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Abstract. We apply the (C, F )-construction from a previous paper of the first
author to produce a number of funny rank one infinite measure preserving actions of
discrete countable Abelian groups G with ‘unusual’ multiple recurrence properties.
In particular, we construct the following for each p ∈ N ∪ {∞}:

(i) a p-recurrent action T = (Tg)g∈G such that (if p 6= ∞) no one transformation
Tg is (p + 1)-recurrent for every element g of infinite order,

(ii) an action T = (Tg)g∈G such that for every finite sequence g1, . . . , gr ∈ G
without torsion the transformation Tg1 × · · · × Tgr is ergodic, p-recurrent
but (if p 6= ∞) not (p + 1)-recurrent,

(iii) a p-polynomially recurrent (C, F )-transformation which (if p 6= ∞) is not
(p + 1)-recurrent.

∞-recurrence here means multiple recurrence. Moreover, we show that there exists a
(C, F )-transformation which is rigid (and hence multiply recurrent) but not polyno-
mially recurrent. Nevertheless, the subset of polynomially recurrent transformations
is generic in the group of infinite measure preserving transformations endowed with
the weak topology.

0. Introduction

The first named author introduced in [8] a (C,F )-construction of funny rank one
infinite measure preserving actions of countable discrete Abelian groups (cf. [14]).
It was used to provide examples of such actions with ‘unusual’ i.e. impossible in
the classical probability preserving setting) weak mixing properties. The goal of
the present work is to exhibit new (C, F )-actions with various ‘unusual’ properties
of multiple or polynomial recurrence.

Recall that while elaborating a new proof of Szemerédi’s theorem on arithmetic
progressions, Furnstenberg showed [10] that every probability preserving transfor-
mation is multiply recurrent. This fact was refined later as follows: every such a
transformation is polynomially recurrent [6]. Furthermore, these results were ex-
tended successively to actions of more general groups like Abelian [11] or solvable
ones [15].

Now we review briefly the known results related to multiple recurrence in infi-
nite measure. For consistency of notation ∞-recurrence below denotes the multiple
recurrence. Eigen, Hajian and Halverson constructed in [9] infinite measure pre-
serving odometers—i.e. infinite counterparts of transformations with pure discrete
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rational spectrum—with every possible index of recurrence. This means that for
any p ∈ N ∪ {∞} there exists an odometer which is p-recurrent but (if p 6= ∞) not
(p + 1)-recurrent. Recall that in the probability preserving case, Furnstenberg’s
multiply recurrence theorem is proved differently for the transformations with pure
discrete spectrum and weakly mixing ones. Thus it is of interest to ask if this
theorem is still true for weakly mixing infinite measure preserving transformations.
However, it is not quite clear what is the proper definition of weak mixing in infinite
measure (see a discussion in [8]). We recall the ‘scale’ of weak mixing in infinite
measure where every next notion is strictly stronger than the previous one:

— a transformation T has trivial L∞-spectrum.
— T × T is ergodic.
— T is of infinite ergodic index, i.e. T × · · · × T︸ ︷︷ ︸

k times

is ergodic for every k.

— T is power weakly mixing, i.e. Tn1×· · ·×Tnk is ergodic for all n1, . . . , nk 6=
0.

Aaronson and Nakada showed in [2] that an infinite measure preserving Markov
shift T is p-recurrent if and only if T × · · · × T︸ ︷︷ ︸

p times

is conservative. It follows from this

and [1] that in the class of ergodic Markov shifts infinite ergodic index implies mul-
tiple recurrence. However, in general this is not true. Two counterexamples were
constructed in [4] and [12]. The first one is an infinite ergodic index transformation
which is not 2-recurrent. The second one is a power weakly mixing transformation
which is 3-recurrent but not 16-recurrent. We also mention a ‘positive’ result. It
was shown in [5] that the set of multiply recurrent transformations is generic in the
group of infinite measure preserving ones.

The transformations in [4] and [12] were constructed via the well known geo-
metrical cutting-and-stacking procedure. In the present paper we utilize the more
universal algebraic (C, F )-construction to produce a richer and finer family of coun-
terexamples. Notice that unlike the probability preserving setting neither polyno-
mial recurrence nor multiple recurrence for actions of more general groups than Z
have been considered earlier in the literature.

Now we record the main results of this work together with some comments.
Throughout this paper G is a countable discrete Abelian group. We assume that
the subset G∞ of elements of infinite order is not empty.

— Given p ∈ N∪ {∞}, there exists a (C, F )-action T = (Tg)g∈G such that the
transformation Tg is p-recurrent but (if p 6= ∞) not (p + 1)-recurrent for
every g ∈ G∞ (see Theorems 2.3–2.6).

