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Abstract. Let G be a countable direct sum of finite groups. We construct an
uncountable family of pairwise disjoint mixing (of any order) rank-one strictly ergodic
free actions of G on a Cantor set. All of them possess the property of minimal self-
joinings (of any order). Moreover, an example of rigid weakly mixing rank-one strictly
ergodic free G-action is given.

0. Introduction and definitions

This paper was inspired by the following question of D. Rudolph:

Question. Which countable discrete amenable groups G have mixing (funny) rank
one free actions?

Recall that a measure preserving action T = (Tg)g∈G of G on a standard prob-
ability space (X, B, µ) is called

— mixing if limg→∞ µ(A ∩ TgB) = µ(A)µ(B) for all A,B ∈ B,
— mixing of order l if for any ε > 0 and A0, . . . , Al ∈ B, there exists a finite

subset K ⊂ G such that

|µ(Tg0A0 ∩ · · · ∩ Tgl
Al)− µ(A0) · · ·µ(Al)| < ε

for each collection g0, . . . , gl ∈ G with gig
−1
j /∈ K if i 6= j,

— weakly mixing if the diagonal action T × T := (Tg × Tg)g∈G of G on the
product space (X ×X, B⊗B, µ× µ) is ergodic,

— totally ergodic if every co-finite subgroup in G acts ergodically,
— rigid if there exists a sequence gn → ∞ in G such that limn→∞ µ(A ∩

TgnB) → µ(A ∩B) for all A,B ∈ B.
We say that T has funny rank one if there exist a sequence of measurable subsets
(An)∞n=1 in X and a sequence of finite subsets (Fn)∞n=1 in G such that the subsets
TgFn, g ∈ Fn, are pairwise disjoint for any n and

lim
n→∞

min
H⊂Fn

µ

(
B4

⊔

g∈H

TgAn

)
= 0 for every B ∈ B.
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If, moreover, (Fn)∞n=1 is a subsequence of some ‘natural’ Følner sequence in G, we
say that T has rank one. For instance, if G = Zd, this ‘natural sequence’ is just
the sequence of cubes; if G =

∑∞
i=1 Gi with every Gi a finite group, the sequence∑n

i=1 Gi is ‘natural’, etc.
Up to now various examples of mixing rank-one actions were constructed for

— G = Z in [Or], [Ru], [Ad], [CrS], etc.,
— G = Z2 in [AdS],
— G = R in [Pr], [Fa],
— G = Rd1 × Zd2 in [DaS].

We also mention two more constructions of rank-one actions for

— G = Z⊕⊕∞
n=1 Z/2Z in [Ju], where it was claimed that the Z-subaction is

mixing but it was only shown that it is weakly mixing, and
— G is a countable Abelian group with a subgroup Zd such that the quotient

G/Zd is locally finite in [Ma], where it was proved that a Z-subaction is
mixing and it was asked whether the whole action is mixing.

Notice that in all of these examples G is Abelian and has elements of infinite
order. In contrast to that we provide a different class of groups for which the answer
to the question of D. Rudolph is affirmative.

Theorem 0.1. Let G =
⊕∞

i=1 Gi, where Gi is a non-trivial finite group for every i.

(i) There exist uncountably many pairwise disjoint (and hence pairwise non-
isomorphic) mixing rank-one strictly ergodic actions of G on a Cantor set.
Moreover, these actions are mixing of any order.

(ii) There exists a weakly mixing rigid (and hence non-mixing) rank-one strictly
ergodic action of G on a Cantor set.

Concerning (i), it is worth to note that any mixing rank-one Z-action is mixing
of any order by [Ka] and [Ry] (see also an extension of that to actions of some
Abelian groups with elements of infinite order in [JuY]). We do not know whether
this fact holds for all mixing rank-one action of countable sums of finite groups.

To prove the theorem, we combine the original Ornstein’s idea of ‘random spacer’
(in the cutting-and-stacking construction process) [Or] and the more recent (C,F )-
construction developed in [Ju], [Da1], [Da2], [DaS1], [DaS2] to produce funny rank-
one actions with various dynamical properties. However, unlike all of the known
examples of (C, F )-actions, the actions in this paper are constructed without adding
any spacer (cf. with [Ju], where all the spacers relate to Z-subaction only). Instead
of that on the n-th step we just cut the n-‘column’ into ‘subcolumns’ and then
rotate each ‘subcolumn’ in a ‘random way’. In the limit we obtain a topological
G-action on a compact Cantor space.

Our next concern is to describe all ergodic self-joinings of the G-actions con-
structed in Theorem 0.1. Recall a couple of definitions.

