW].

Definition 5.2.
(i) Let K be a finite subset of G and ε > 0. A subset F ⊂ G is [K, ε]-invariant

if #{f ∈ F | Kf ⊂ F} > (1− ε)#F .
(ii) Subsets X1, . . . , Xn of X are ε-disjoint if there are subsets X ′

i ⊂ Xi such
that µ(X ′

i) > (1− ε)µ(Xi) and X ′
1, . . . , X

′
n are (pairwise) disjoint.
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Lemma 5.3. Given K ⊂ G and ε > 0 with E(1/#K) < ε/8, there exists a finite
partition P of X such that the following are satisfied:

(i) h(T, P ) < ε
(ii) for every h ∈ K \ {1G} and A ⊂ X, µ(A) > 6ε, there is a subset C ∈∨

g∈G TgP with µ(Th(A ∩ C) \ (A ∩ C)) > 0.

Proof. It follows from the Rokhlin lemma for amenable group actions [OrW] that
there are a sequence of finite G-subsets F1 ⊂ F2 ⊂ · · · ⊂ Fn and a family of mea-
surable X-subsets Bj

i , j = 1, . . . , Ji, i = 1, . . . , n such that the following properties
are satisfied:

(1) K ⊂ F1,
(2) Fi is [K, ε2]-invariant, i = 1, . . . , n,
(3) the subsets TgB

j
i , g ∈ Fi, are disjoint,

(4) the subsets
⋃

g∈Fi
TgB

j
i , j = 1, . . . , Jn are ε2-disjoint,

(5) the subsets
⋃Ji

j=1

⋃
TgB

j
i , i = 1, . . . , n are disjoint,

(6) µ(
⋃n

i=1

⋃Ji

j=1

⋃
g∈Fi

TgB
j
i ) > 1− ε,

(7) the subsets
⋃

g∈Fi−1
TgB

j
i , j = 1, . . . , Ji, are disjoint, where F0 := K.

Remark that this statement is stronger than the original Rokhlin lemma from [OrW]
which is without (7). Our version can be proved in a similar way as [Ro, Lemma 2]
where the following is claimed instead of (7):

the subsets
⋃

g∈K TgB
j
i , j ∈ Ji, are disjoint.

(We assume that Fi is much “larger” than Fi−1, i = 1, . . . , n.)
Define a finite partition P = (P0, . . . , Pn) of X by setting Pi :=

⋃Ji

j=1 Bj
i , j =

1, . . . , n and P0 := X \⋃n
i=1 Pi.

We first estimate the entropy h(T, P ). Let F ′ ⊂ F be two subsets of G such that

h(T, P ) ≤ 1
#F

H

( ∨

g∈F

TgP

)
+ ε/2,(5-3)

FnF ′ ⊂ F and #F ′ > (1− ε′)#F,(5-4)

where ε′ := ε/(4 log(n + 1)). Denote by N the number of atoms of the partition∨
g∈F TgP . Clearly, N is just the number of (P, F )-names of the points of X. Recall

that the (P, F )-name of x ∈ X is a map θx : F → {0, . . . , n} such that θx(g) = i if
Tgx ∈ Pi. We select a sequence f1, . . . , fn ∈ G with f1 := 1G and fi ∈ Fi−1 \ Fi−2,
i = 2, . . . , n and set

S(θx) := {g ∈ F ′ | θx(g) 6= 0},
R(θx) := {fθx(g)g | g ∈ S(θx)}.

It is easy to deduce from (3), (5) and (7) the following assertion.
Claim A. If g, h ∈ S(θx) and g 6= h then Fθx(g)−1g ∩ Fθx(h)−1h = ∅.
It follows immediately that

(5-5) #S(θx) = #R(θx).
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Claim B. If S(θx) = S(θy) and R(θx) = R(θy) then θx = θy on F ′.
Actually, if θx(g) > θy(g) for some g ∈ S(θx) then {fθy(g)g, fθx(g)g} ∈ Fθx(g)−1g.
Since R(θy) = R(θx), there exists h ∈ S(θx) with fθy(g)g = fθx(h)h ∈ Fθx(h)−1h. It
follows from Claim A that h = g and hence θx(h) = θy(g), a contradiction.