— Given p ∈ N ∪ {∞}, there exists a p-recurrent (C, F )-action T = (Tg)g∈G

such that (if p 6= ∞) no one transformation Tg is (p + 1)-recurrent for all
g ∈ G∞ (see Theorems 3.3).

We notice that in infinite measure there is a distinction between p-recurrence of
T as a whole (Definition 3.2) and p-recurrence of every transformation Tg, g ∈ G
(Definition 2.1). We call the latter property individual p-recurrence of T . If the
free rank of G is one and p = ∞ then the both concepts are equivalent. However

— If the free rank of G is more than one, then there exists a (C,F )-action
T = (Tg)g∈G which is not 2-recurrent but is individually multiply recurrent.
It is even individually rigid (see Theorem 3.4(i)).
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Next, we are concerned with polynomial recurrence of infinite measure preserving
transformations.

— Given p ∈ N ∪ {∞}, there exists a p-polynomially recurrent (C, F )-trans-
formation which (if p 6= ∞) is not (p + 1)-recurrent (see Theorem 4.3).

— There exists a (C, F )-transformation which is rigid (and hence multiply
recurrent) but not 2-polynomially recurrent (see Theorem 4.2).

— The subset of polynomially recurrent transformations is generic in the group
of infinite measure preserving transformations endowed with the weak topol-
ogy (see Theorem 4.4).

Since polynomial recurrence implies multiple recurrence, we get a new proof of the
fact that the set of multiply recurrent transformations is generic (cf. [5]). The
following our assertion extends and refines a theorem of [12].

— Given p ∈ N ∪ {∞}, there exists a (C,F )-action T = (Tg)g∈G such that for
every finite sequence g1, . . . , gr ∈ G∞, the transformation Tg1 × · · · × Tgr is
ergodic, p-recurrent but (if p 6= ∞) not (p+1)-recurrent (see Theorem 5.5).

Note that every (C, F )-action is a minimal G-action on a locally compact Cantor
set. It is worthwhile to observe that while proving the main results of this paper we
obtain as byproducts topological counterparts of them (see the final § 6 for details).

1. (C, F )-actions and rigidity

In this section we recall the (C, F )-construction of funny rank one Abelian actions
as it appeared in [8] (cf. [14]). All the examples of actions that will be presented in
this paper are of that kind. We find necessary and sufficient conditions for a (C,F )-
transformation to be rigid or partially rigid (see Theorem 1.5, Corollary 1.6).

Let T stand for an invertible measure preserving transformation of a σ-finite
standard measure space (X, B, µ).

Definition 1.1.
(i) If there is a sequence ni → ∞ such that Tni → Id weakly then T is called

rigid.
(ii) Let 0 < δ ≤ 1. Then T is called at least δ-partially rigid if there exists a

sequence ni →∞ such that

(1-1) lim inf
i→∞

µ(TniA ∩A) ≥ δµ(A)

for every subset A ∈ B of finite measure.
(iii) If T is at least δ-partially rigid but not at least ε-partially rigid for any ε > δ

then T is called δ-partially rigid.

Clearly, T is rigid if and only if it is 1-partially rigid. It was shown recently in [5]
that a generic (nonsingular) transformation of (X, B, µ) is rigid both in the weak
and uniform topologies on the transformation group. Observe also that it suffices
to check (1-1) only on a dense subfamily in B. The following statement is easy and
we omit its proof (cf. [3]).

Lemma 1.2.
(i) If T is at least δ-partially rigid then T × · · · × T︸ ︷︷ ︸

l times

is at least δl-partially rigid

for every l ∈ N.
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(ii) If T is at least δ-partially rigid then T (and hence every Cartesian power of
T ) is conservative.

(iii) T is at least δ-partially rigid if and only if it is at least ε-partially rigid for
all ε ∈ (0, δ).

Now we recall the construction of (C, F )-actions. For an element h ∈ G and a
finite subset F ⊂ G, we set F (h) := F ∩ (F − h). Two finite subsets C1 and C2 of
G are called independent if

(C1 − C1) ∩ (C2 − C2) = {0}.

Let (Cn)∞n=1 and (Fn)∞n=0 be two sequences of finite G-subsets such that F0 = {0}
and for each n > 0 the following properties are satisfied:

Fn−1 + Cn ⊂ Fn, #Cn > 1,(1-2)

Fn−1 and Cn are independent.(1-3)

We put Xn := Fn×
∏

k>n Ck, endow Xn with the (compact) product topology and
define a continuous embedding Xn → Xn+1 by setting

(fn, cn+1, cn+2, . . . ) 7→ (fn + cn+1, cn+2, . . . ).