Given two ergodic G-actions T and T ′ on (X, B, µ) and (X ′, B′, µ′) respectively,
we denote by J(T, T ′) the set of joinings of T and T ′, i.e. the set of (Tg × T ′g)g∈G-
invariant measures on B ⊗ B′ whose marginals on B and B′ are µ and µ′ re-
spectively. The corresponding dynamical system (X ×X ′, B ⊗B′, µ × µ′) is also
called a joining of T and T ′. By Je(T, T ′) ⊂ J(T, T ) we denote the subset of
ergodic joinings of T and T ′ (it is never empty). In a similar way one can de-
fine the joininings J(T1, . . . , Tl) for any finite family T1, . . . , Tl of G-actions. If
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J(T1, . . . , Tl) = {µ1 × · · · × µl} then the family T1, . . . , Tl is called disjoint. If
T1 = · · · = Tl we speak about l-fold self-joinings of T1 and use notation Jl(T ) for
J(T, . . . , T︸ ︷︷ ︸

l times

). For g ∈ G, we denote by g• the conjugacy class of g. We also let

FC(G) := {g ∈ G | g• is finite}.
Clearly, FC(G) is a normal subgroup of G. If G is Abelian or G is a sum of
finite groups then FC(G) = G. For any g ∈ FC(G), we define a measure µg• on
(X ×X, B⊗B) by setting

µg•(A×B) :=
1

#g•
∑

h∈g•
µ(A ∩ ThB).

It is easy to verify that µg• is a self-joining of T . Moreover, the map (x, T−1
h x) 7→

(x, h) is an isomorphism of (X ×X, µg• , T × T ) onto (X × g•, µ× ν, T̃ ), where ν is
the equidistribution on g• and the G-action T̃ = (T̃t)t∈G is given by

T̃t(x, h) = (Ttx, tht−1), x ∈ X, h ∈ g•.

It follows that T̃ (and hence the self-joining µg• of T ) is ergodic if and only if
the action (Tt)t∈C(g) is ergodic, where C(g) = {t ∈ G | tg = gt} stands for the
centralizer of g in G. Notice also that C(g) is a co-finite subgroup of G because of
g ∈ FC(G). Hence {µg• | g ∈ FC(G)} ⊂ Je

2 (T ) whenever T is totally ergodic.

Definition 0.2. If Je
2 (T ) ⊂ {µg• | g ∈ FC(G)} ∪ {µ × µ} then we say that T has

2-fold minimal self-joinings (MSJ2).

This definition extends naturally to higher order self-joinings as follows. Given
l ≥ 1 and g ∈ Gl+1, we denote by g•l the orbit of g under the G-action on Gl+1 by
conjugations:

h · (g0, . . . , gl) := (hg0h
−1, . . . , hglh

−1).

Let P be a partition of {0, . . . , l}. For an atom p ∈ P , we denote by ip the
minimal element in p. We say that an element g = (g0, . . . , gl) ∈ FC(G)l+1 is
P -subordinated if gip = 1G for all p ∈ P . For any such g, we define a measure µg•l

on (X l+1, B⊗(l+1)) by setting

µg•l(A0 × · · · ×Al) :=
1

#g•l
∑

(h0,...,hl)∈g•l

∏

p∈P

µ

(⋂

i∈p

Thi
Ai

)
.

It is easy to verify that µg•l is an (l + 1)-fold self-joining of T . Reasoning as above
one can check that µg•l is ergodic whenever T is weakly mixing.

Definition 0.3. We say that T has (l + 1)-fold minimal self-joinings (MSJl+1) if

Je
l+1(T ) ⊂ {µg•l | g is P -subordinated for a partition P of {0, . . . , l}}.

If T has MSJl for any l > 1, we say that T has MSJ.

In case G is Abelian, these definitions agree with the—common now—definitions
of MSJl+1 and MSJ by A. del Junco and D. Rudolph [JuR] who considered self-
joinings µg•l only when g belongs to the center of Gl+1. However we find their defini-
tion somewhat restrictive for non-commutative groups since, for instance, countable
sums of non-commutative finite groups can never have actions with MSJ2 in their
sense.

Now we record the second main result of this paper.
3



Theorem 0.4. The actions constructed in Theorem 0.1(i) all have MSJ.

We notice that a part of the analysis from [Ru] can be carried over to the case
of G-actions with MSJ. In this paper we only show that such actions have trivial
product centralizer. Moreover, as follows from [Da3], every G-action with MSJ2 is
effectively prime, i.e. has no factors except for the obvious ones: the sub-σ-algebras
of subsets fixed by finite normal subgroups in G. In particular, there exist no free
factors.

We now briefly summarize the organization of the paper. In Section 1 we outline
the (C, F )-construction of rank-one actions as it appeared in [Da1]. In Section 2,
for any countable sum G of finite groups, we construct a (C, F )-action T of G which
is mixing of any order. A rigid weakly mixing action of G also appears there. In
Section 3 we demonstrate that T has MSJ. In Section 4 we show how to perturb
the construction of T to obtain an uncountable family of pairwise disjoint mixing
rank-one G-actions with MSJ. In the final Section 5 we discuss some implications
of MSJ: trivial centralizer, trivial product centralizer and effective primality.