Next, from (1), Claim A and (5-4) we deduce that the subsets Kf , f ∈ S(θx),
are disjoint and inside F . Hence

(5-6) max
x∈X

#S(θx) ≤ #F

#K
.

It follows from (5-5), (5-6) and Claim B that

#{θx ¹ F ′ | x ∈ X} ≤
#F/#K∑

i=0

(
#F
i

)2

≤
(#F/#K∑

i=0

(
#F
i

))2

≤ 22#F ·E(1/#K).

This and (5-4) yield

(5-7)
#{θx | x ∈ X} ≤ #{θx ¹ F ′ | x ∈ X} ·#{θx ¹ (F \ F ′) | x ∈ X}

≤ 22#F ·E(1/#K)(n + 1)ε′#F .

Since

H

( ∨

g∈F

TgP

)
≤ log N = log(#{θx | x ∈ X}),

we deduce from (5-3) and (5-7) that

h(T, P ) ≤ 2E(1/#K) + ε′ log(n + 1) + ε <
ε

4
+

ε

4
+

ε

2
= ε,

as desired.
Now let us prove the second claim of the lemma. Fix h ∈ K \ {1G} and A ⊂ X

with µ(A) > 6ε. It follows from (5) and (6) that there exists i ∈ {1, . . . , n} such
that

µ

(
A ∩

Ji⋃

j=1

⋃

g∈Fi

TgB
j
i

)
> 5εµ

( Ji⋃

j=1

⋃

g∈Fi

TgB
j
i

)
.

From (4) and (3) we deduce that there are disjoint subsets Dj ⊂ ⋃
g∈Fi

TgB
j
i ,

j = 1, . . . , Ji, with

(5-8) µ(Dj) > (1− ε2)µ
( ⋃

g∈Fi

TgB
j
i

)
= (1− ε2)#Fiµ(Bj

i )

Hence there exists a j such that

(5-9) µ

(
A ∩

⋃

g∈Fi

TgB
j
i

)
> 4ε#Fiµ(Bj

i ).

It follows from (2), (3) and (5-8) that we can find a subset E ⊂ Dj with

ThE ⊂ Dj and(5-10)

µ(E) > (1− 3ε2)#Fiµ(Bj
i ).(5-11)
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Clearly, the subsets Lg := E ∩ TgB
j
i , g ∈ Fi, are disjoint and

⋃
g∈Fi

Lg = E.
Let us call an element g ∈ Fi good if µ(Lg) > (1 − 2ε)µ(Bj

i ). It is a standard
argument to deduce from (5-11) that the number of good elements in Fi is more
then (1− 2ε)#Fi. Hence

µ

( ⋃

g is good

Lg

)
> (1− 2ε)2#Fiµ(Bj

i ) > (1− 4ε)#Fiµ(Bj
i ).

It follows from this and (5-9) that there is a good g ∈ Fi with µ(A∩Lg) > 0. Now
we set C :=

⋃
l∈Ji

TgB
l
i. Clearly, Lg ⊂ C ∈ ∨

g∈Fn
TgP . In view of (5-10),

Th(A ∩ Lg) ⊂ Th(A ∩ C) \ (A ∩ C).

¤
Theorem 5.4. Let T be an ergodic free action of a countable amenable group G.
Then for each ε > 0, there exists a free factor F of T with h(T,F) < ε.