Then X1 ⊂ X2 ⊂ . . . . Let X :=
⋃

n Xn stand for the topological inductive limit of
the sequence Xn. Clearly, X is a locally compact non-compact totally disconnected
metrizable space without isolated points and Xn is clopen in X. Assume in addition
that

(1-4) given g ∈ G, there is m ∈ N with g + Fn−1 + Cn ⊂ Fn for all n > m.

Given g ∈ G and n ∈ N, we set

D(n)
g := Fn(g)×

∏

k>n

Ck and R(n)
g := D

(n)
−g .

Clearly, D
(n)
g and R

(n)
g are clopen subsets of Xn. Moreover, D

(n)
g ⊂ D

(n+1)
g and

R
(n)
g ⊂ R

(n+1)
g . Define a map T

(n)
g : D(n)

g → R
(n)
g by setting

T (n)
g (fn, cn+1, . . . ) := (fn + g, cn+1, . . . ).

Clearly, it is a homeomorphism. Put

Dg :=
∞⋃

n=1

D(n)
g and Rg :=

∞⋃
n=1

R(n)
g .

Then a homeomorphism Tg:Dg → Rg is well defined by Tg ¹ D
(n)
g = T

(n)
g . It follows

from (1-4) that Dg = Rg = X for each g ∈ G.
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Proposition 1.3 [8].
(i) T = {Tg}g∈G is a minimal free action of G on X,
(ii) Two points x, y ∈ X are T -orbit equivalent if and only if there are n ≤ m

with x = (xi)i≥n, y = (yi)i≥n ∈ Xn and xi = yi for all i ≥ m. Furthermore,
y = Tgx for g =

∑
i≥n(yi − xi).

(iii) there is a unique (ergodic) σ-finite T -invariant measure on X such that
µ(X0) = 1,

(iv) µ is finite if and only if

lim
n→∞

#Fn

#C1 · · ·#Cn
< ∞,

(v) T has funny rank one.

Given f ∈ Fn, we set [f ]n := {x = (xi)i≥n ∈ Xn | xn = f} and call it a cylinder.
Clearly, [f ]n =

⊔
c∈Cn+1

[f + c]n+1. The sign
⊔

means the union of disjoint subsets.
Denote by K the family of compact open subsets of X. Then A ∈ K if and only if
A is a finite union of cylinders.

We will use often the following additional property

(1-5)
∑

i<n

(Ci − Ci) and Cn − Cn are independent.

Remark 1.4. In this paper, the subsets Fn, Cn will be constructed inductively. On
the n-th step we will only define Cn explicitly. As for Fn, one can take any finite
subset in G which is sufficiently large to satisfy (1-2) and (1-4) and make infinite
the limit in Proposition 1.3(iv).

Theorem 1.5. Let T be the (C,F )-action associated with (Cn, Fn) satisfying (1-2)–
(1-5). For g ∈ G, the transformation Tg is at least δ-partially rigid if and only if
there exists a sequence mn → ∞ such that mng =

∑
i>n g

(n)
i with g

(n)
i ∈ Ci − Ci

and
∏

i>n

#Ci(g
(n)
i )

#Ci
≥ (1− 1

n
)δ.

Proof. (=⇒) Since Tg is at least δ-partially rigid, for any n there exists mn > n
with

(1-6) µ(Tmn
g [0]n ∩ [0]n) ≥ δ(1− 1

n
)µ([0]n).

It follows from the definition of T that mng ∈ ∑
i>n(Ci − Ci). Hence there is a

finite expansion mng =
∑ln

i=n+1 g
(n)
i with g

(n)
i ∈ Ci − Ci for all i. Since [0]n =⊔

cn+1∈Cn+1,...,cln∈Cln
[cn+1 + · · ·+ cln ]ln and (1-5) holds, we have

Tmn
g [0]n ∩ [0]n =

⊔

cn+1∈Cn+1(g
(n)
n+1),...,cln∈Cln (g

(n)
ln

)

[cn+1 + · · ·+ cln ]ln .

Hence
ln∏

i=n+1

#Ci(g
(n)
i )

#Ci
=

µ(Tmn
g [0]n ∩ [0]n)

µ([0]n)
≥ δ(1− 1

n
).
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(⇐=) Repeat the same argument in the opposite direction to get (1-6). Since G
is Abelian, we have

µ(Tmn
g [f ]n ∩ [f ]n) ≥ δ(1− 1

n
)µ([f ]n)

for every f ∈ Fn. It is easy to deduce from this inequality that

lim inf
i→∞

µ(Tmi
g A ∩A) ≥ δ(1− 1

n
)µ(A)

for all A ∈ B of finite measure. This means that Tg is at least δ(1 − 1
n )-partially

rigid for every n. By Lemma 1.2(iii), Tg is at least δ-partially rigid. ¤
Corollary 1.6. Let g ∈ G∞.