Acknowledgement. The author thanks the referee for the useful suggestions that
improved the paper. In particular, in the present proof of Theorem 0.4 we deduce
MSJl from the l-fold mixing (as J. King does for Z-actions in [Ki]). Our original
proof (independent of multiple mixing) was longer and noticeably more complicated.

1. (C, F )-construction

In this section we recall the (C, F )-construction of rank-one actions.
From now on G =

∑∞
i=1 Gi, where Gi is a non-trivial finite group for each i ≥ 1.

To construct a probability preserving (C, F )-action of G (see [Ju], [Da1], [DaS2])
we need to define two sequences (Fn)n≥0 and (Cn)n≥1 of finite subsets in G such
that the following are satisfied:

(Fn)n≥0 is a Folner sequence in G, F0 = {1G},(1-1)

FnCn+1 ⊂ Fn+1, Cn+1 > 1,(1-2)

Fnc ∩ Fnc′ = ∅ for all c 6= c′ ∈ Cn+1,(1-3)

lim
n→∞

#Fn

#C1 · · ·#Cn
< ∞.(1-4)

Suppose that an increasing sequence of integers 0 < k1 < k2 < · · · is given.
Then we define (Fn)n≥0 by setting F0 := {1G} and Fn :=

∑kn

i=1 Gi for n ≥ 1.
Clearly, (1-1) is satisfied. Suppose now that we are also given a sequence of maps
sn : Hn → Fn, where H0 :=

∑k1
i=1 Gi and Hn :=

∑kn+1
i=kn+1 Gi for n ≥ 1. Then we

define two sequences of maps cn+1, φn : Hn → Fn+1 by setting φn(h) := (0, h) and
cn+1(h) := (sn(h), h). Finally, we let Cn+1 := cn+1(Hn) for all n ≥ 0. It is easy to
verify that (1-2)–(1-4) are all fulfilled. Moreover, a stronger version of (1-2) holds:

(1-5) FnCn+1 = Fn+1.

We now put Xn := Fn × Cn+1 × Cn+2 × · · · and define a map in : Xn → Xn+1 by
setting

in(fn, dn+1, dn+2, . . . ) := (fndn+1, dn+2, . . . ).

Clearly, Xn is a compact Cantor space. It follows from (1-5) and (1-3) that in
is well defined and it is a homeomorphism of Xn onto Xn+1. Denote by X the
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topological inductive limit of the sequence (Xn, in)∞n=1. As a topological space X
is canonically homeomorphic to any Xn and in the sequel we will often identify X
with Xn suppressing the canonical identification maps. We need the structure of
inductive limit to define the (C, F )-action T on X as follows. Given g ∈ G, consider
any n ≥ 0 such that g ∈ Fn. Every x ∈ X can be written as an infinite sequence
x = (fn, dn+1, dn+2, . . . ) with fn ∈ Fn and dm ∈ Cm for m > n (i.e. we identify X
with Xn). Now we put

Tgx := (gfn, dn+1, dn+2, . . . ) ∈ Xn.

It is easy to verify that Tg is a well defined homeomorphism of X. Moreover,
TgTg′ = Tgg′ , i.e. T := (Tg)g∈G is a topological action of G on X.

Definition 1.1. We call T the (C,F )-action of G associated with (kn, sn−1)∞n=1.

We list without proof several properties of T . They can be verified easily by the
reader (see also [Da1]).

— T is a minimal uniquely ergodic (i.e. strictly ergodic) free action of G.
— Two points x = (fn, dn+1, dn+2, . . . ) and x = (f ′n, d′n+1, d

′
n+2, . . . ) ∈ Xn

are T -orbit equivalent if and only if di = d′i eventually (i.e. for all large
enough i). Moreover, x′ = Tgx if and only if

g = lim
i→∞

f ′nd′n+1 · · · d′n+id
−1
n+i · · · d−1

n+1f
−1
n .

— The only T -invariant probability measure µ on X is the product of the
equidistributions on Fn and Cn+i, i ∈ N (if X is identified with Xn).

For each A ⊂ Fn, we let [A]n := {x = (fn, dn+1, . . . ) ∈ Xn | fn ∈ A} and call it an
n-cylinder. The following holds:

[A]n ∩ [B]n = [A ∩B]n, and [A]n ∪ [B]n = [A ∪B]n,

[A]n =
⊔

d∈Cn+1

[Ad]n+1,

Tg[A]n = [gA]n if g ∈ Fn,

µ([Ad]n+1) =
1

#Cn+1
µ([A]n) for any d ∈ Cn+1,

µ([A]n) = λFn
(A),

where λFn is the normalized Haar measure on Fn. Moreover, for each measurable
subset B ⊂ X,

(1-6) lim
n→∞

min
A⊂Fn

µ(B4[A]n) = 0.

Hence T has rank one.

2. Mixing (C,F )-actions

Our purpose in this section is to construct a rank-one action of G which is
mixing of any order. This action will appear as a (C, F )-action associated with
some specially selected sequence (kn, sn−1)n≥1. We first state several preliminary
results.