Proof. Let K1 ⊂ K2 ⊂ · · · ⊂ G and ε1 > ε2 > . . . be such that
⋃

i Ki = G,∑
i εi < ε and E(1/#Ki) < εi/8. We apply Lemma 5.3 to every pair (Ki, εi) to

obtain a sequence P 1, P 2, . . . of X-partitions satisfying (i) and (ii) of this lemma.
Let F :=

∨∞
i=1

∨∞
g∈G TgP

i. Clearly,

h(T, F) ≤
∞∑

i=1

H(T, P i) <

∞∑

i=1

εi < ε.

Suppose that T ¹ F is not free. Then there exist h ∈ G \ {1G} and A ∈ F such that
µ(A) > 0 and for each B ⊂ A, B ∈ F, we have ThB = B mod µ ¹ F. Choose i so
that h ∈ Ki and µ(A) > 6εi. By Lemma 5.3, there is a subset C ∈ ∨

g∈G TgP
i ⊂ F

with µ(Th(A ∩ C) \ (A ∩ C)) > 0, a contradiction. ¤
Remark that we proved Theorem 5.4 independently of the particular cases of it

considered in Proposition 5.1.
Combining the above theorem with Corollary 4.6 we obtain the following version

of the absolute Sinai theorem on Bernoullian factors of amenable group actions:

Theorem 5.5. Let T be an ergodic G-action. Then for each finite or countable
distribution I with H(I) ∈ (0, h(T )) there exists a Bernoullian factor F of T with
a Bernoullian generator Q such that distQ = I. Moreover, there is a Bernoullian
T -factor H of the full entropy, i.e. h(T | H) = 0. (Notice that in case h(T ) < ∞
the last formula is equivalent to h(T,H) = h(T ).)

Proof. By Theorem 5.4, there exists a class-bijective factor E of T with h(T, E) <
h(T )−H(I). We have h(T |E) = h(T )− h(T, E) > H(I). To conclude the proof of
the first claim, it remains to apply Corollary 4.6.

Now let us prove the second assertion of the proposition. By Theorem 5.4, we
can find a class-bijective factor E of T with h(T, E) < h(T )/2. It follows from
Corollary 4.6 that there is a Bernoullian factor F′ of T with h(T, F′) < h(T )/2. By
the entropy addition formula, h(T | F′) ≥ h(T )/2. Since a Bernoullian factor is
class-bijective we deduce from Corollary 4.6 that there exists a Bernoullian factor
F′′ such that F′′ ⊥ F′ and h(T | F∨F′′) = 0. Clearly, F′∨F′′ is a Bernoullian factor
of T and we are done. ¤
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6. Bernoullian factors that span the σ-algebra

Our purpose in this section is to prove

Theorem 6.1. Let T be an ergodic action of a countable amenable group G on
(X, BX , µ) with 0 < h(T ) ≤ ∞. Then for every ε > 0, there are three Bernoullian
factors F0, F1 and F2 of T such that F0∨F1∨F2 = BX and h(T ¹ Fi) < ε, i = 1, 2.

This extends the main result of [STh] proved there for Z-actions with finite
entropy to arbitrary amenable group actions.

We reproduce here Lemma 1 (with the proof) from [STh] in a slightly modified
form.

Lemma 6.2. Let γ be an ergodic transformation of (X, BX , µ) and B1, B2 two
factors of γ such that

(i) B1 is Bernoullian and h(γ, B1) = 1,
(ii) h(γ, B2) < 1,
(iii) B1 ⊥ B2.

Then there exists a Bernoullian γ-factor B3 such that B3 ⊥ B2, B3 ∨B1 ⊃ B2

and h(γ, B3) ≤ 1.