(i) If

lim sup
i→∞

max
0 6=m∈Z

#Ci(mg)
#Ci

≥ δ

then Tg is at least δ-partially rigid.
(ii) If #Cn ≤ M for all n and a transformation Tg is δ-partially rigid then

δ ≤ M−1
M .

Proof. We observe that every g ∈ G belongs to Fn − Fn eventually. This follows
from (1-2) and (1-4). Then (1-3) implies that g /∈ Cn − Cn eventually for every
g 6= 0. Thus if Cik

(mkg) 6= ∅ for a sequence ik →∞ then mk →∞. The statement
of (i) follows.

(ii) is obvious. ¤

2. On “individual” multiple recurrence of (C, F )-actions

We begin this section by recalling the basic concepts of p-recurrence and multiple
recurrence. Then we construct (C, F )-actions T = (Tg)g∈G of Abelian groups such
that the transformations Tg (with g of infinite order) have any prescribed “index”
of recurrency (Theorems 2.3, 2.5, 2.6). Some necessary and sufficient conditions for
p-recurrence are presented in Remark 2.4. They are given in terms of Cn and are
very easy to check. The word “individual” from the name of the section means that
we examine the recurrence properties of every Tg separately. On the contrary, in
the next section we are concerned with the (multiple) recurrence of T as a whole.

Definition 2.1.
(i) Let p be a positive integer. A transformation T of a σ-finite measure space

(X, B, µ) is called p-recurrent if for every subset B ∈ B of positive measure
there exists a positive integer k such that µ(B ∩ T−kB ∩ · · · ∩ T−kpB) > 0.

(ii) If T is p-recurrent for any p > 0, then it is called multiply recurrent.

It is easy to see that T is 1-recurrent if and only if it is conservative. Clearly, if T
is rigid then it is multiply recurrent. By the Furnstenberg theorem [10], every finite
measure preserving transformation is multiply recurrent. The situation is different
in infinite measure (see [9], [2], [12]). We note that only Z-actions are considered in
these papers. We produce here new examples of infinite measure preserving actions
of arbitrary countable discrete Abelian groups.

The following lemma is rather standard and therefore we omit its proof.
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Lemma 2.2. Let F be a dense subfamily in B and 0 < δ < 1. If for every B ∈ F
of finite measure there exists k > 0 such that µ(B ∩ T−kB ∩ · · · ∩ T−kpB) ≥ δµ(B)
then T is p-recurrent.

Denote by G∞ = {gn | n = 1, 2, . . . } the subset of G-elements of infinite order.

Theorem 2.3. Let p > 0 and Cn := {0, kngn, 2kngn, . . . , pkngn} with kn being
large enough to satisfy (1-3) and (1-5). Denote by T = (Tg)g∈G the associated
(C,F )-action (see Remark 1.4). Then for every g ∈ G∞, the transformation Tg is
p-recurrent but not (p+1)-recurrent. (It is easy to see that Tg is multiply recurrent
for every g /∈ G∞.)

Proof. Take g ∈ G∞. We first prove that Tg is p-recurrent. Notice that the ring K of
compact open subsets of X is dense in B. Every subset B ∈ K can be represented
as B =

⊔
[f ]n⊂B [f ]n for some n. Take m > n such that gm is a multiple of g.

Clearly,

[f ]n =
⊔

cn+1∈Cn+1,...,cm∈Cm

[f + cn+1 + · · ·+ cm]m

for each f ∈ Fn. Put

B′ :=
⊔

[f ]n⊂B,cn+1∈Cn+1,...,cm−1∈Cm−1

[f + cn+1 + · · ·+ cm−1]m

Then B′ ⊂ B and µ(B′) = 1
p+1µ(B). Moreover,

Tikmgm [f + cn+1 + · · ·+ cm−1]m = [f + cn+1 + · · ·+ cm−1 + ikmgm]m
and hence TikmgmB′ ⊂ B for all i = 0, . . . , p. Since gm is a multiple of g, it follows
from Lemma 2.2 that Tg is p-recurrent.