Given finite sets A and B and a map x ∈ AB , we denote by dist x or distb∈Bx(b)
the measure (#B)−1

∑
b∈B χx(b) on A. Here χx(b) stands for the probability sup-

ported at the point x(b).
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Lemma 2.1. Let A be a finite set and let λ be the equidistribution on A. Then for
any ε > 0 there exist c > 0 and m ∈ N such that for any finite set B with #B > m,

λB({x ∈ AB | ‖dist x− λ‖ > ε}) < e−c #B .

For the proof we refer to [Or] or [Ru]. We will also use the following combinatorial
lemma.

Lemma 2.2. For any l ∈ N, let Nl := 3l(l−1)/2 and δl := 5−l(l−1)/2 Let H be a
finite group. Then for any family h1, . . . , hl of mutually different elements of H
and any subset B ⊂ H with #B > 3/δl, there exists a partition of B into subsets
Bi, 1 ≤ i ≤ Nl, such that the subsets h1Bi, h2Bi, . . . , hlBi are mutually disjoint
and #Bi ≥ δl#B for any i.

Proof. We leave to the reader the simplest case when l = 2. Hint: assume that
h1 = 1H and consider the partition of H into the right cosets by the cyclic group
generated by h2.

Suppose that we already proved the assertion of the lemma for some l and we
want to prove it for l + 1. Take any h1 6= h2 6= · · · 6= hl+1 ∈ H (in such a
way we denote mutually different elements of H). Given a subset B ⊂ H with
#B > 3/δl, we first partition B into subsets Bi, 1 ≤ i ≤ Nl, such that the subsets
h2Bi, h3Bi, . . . , hl+1Bi are mutually disjoint and #Bi ≥ δl#B ≥ 3 · 5l. For every
i, there exists a partition Bi =

⊔3
i1=1 Bi,i1 such that h1Bi,i1 ∩ h2Bi,i1 = ∅ and

#Bi,i1 ≥ 0.2#Bi, 1 ≤ i1 ≤ 3. Next, we partition every Bi,i1 into 3 subsets Bi,i1,i2

such that h1Bi,i1,i2 ∩ h3Bi,i1,i2 = ∅ and #Bi,i1,i2 ≥ 0.2#Bi,i1 , 1 ≤ i2 ≤ 3, and so
on. Finally, we obtain a partition

B =
Nl⊔

i=1

3⊔

i1,...,il=1

Bi,i1,...,il

which is as desired. ¤
Given a finite set A, a finite group H and elements h1, . . . , hl ∈ H, we denote

by πh1,...,hl
the map AH → (Al)H given by

(πh1,...,hl
x)(k) = (x(h1k), . . . , x(hlk)).

For x ∈ AH , we define x∗ ∈ AH by setting x∗(h) := x(h−1), h ∈ H.

Lemma 2.3. Given l ∈ N and ε > 0, there exists m ∈ N such that for any finite
group H with #H > m, one can find s ∈ AH such that

(2-1) ‖distπh1,...,hl
s− λl‖ < ε and ‖distπh1,...,hl

s∗ − λl‖ < ε

for all h1 6= h2 6= · · · 6= hl ∈ H.

Proof. Take any finite group H and set

BH :=
⋃

h1 6=···6=hl∈H

{x ∈ AH | ‖distπh1,...,hl
x− λl‖ > ε}.
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To prove the left hand side inequality in (2-1) it suffices to show that λH(BH) < 1
whenever #H is large enough. Moreover, since the map AH 3 x 7→ x∗ ∈ AH

preserves the measure λH , the right hand side inequality in (2-1) will follow from
the left hand side one if we prove that λH(BH) < 0.5.

Fix h1 6= · · · 6= hl ∈ H and apply Lemma 2.2 to partition H into subsets Hi,
1 ≤ i ≤ Nl, such that

#Hi ≥ δl#H and(2-2)

the subsets h1Hi, . . . , hlHi are mutually disjoint(2-3)

for every i. Denote by ri : (Al)H → (Al)Hi the natural restriction map. Then we
deduce from (2-3) that ri ◦ πh1,··· ,hl

maps λH onto (λl)Hi . Since dist πh1,...,hl
x =∑

i(#Hi/#H) · dist(ri ◦ πh1,...,hl
)x, it follows that

λH({x ∈ AH | ‖dist πh1,...,hl
x− λl‖ > ε})

≤
∑

i

λH({x ∈ AH | ‖dist (ri ◦ πh1,...,hl
)x− λl‖ > ε})

=
∑

i

(λl)Hi({y ∈ (Al)Hi | ‖dist y − λl‖ > ε}).

By Lemma 2.2 and (2-2), there exists c > 0 such that if #H is large enough then
the i-th term in the latter sum is less then e−c #Hi < e−cδl#H . Hence

λH(BH) ≤ Nl

(
#H

l

)
e−cδl#H

and the assertion of the lemma follows. ¤
Now we are ready to define the sequence (kn, sn−1)n≥1. Fix a sequence of positive

reals εn → 0. On the first step one can take arbitrary k1 and s0. Suppose now—on
the n-th step—we already have kn and sn−1 and we want to define kn+1 and sn.
For this, we apply Lemma 2.3 with A := Fn, l := n and ε := εn to find kn+1 large
so that there exists sn ∈ AHn satisfying

(2-4) ‖distπh1,...,hnsn − (λFn)n‖ < εn for all h1 6= · · · 6= hn ∈ Hn.