Proof. It follows from (ii) and the Krieger theorem [Kr] that γ ¹ B2 has a 2-
element generating partition (A1, A2). By the Ornstein theorem [Or1], there exists
an independent generator (B1, B2) for γ ¹ B1 such that µ(B1) = µ(B2) = 0.5. We
define a 2-element partition (C1, C2) of X by setting C1 := (A1 ∩B1) ∪ (A2 ∩B2).
Clearly, (C1, C2)∨ (B1, B2) ⊃ (A1, A2). Let B3 stand for the γ-factor generated by
(C1, C2). It is easy to verify that B3 is as desired. ¤
Lemma 6.3. Let α be an ergodic cocycle of R with h(α) > 2. Let A be a factor of
α with h(α, A) < 1. Then there are two Bernoullian factors F1 and F2 of α such
that F1 ∨ F2 ⊃ A and h(α, Fi) ≤ 1, i = 1, 2.

Proof. Let γ be a zero entropy transformation of X generating R. Then

h(γα | A) = h(γα)− h(γα, A)

= h(γα | BX ⊗NY )− h(γα, A | BX ⊗NY )

= h(α)− h(α, A) > 1.

By Corollary 4.6, there exists a Bernoullian factor B1 of γα with h(γα, B1) = 1
and B1 ⊥ A. Moreover, h(γα, A) = h(α, A) < 1. Then it follows from Lemma 6.2
that there is a Bernoullian γα-factor B2 such that

B2 ⊥ A, B1 ∨B2 ⊃ A and h(γα,B2) ≤ 1.

Clearly, each of B1 and B2 is independent of BX ⊗NY since A ⊃ BX ⊗NY . Now
we set Fi := Bi ∨ (BX ⊗NY ), i = 1, 2. Then F1 and F2 are (BX ⊗NY )-relatively
Bernoullian factors of γα and hence Bernoullian factors of α (see Proposition 3.8).
Moreover, h(α, Fi) ≤ h(γα, Bi) ≤ 1, as desired. ¤

The following statement is crucial in the proof of Theorem 6.1. We show here
that the original idea of Thouvenot and Smorodinsky to make use of the induced
transformation (which fails for actions of the groups other than Z) can be suc-
cessfully replaced by its orbital counterpart—just consider the induced equivalence
relation and restrict the cocycle to it.
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Lemma 6.4. Let Q = (A,A1, . . . , Ak) be a finite partition of X and P a sub-σ-
algebra of (BX ⊗BY ) ¹ (A × Y ). Let P′ stand for the “associated” sub-σ-algebra
of BX ⊗ BY , i.e. the smallest sub-σ-algebra containing Q ⊗ NY and such that
P′ ¹ (A × Y ) = P. Denote by αA the restriction of α to the induced equivalence
relation R∩ (A×A) on the standard probability space (A, BX ¹ A, µ

µ(A) ). Then

(i) P is a generator for αA if and only if P′ is a generator for α.
(ii) h(αA,P) = h(α, P′)/µ(A).
(iii) h(αA) = h(α)/µ(A).
(iv) If h(α) < µ(A) then there is a two-element partition of A×Y such that the

“associated” partition of X × Y is a generator for α (as usual, we identify
a finite partition with the sub-σ-algebra that it generates).

(v) Let T be a Bernoullian G-action on X generating R and Q an indepen-
dent generator of T . Then P is Bernoullian for αA if and only if P′ is
independent under Tα.

Proof. (i) Let P be a generator for αA. Then

∨

x′∈R(x)∩A

α(x, x′)Px′ = BY for a. a. x ∈ A.

Notice that

(6-1) P′
x′ =

{
Px′ for x′ ∈ A

NY otherwise.

Since R is ergodic, for a.e. x ∈ X there exists z ∈ R(x) ∩A. Hence

∨

x′∈R(x)

α(x, x′)P′
x′ ⊃ α(x, z)

∨

x′∈R(z)∩A

α(z, x′)Px′ = BY .

This means that P′ is a generator for α. The converse claim follows immediately
from (6-1).

(ii) Take a finite P-measurable partition P of A × Y and denote by P ′ the
“associated” finite partition of X × Y . Clearly that if (Rn)n≥1 is a filtration of R
then (Rn ∩ (A×A))n≥1 is a filtration for R∩ (A×A). By Proposition 1.2,

(6-2) h(α, P ′) = lim
n→∞

1
#Rn(x)

H

( ∨

x′∈Rn(x)

α(x, x′)P ′x′
)

, for a.e x ∈ A.

Since R is ergodic,

#(Rn(x) ∩A)
#Rn(x)

→ µ(A) as n →∞.

From this, (6-1) and (6-2) we deduce that

h(α, P ′) = lim
n→∞

µ(A)
#(Rn(x) ∩A)

H

( ∨

x′∈Rn(x)∩A

αA(x, x′)Px′

)
= µ(A)h(αA, P ).
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Consider now an increasing sequence of finite (A × Y )-partitions P1 ⊂ P2 ⊂ · · ·
with

∨∞
n=1 Pn = P and pass to the limit in h(α, P ′n) = µ(A)h(αA, Pn).

(iii) follows from (i), (ii) and Lemma 2.4.
(iv) It follows from (ii) that h(αA) < 1. By Lemma 2.6, there exists a 2-element

generator (P1, P2) for α. It remains to apply (i).
(v) Let P and P ′ be like in the proof of (ii). Since P ′ ⊃ Q ⊗ NY , we deduce

from the Pinsker formula for amenable group actions, Lemma 1.3, and (ii) that

h(Tα, P ′) = h(Tα, Q⊗NY ) + h(Tα, P ′ | BX ⊗NY )

= h(T, Q) + h(α, P ′)

= H(Q) + µ(A)h(αA, P ).

On the other hand, H(P ′) = H(Q) + µ(A)H(P ). Hence h(Tα, P ′) = H(P ′) if
and only if h(αA, P ) = H(P ). Thus, P ′ is independent under Tα if and only if
P is Bernoullian for αA. Hence P′ is independent under Tα if and only if P is
Bernoullian for αA.

¤
Notice in advance that to demonstrate Theorem 6.1 we need only a part of the

material from Lemma 6.4, namely: (i)–(iii), the “only if” part of (v) and the case
h(α) = 0 from (iv), and all of that under the condition k = 1 and P is finite. The
“surplus” of the lemma will be used in the next section.

Proof of Theorem 6.1. Let I = (I1, I2) be a distribution such that the following
properties are satisfied:

(a) I1 < h(T )/4,
(b) H(I) < h(T )/2, and
(c) the entropy of the distribution I ′ := (I1/2, I1/2, I2) is less than ε.

By Theorem 5.5, there exists an independent partition (P0, P1) of X with µ(Pi) =
Ii, i = 0, 1. Denote by F the Bernoullian factor of T generated by this partition.
Then

(6-3) h(T | F) = h(T )−H(I)
(b)
> h(T )/2

(a)
> 2µ(P0).

It follows from Corollary 4.6 that there exists a Bernoullian factor F0 of T with
h(T | F0) = 0 and F0 ⊃ F.

Consider first the extension T → T ¹ F0 and the corresponding (extending)
cocycle of the (T ¹ F0)-orbit equivalence relation—see the remark just below Def-
inition 5.2. From Lemma 1.3 we deduce that the entropy of this cocycle is 0.
Hence by Lemma 6.4(iv) and Remark 2.3, the subset P0 can be partitioned into
two subsets P2 and P3 in such a way that

(6-4) F0 ∨
∨

g∈G

Tg(P1, P2, P3) = BX .