Recall that Hn :=
∑kn+1

i=kn+1 Gi and Fn :=
∑kn

i=1 Gi for n ≥ 1. Without loss of
generality we may also assume that kn+1−kn ≥ n and hence

∑∞
n=1(#Hn)−1 < ∞.

Denote by T the (C, F )-action of G on (X, B, µ) associated with (kn, sn−1)∞n=1.

Theorem 2.4. T is mixing of any order.

Proof. (I) We first show that T is mixing (of order 1).
Recall that a sequence gn →∞ in G is called mixing for T if

lim
n→∞

µ(TgnB1 ∩B2) = µ(B1)µ(B2) for all B1, B2 ∈ B.

Clearly, T is mixing if and only if any sequence going to infinity in G contains a
mixing subsequence. Since every subsequence of a mixing sequence is mixing itself,
to prove (I) it suffices to show that every sequence (gn)∞n=1 in G with gn ∈ Fn+1\Fn
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for all n is mixing. Notice first that there exist (unique) fn ∈ Fn and hn ∈ Hn \{1}
with gn = fnφn(hn). Fix any two subsets A,B ⊂ Fn. We notice that for each
h ∈ Hn,

gnAcn+1(h) = fnAsn(h)φn(hnh) = fnAsn(h)sn(hnh)−1cn+1(hnh)

and fnAsn(h)sn(hnh)−1 ⊂ Fn. Hence

(2-5)

µ(Tgn [A]n ∩ [B]n) =
∑

h∈Hn

µ(Tgn [Acn+1(h)]n+1 ∩ [B]n)

=
∑

h∈Hn

µ([fnAsn(h)sn(hnh)−1cn+1(hnh)]n+1 ∩ [B]n)

=
∑

h∈Hn

µ([(fnAsn(h)sn(hnh)−1 ∩B)cn+1(hnh)]n+1)

=
1

#Hn

∑

h∈Hn

µ([fnAsn(h)sn(hnh)−1 ∩B]n)

=
1

#Hn

∑

h∈Hn

λFn(fnAsn(h) ∩Bsn(hnh)).

We define a map rA,B : Fn × Fn → R by setting

rA,B(g, g′) := λFn(fnAg ∩Bg′).

Then it follows from (2-5) and (2-4) that

µ(Tgn [A]n ∩ [B]n) =
∫

Fn×Fn

rA,B d(distπ1,hnsn)

=
∫

Fn×Fn

rA,B dλFn×Fn ± εn

=
∫

Fn×Fn

λFn(fnAg ∩Bg′) dλFn(g)dλFn(g′)± εn

= λFn(A)λFn(B)± εn

= µ([A]n)µ([B]n)± εn.

Hence we have

(2-6) maxA,B⊂Fn |µ(Tgn [A]n ∩ [B]n)− µ([A]n)µ([B]n)| < εn.

This and (1-6) imply that the sequence (gn)∞n=1 is mixing.
(II) Now we fix l > 1 and prove that T is mixing of order l. To this end it is

sufficient to show the following: given l + 1 sequences (g0,n)∞n=1, . . . , (gl,n)∞n=1 in G

such that gi,n ∈ Fn+1 and gi,ng−1
j,n /∈ Fn whenever i 6= j,

max
A0,...,Al

|µ(Tg0,n [A0]n ∩ · · · ∩ Tgl,n
[Al]n)− µ([A0]n) · · ·µ([Al]n)| < εn
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for all n > l. Notice that for every n ∈ N and 0 ≤ j ≤ l, there exist unique fj,n ∈ Fn

and hj,n ∈ Hn with gj,n = fj,nφn(hj,n). Moreover, h0,n 6= h2,n · · · 6= h1,n. Then
slightly modifying the argument in (I), we compute

(2-7)

µ(Tg0,n
[A0]n∩ · · · ∩ Tgl,n

[Al]n)

=
∫

F l
n

λFn
(f0,nA0g0 ∩ · · · ∩ fl,nAlgl) d(λFn

)l+1(g0, . . . , gl)± εn

=λFn
(A0) · · ·λFn

(Al)± εn = µ([A0]n) · · ·µ([Al]n)± εn.

¤
To construct a weakly mixing rigid action of G we define another sequence

(k̃n, s̃n−1)n≥1. When n is odd, we choose k̃n and s̃n−1 to satisfy the following
weaker version of (2-4):

(2-8) max
1 6=h∈Hn

‖dist π1,hsn − λFn × λFn‖ < εn.

When n is even, we just set k̃n := k̃n−1 + 1 and s̃n ≡ 1G. Denote by T̃ the
(C,F )-action of G on (X̃, B̃, µ̃) associated with (k̃n, s̃n−1)∞n=1.