Now let R stand for the (T ¹ F)-orbit equivalence relation on (X, F, µ ¹ F) and
α for the cocycle of R corresponding to the extension T → T ¹ F. By Lemma 1.3
and (6-3), we have

h(α) = h(T | F) > 2µ(P0).
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According to Lemma 6.4(iii), this implies h(αP0) > 2. Let A stand for the factor
of αP0 generated by the partition (P2, P3) (see Remark 4.3(iv)). Clearly, h(α, A) ≤
log 2 = 1. Hence we can deduce from Lemma 6.3 that there are two Bernoullian
factors E1 and E2 of αP0 with

(6-5) E1 ∨ E2 ⊃ A

and h(αP0 , Ei) ≤ 1 = log 2, i = 1, 2. By Lemma 3.14, there exist Bernoul-
lian 2-element generators Q1 and Q2 for E1 and E2 respectively. It follows from
Lemma 6.4(v) that the partitions (Q1, P1) and (Q2, P1) are independent under T .
Moreover, the entropy of each of these partitions does not exceed h(I ′) which is
less than ε according to (c). Next, we deduce from (6-5) that

∨

g∈G

Tg(Q1, P1) ∨
∨

g∈G

Tg(Q2, P1) ⊃ A ⊃ {P2, P3}.

This and (6-4) yield

∨

g∈G

Tg(Q1, P1) ∨
∨

g∈G

Tg(Q2, P1) ∨ F0 = BX ,

as desired. ¤

7. Ornstein-Weiss isomorphism theorem and
absolute generators for amenable actions

In this section we provide a new short (orbital) proof of the main result from
[OrW] for countable amenable groups, namely the isomorphism theorem for Bernoul-
lian actions of such groups with the same entropy (under a certain restriction in the
finite entropy case). To do that we use the “inducing trick” for cocycles of equiva-
lence relations elaborated in § 6. Observe however that the results of § 5 (and hence
the Rokhlin lemma for amenable group actions from [OrW]) are applied nowhere in
our proof. Thus our proof of the isomorphism theorem is completely independent
of that from [OrW]. Notice also that we settle the both cases of the Ornstein–Weiss
theorem (of finite and infinite entropy) at one blow.

We complete the section with another application of the “cocycle inducing”
technique—a new short comparatively with [Ro] (orbital) proof of the “absolute”
Krieger theorem about finite generators for amenable actions is demonstrated. Re-
mark that we improve the estimation of the cardinality of the generators obtained
previously in [Ro]. The “absolute” Rokhlin theorem about countable generators
for amenable actions of infinite entropy—i.e. an infinite counterpart of the Krieger
theorem—is also included here.

Theorem 7.1. Let T and T ′ be two Bernoullian G-actions. They are conjugate if
one of the following is satisfied:

(i) h(T ) = h(T ′) = ∞,
(ii) h(T ) = h(T ′) < ∞ and each of T and T ′ has an independent generator with

at least 3 elements (as a partition).
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Proof. We first prove that for any sufficiently small ε > 0, there exists a countable
partition P = (P1, P2, . . . ) of X which is an independent generator for T and
µ(P1) = ε.

Actually, let a sub-σ-algebra Q′ ⊂ BX be an independent generator of T . With-
out loss of generality we may assume that Q′ is countable (as a partition). Actually,
if it is not the case we can represent Q′ as Q′

1∨Q′
2 in such a way that Q′

1 ⊥ Q′
2 and

Q′
1 is countable. Hence T is isomorphic to the Cartesian product of two Bernoul-

lian factors B1 and B2 generated by Q1 and Q2 respectively. It follows that T
is B1-relatively Bernoullian. hence by Proposition 3.13 there exists a countable
B1-relatively Bernoullian generator Q′

3 for T . Clearly, Q′
1 ∨ Q′

3 is a countable
independent generator for T .

It follows from (i) or (ii) that there exists a two set partition (Q,X \ Q) of
X and a sub-σ-algebra Q of BX ¹ Q such that Q′ is the smallest sub-σ-algebra
containing (Q,X \ Q) and whose restriction to Q is Q. Denote by F the T -factor
generated by the (independent) partition (Q,X \ Q). Let α stand for the cocycle
corresponding to the extension T → T ¹ F. (It is defined on the (T ¹ F)-orbit
equivalence relation.) By Lemma 6.4(i,v), the induced cocycle αQ is Bernoullian
and h(αQ) > 0. Then it is easy to deduce from Lemma 3.14 that for every ε > 0
such that E(ε) < h(αQ) there exists a countable Bernoullian generator (P1, P2, . . . )
for αQ with µ(P1) = ε. Apply again Lemma 6.4(i,v) to conclude that the countable
X-partition P := (X \Q1, P1, P2, . . . ) is an independent generator for T , as desired.