Theorem 2.5. T̃ is weakly mixing and rigid.

Proof. Take any sequence hn ∈ H2n \ {1}. It follows from the part (I) of the proof
of Theorem 2.4 and (2-8) that the sequence (φ2n(hn))∞n=1 is mixing for T̃ . Clearly,
it is also mixing for T̃ × T̃ . Hence T̃ × T̃ is ergodic, i.e. T̃ is weakly mixing.

Now take any sequence hn ∈ H2n+1 \ {1}. Notice that (2-5) holds for any choice
of (kn, sn−1)n≥1. Hence we deduce from (2-5) and the definition of s̃2n+1 that

µ(T̃φ2n+1(hn)[A]2n+1 ∩ [B]2n+1) = λF2n+1(A ∩B) = µ([A ∩B]2n+1)

for all subsets A,B ⊂ F2n+1. This plus (1-6) yield

lim
n→∞

µ(T̃φ2n+1(hn)Ã ∩ B̃) = µ(Ã ∩ B̃)

for all Ã, B̃ ∈ B̃. This means that T̃ is rigid. ¤

3. Self-joinings of T

This section is devoted entirely to the proof of the following theorem.

Theorem 3.1. The action T constructed in the previous section has MSJ.

Proof. (I) We first show that T has MSJ2. Since T is weakly mixing, we need to
establish that

Je
2 (T ) = {µg• | g ∈ G} ∪ {µ× µ}.

Take any ν ∈ Je
2 (T ). Let Fn denote the sub-σ-algebra of (Tg × Tg)g∈Fn-invariant

subsets. Then F1 ⊃ F2 ⊃ · · · and
⋂

n Fn = {∅, X × X} (mod ν). Since there
are only countably many cylinders, we deduce from the martingale convergence
theorem that for ν-a.a. (x, x′),

(3-1) E(χB×B′ |Fn−1)(x, x′) =
1

#Fn−1

∑

g∈Fn−1

χB×B′(Tgx, Tgx
′) → ν(B ×B′)

9



as n →∞ for any pair of cylinders B, B′ ⊂ X. Fix such a point (x, x′). It is called
generic for (T ×T, ν). Given any n > 0, we can write x and x′ as infinite sequences

x = (fn, dn+1, dn+2, . . . ) and x′ = (f ′n, d′n+1, d
′
n+2, . . . )

with fn, f ′n ∈ Fn and di, d
′
i ∈ Ci for all i > n. Recall that fn := f0d1 · · · dn and

f ′n := f ′0d
′
1 · · · d′n. We set tn := f ′nf−1

n , n > 0. Fix a pair of cylinders, say m-
cylinders, B and B′. If n > m and g ∈ Fn then Tgx

′ = (gf ′n, d′n+1, d
′
n+2, . . . ).

Hence Tgx
′ ∈ B′ if and only if TgTtn

x ∈ B′. Therefore

χB×B′(Tgx, Tgx
′) = χT−1

g B∩T−1
tn

T−1
g B′(x).

Since x is generic for (T, µ), it follows that

lim
l→∞

1
#Fl

∑

a∈Fl

χT−1
g B∩T−1

tn
T−1

g B′(Tax) = µ(T−1
g B ∩ T−1

tn
T−1

g B′).

Therefore (3-1) yields

(3-2) lim
n→∞

1
#Fn−1

∑

g∈Fn−1

µ(T−1
g B ∩ T−1

tn
T−1

g B′) = ν(B ×B′).

Consider now two cases. If tn /∈ Fn−1 for infinitely many n then passing to the limit
in (3-2) along this subsequence and making use of (2-6) we obtain that µ(B)µ(B′) =
ν(B×B′). Hence µ×µ = ν. If, otherwise, there exists N > 0 such that tn ∈ Fn−1,
i.e. dn = d′n, for all n > N then x and x′ are T -orbit equivalent, tn = tN and

1
#Fn−1

∑

g∈Fn−1

µ(T−1
g B ∩ T−1

tn
T−1

g B′) =
1

#FN

∑

g∈FN

µ(B ∩ TgT
−1
tN

T−1
g B′)

= µ(t−1
N )•(B ×B′)

Passing to the limit in (3-1) we obtain that ν = µ(t−1
N )• .

(II) Now we fix l > 1 and show that T has MSJl+1. Take any joining ν ∈ Je
l+1(T )

and fix a generic point (x0, . . . , xl) for (T × · · · × T, ν). Define a partition P of
{0, . . . , l} by setting: i1 and i2 are in the same atom of P if xi1 and xi2 are T -orbit
equivalent. As in (I), for any n, we can write

xj = (fj,n−1, dj,n, dj,n+1, . . . ) ∈ Xn−1, j = 0, . . . , l.

Suppose first that #P = l + 1, i.e. P is the finest possible. Then by the proof
of (I), each 2-dimensional marginal of ν is µ × µ. Since

∑∞
i=1(#Ci)−1 < ∞ and

µ = λF0 × λC1 × λC2 × · · · , it follows from the Borel-Cantelli lemma that for ν-a.a.
(y0, . . . , yl) ∈ X l+1,

∃N > 0 such that y0,i 6= y1,i 6= · · · 6= yl,i whenever i > N,

where yj,i ∈ Ci is the i-th coordinate of yj ∈ F0 × C1 × C2 × · · · . Hence without
loss of generality we may assume that this condition is satisfied for (x0, . . . , xl).
Thus, if we set tj,n := fj,nf0,n

−1 = fj,n−1dj,nd0,n
−1f0,n−1

−1 then tj,nt−1
i,n /∈ Fn−1

10



whenever i 6= j. Slightly modifying our reasoning in (I) and making use of (2-7)
instead of (2-6) we now obtain

ν(B0 × · · · ×Bl) = lim
n→∞

∑

g∈Fn−1

χB0×···×Bl
(Tgx0, . . . .Tgxl)

= lim
n→∞

∑

g∈Fn−1

χB0×···×Bl
(Tgx0, TgTt1,n

x0, . . . , TgTtl,n
x0)

= lim
n→∞

∑

g∈Fn−1

µ(TgB0 ∩ T−1
t1,n

TgB1 ∩ · · · ∩ T−1
tl,n

TgBl)

= µ(B0) · · ·µ(Bl)

for any (l + 1)-tuple of cylinders B0, . . . , Bl. Hence ν = µ× · · · × µ.
Consider now the general case and put tj,n := fj,nf−1

ip,n for each j ∈ p, p ∈ P .
Recall that ip = minj∈p j. Then

χB0×···×Bl
(Tgx0, . . . , Tgxl) =

∏

p∈P

χAp(xip),

where Ap :=
⋂

j∈p T−1
tj,n

T−1
g Bj . Notice that the point (xip)p∈P ∈ X{ip|p∈P} is

generic for (T × · · · ×T (#P times), κ), where κ stands for the projection of ν onto
X{ip|p∈P}. By the first part of (II), κ = µ× · · · × µ (#P times). Hence

ν(B0 × · · · ×Bl) = lim
n→∞

1
#Fn−1

∑

g∈Fn−1

χB0×···×Bl
(Tgx0, . . . .Tgxl)

= lim
n→∞

1
#Fn−1

∑

g∈Fn−1

∏

p∈P

µ(Ap).

As in (I), a ‘stabilization’ property holds: there exists M > 0 such that tj,n = tj,M
for all n > M . We now set g := (t−1

0,M , . . . , t−1
l,M ). Clearly, g is P -subordinated.

Hence

ν(B0 × · · · ×Bl) =
1

#FM

∑

g∈FM

∏

p∈P

µ

( ⋂

j∈p

TgTtj,M
T−1

g Bj

)
= µg•l(B0 × · · · ×Bl).

¤

4. Uncountably many mixing actions with MSJ

In this section the proof of Theorems 0.1(i) and 0.4 will be completed. We first
apply Lemma 2.3 to construct kn+1 and sn, ŝn ∈ FHn

n in such a way that (2-4) is
satisfied for both sn and ŝn and, in addition,

(4-1) ‖disth∈Hn(sn(hk), ŝn(hk′))− λFn × λFn‖ < εn

for all k, k′ ∈ Hn. Next, given σ ∈ {0, 1}N and n ∈ N, we define sσ
n : Hn → Fn by

setting

sσ
n =

{
sn if σ(n) = 0,

ŝn if σ(n) = 1.

Now we denote by T σ the (C, F )-action of G associated with (kn, sσ
n−1)

∞
n=1. Let

Σ be an uncountable subset of {0, 1}N such that for any σ, σ′ ∈ Σ, the subset
{n ∈ N | σ(n) 6= σ′(n)} is infinite.

11



Theorem 4.1.
(i) For any σ ∈ {0, 1}N, the action T σ is mixing and has MSJ.
(ii) If σ, σ′ ∈ Σ and σ 6= σ′ then T σ and Tσ′ are disjoint.

Proof. (i) follows from the proof of Theorem 3.1, since (2-4) is satisfied for sσ
n for

all σ ∈ {0, 1}N and n ∈ N.
(ii) Let ν ∈ Je(Tσ, T σ′). Take a generic point (x, x′) for (Tσ ×T σ′ , ν). Consider

any n such that σ(n) 6= σ′(n). Then we can write x and x′ as infinite sequences x =
(fn, dn+1, dn+2, . . . ) and x′ = (f ′n, d′n+1, d

′
n+2, . . . ) with fn, f ′n ∈ Fn and dm, d′m ∈

Cm for all m > n. Take any g ∈ Fn+1. Then we have the following expansions

g = aφn(h), dn+1 = sσ
n(hn)φn(hn) and d′n+1 = sσ′

n (h′n)φn(h′n)

for some uniquely determined a ∈ Fn and h, hn, h′n ∈ Hn. Since

gfndn+1 = afnsσ
n(hn)sσ

n(hhn)−1cn+1(hhn) and

gf ′nd′n+1 = af ′nsσ′
n (h′n)sσ′

n (hh′n)−1cn+1(hh′n),

the following holds for any pair of subsets A,A′ ⊂ Fn:

#{g ∈ Fn+1 | (Tσ
g x, T σ′

g x′) ∈ [A]n × [A′]n}
#Fn+1

=
1

#Fn

∑

a∈Fn

#{h ∈ Hn | afnsσ
n(hn)sσ

n(hhn)−1 ∈ A, af ′nsσ′
n (h′n)sσ′

n (hh′n)−1 ∈ A′}
#Hn

=
1

#Fn

∑

a∈Fn

ξn(A−1afnsσ
n(hn)×A′−1

af ′nsσ′
n (h′n)),

where ξn := disth∈Hn(sσ
n(hhn), sσ′

n (hh′n)). This and (4-1) yield

(4-2)
#{g ∈ Fn+1 | (T σ

g x, T σ′
g x′) ∈ [A]n × [A′]n}

#Fn+1
= λFn(A)λFn(A′)± εn

= µ([A]n)µ([A′]n)± εn.

Since (x, x′) is generic for (Tσ × Tσ′ , ν) and (4-2) holds for infinitely many n, we
deduce that ν = µ× µ. ¤

By refining the above argument the reader can strengthen Theorem 0.1(i) as
follows: there exists an uncountable family of mixing (of any order) rank-one G-
actions with MSJ such that any finite subfamily of it is disjoint.

5. On G-actions with MSJ

It follows immediately from Definition 0.2 that if T has MSJ2 then the centralizer
C(T ) of T is ‘trivial’, i.e. C(T ) = {Tg | g ∈ C(G)}, where C(G) denotes the center
of G. Moreover, we will show that T has trivial product centralizer (as D. Rudolph
did in [Ru] for Z-actions).

Let (X l,B⊗l, µl, T (l)) denote the l-fold Cartesian product of (X, B, µ, T ). Given
a permutation σ of {1, . . . , l} and g1, . . . , gn ∈ C(T ), we define a transformation
Uσ,g1,...,gl

of (X l, B⊗l, µl, T (l)) by setting

Uσ,g1,...,gl
(x1, . . . , xl) := (Tg1xσ(1), . . . , Tgl

xσ(l)).

Of course, Uσ,g1,...,gl
∈ C(T (l)). We show that for the actions with MSJ, the

converse also holds.
12



Proposition 5.1. If T has MSJ then for any l ∈ N, each element of C(T (l)) equals
to Uσ,g1,...,gl

for some permutation σ and elements g1, . . . , gl ∈ C(G).

Proof. Let S ∈ C(T (l)). We define an ergodic 2-fold self-joining ν of T (l) by setting
ν(A × B) := µl(A ∩ S−1B) for all A,B ∈ B⊗l. Notice that ν ∈ Je

2l(T ). Since T
has MSJ2l, there exists a partition P of {1, . . . , 2l} and a P -subordinated element
g = (g1, . . . , g2l) ∈ FC(G)2l such that

(5-1) ν(A1 × · · · ×A2l) =
1

#g•2l

∑

(h1,...,h2l)∈g•2l

∏

p∈P

µ

( ⋂

i∈p

Thi
Ai

)
.

for all subsets A1, . . . , A2l ∈ B. Substituting at first A1 = · · · = Al = X and then
Al+1 = · · · = A2l = X in (5-1) we derive that #P = l, #p = 2 for all p ∈ P and
#g•2l = 1. Hence g1, . . . , g2l ∈ C(G) and there exists a bijection σ of {1, . . . , l}
such that P = {{i, σ(i) + l} | i = 1, . . . , l}. Therefore in follows from (5-1) that

S−1(Al+1 × · · · ×A2l) = Tgl+1Al+σ(1) × · · · × Tg2l
Al+σ(l).

¤
As a simple corollary we derive that if T has MSJ then the G-actions T, T (2), . . .

and T × T × · · · are pairwise non-isomorphic.
After this paper was submitted the author introduced a companion to MSJ

concept of simplicity for actions of locally compact second countable groups [Da3].
As appeared, this concept is more general that the simplicity in the sense of A. del
Junco and D. Rudolph [JuR] even for Z-actions. For instance, there exist simple
transformations which are disjoint from all 2-fold del Junco-Rudolph’s-simple ones.
It is shown in [Da3] that an analogue of Veech theorem on the structure of factors
holds for this extended class of simple actions. In particular, if T has MSJ2 then
for every non-trivial factor F of T there exists a compact normal subgroup K of G
such that

F = Fix K := {A ∈ B | µ(TkA4A) = 0 for all k ∈ K}.
Thus if T has MSJ2 then T is effectively prime, i.e. T has no effective factors.
(Recall that a G-action Q is called effective if Qg 6= Id for each g 6= 1G.)
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