Now let countable partitions P = (P1, P2, . . . ) and P ′ = (P ′1, P
′
2, . . . ) of X be

independent generators for T and T ′ respectively. By the above claim, we can
assume without loss of generality that µ(P1) = µ′(P ′1). Denote by α and α′ the
cocycles corresponding to the extensions T → T ¹ (

∨
g∈G Tg(P1, X \P1)) and T ′ →

T ′ ¹ (
∨

g∈G T ′g(P ′1, X
′ \ P ′1) respectively. By Lemma 6.4(v), the induced cocycles

αX\P1 and (α′)X′\P ′1 are Bernoullian. Since H(P ) = h(α) = h(α′) = H(P ′), it
follows that

H(P ¹ (X \ P1)) = H(P ′ ¹ (X ′ \ P ′1))

and hence h(αX\P1) = h((α′)X′\P ′1). By Lemma 3.14, there exist countable Ber-
noullian generators Q and Q′ for αX\P1 and (α′)X′\P ′1 respectively with dist Q =
distQ′. But then we can deduce from Lemma 6.4(i,v) that the countable X-
partitions (P1, Q) and (P ′1, Q

′) are independent generators for T and T ′ respectively.
Since the distributions of these partitions are the same, we are done. ¤

Remark that in the case when each of T and T ′ has a 2-element Bernoullian gen-
erator and their entropy are equal then these generators have the same distributions
(up to the ordering) and hence the actions are also conjugate.

Theorem 7.2. Let T be an ergodic free G-action. If 0 < h(T ) < log k for some
integer k then there exists a finite generator P of T with

#P =
{

k, if k is not prime
k + 1, otherwise.

If h(T ) = ∞ then there exists a countable generating partition for T .

Proof. (I) Start with the first claim of the theorem. Without loss of generality we
may assume that

log(k − 1) ≤ h(T ) < log k.
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Consider separately 3 cases.
(I1) Suppose first that k = k1k2 with k1, k2 > 1. By Theorem 5.5, there exists a

Bernoullian factor F having a k1-element equidistributed Bernoullian generator P .
Hence

h(T,F) = log k1 and h(T | F) = h(T )− h(T, F) < log k2.

Since F is class-bijective, it follows from Theorem 2.7(ii) that there is an F-relative
generator Q of T with #Q = k2. Clearly, P ∨Q is an (absolute) generator of T and

#(P ∨Q) ≤ #P#Q = k1k2 = k,

as desired.
(I2) If k is prime and k > 2 then we can write k + 1 = 2 · k+1

2 and repeat the
above argument to obtain the desired estimation.

(I3) Suppose now that k = 2. It is easy to deduce from Theorem 5.5 that there
exist a Bernoullian factor F and an independent 2-element generator (P1, P2) of
T ¹ F such that h(T | F) < µ(P1). Let α stand for the cocycle corresponding to the
extension T → T ¹ F. Then h(α) < µ(P1) by Lemma 1.3. Applying Lemma 6.4(iv)
like in the proof of Theorem 6.1 we can partition P1 into two subsets A and B such
that the partition (A, B, P2) is a generator for α and hence an F-relative generator
for T . But this partition (as a σ-algebra) contains (P1, P2) which is a generator for
T ¹ F. Hence (A, B, P2) is an (absolute) generator for T .

(II) The second claim of the theorem can be settled in a similar way as (I1) with
reference to Theorem 2.7(iii) instead of Theorem 2.7(ii). ¤
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