Now let us prove that Tg is not (p + 1)-recurrent. Actually, suppose that the
contrary holds. Then there exists x(0) ∈ X0 and m > 0 such that Tjmgx

(0) =: x(j) ∈
X0 for all j = 1, . . . , p + 1. Let x(j) = (x(j)

i )∞i=1 with x
(j)
i ∈ Ci for all i > 0 and

j = 0, . . . , p + 1. It follows from the definition of T that
∑∞

i=1(x
(j+1)
i − x

(j)
i ) = mg,

j = 0, . . . , p. Let n be the smallest integer such that
∑n

i=1(x
(1)
i − x

(0)
i ) = mg. We

deduce from (1-5) that

0 6= x(1)
n − x(0)

n = x(2)
n − x(1)

n = · · · = x(p+1)
n − x(p)

n .

Hence x
(0)
n , x

(1)
n , . . . , x

(p+1)
n is an arithmetic progression in Cn of length p + 2, a

contradiction. ¤
It is easy to deduce from Corollary 1.6 that Tg is p

p+1 -partially rigid for every
g ∈ G∞.

Remark 2.4. Slightly modifying the above proof we can establish the following more
general facts:

(i) Let T be a (C, F )-action and g ∈ G. If

lim sup
n→∞

max
0 6=m∈Z

#(Cn(mg) ∩ Cn(2mg) ∩ · · · ∩ Cn(pmg))
#Cn

> 0

then Tg is p-recurrent.
(ii) Let T be a (C,F )-action and (1-5) hold. If Cn does not contain any arith-

metic progression of length p+1 then Tg is not p-recurrent for any g ∈ G∞.
The following statement is an analogue of Theorem 2.3 for multiple recurrence.
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Theorem 2.5. Let (gn)n>0 be as above and Cn := {0, kngn, 2kngn, . . . , nkngn}
with kn large so that (1-3) is satisfied. Denote by (Tg)g∈G the associated (C, F )-
action. Then for every g ∈ G, the transformation Tg is rigid and hence multiply
recurrent.

Proof. Apply Corollary 1.6(i). ¤

We can also produce non-rigid multiply recurrent transformations.

Theorem 2.6. Let

Cn := {0, kngn, 2kngn, . . . , nkngn, (nkn)2gn, . . . , (nkn)ngn},

with kn chosen exactly as in Theorem 2.5. Denote by (Tg)g∈G the corresponding
(C,F )-action. Then for every g ∈ G∞, the transformation Tg is multiply recurrent
but not rigid.

Proof. The multiple recurrence follows from Remark 2.4(i). To show that Tg is not
rigid we apply Theorem 1.5. Actually,

max
0 6=g∈Cn−Cn

#Cn(g)
#Cn

=
#Cn(kngn)

#Cn
=

n

2n
=

1
2
.

It follows from Theorem 1.5 that if Tg is at least δ-partially rigid then δ ≤ 1
2 . By

Lemma 1.2(iii), Tg is not rigid. ¤

It is easy to deduce from Corollary 1.6(i) that Tg is indeed 0.5-partially rigid
(provided that kn is chosen so that (1-5) holds in addition to (1-3)).

3. Multiple recurrence of Abelian actions

We investigate here multiple recurrence of actions of countable discrete Abelian
groups G. For every p > 0, we construct an infinite measure preserving (C,F )-
action of G which is p-recurrent but not (p + 1)-recurrent. Examples of multiply
recurrent actions are also given. Next, we demonstrate a difference between the
p-recurrence and the “individual” p-recurrence (see § 2) of infinite actions. We
also show that a similar gap between the multiple recurrence and the “individual”
multiple recurrence is a specific property of actions of the higher free rank groups.

Recall that a family e1, . . . , ek ∈ G is Z-independent if the homomorphism Zk 3
(n1, . . . , nk) 7→ n1e1 + · · ·+ nkek ∈ G is one-to-one. If such a family exists we say
that the free rank of G is greater than k − 1.

Lemma 3.1. Let e1, . . . , en be a Z-independent family in G. Then there exists
a map (pseudonorm) G 3 g 7→ ‖g‖ ∈ R+ such that the following properties are
satisfied:

(i) ‖g1 + g2‖ ≤ ‖g1‖+ ‖g2‖ for all g1, g2 ∈ G,
(ii) ‖lg‖ = l‖g‖ for all g ∈ G and l ∈ Z.
(iii) ‖g‖ = 0 if and only if g is a torsion,
(iv) ‖lei + kej‖ = max(|l|, |k|) for all i, j = 1, . . . , n and k, l ∈ Z.

Proof. Let H stand for the periodic part of G. Then the quotient group G/H is
torsion free. Hence there is a group embedding α of G/H into

⊕∞
n=1Q (see [13]).
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It follows from the assumptions of the lemma that α(e1 + H), . . . , α(en + H) are
independent vectors in

⊕∞
n=1Q. Take a norm |.| on

⊕∞
n=1Q such that

|lα(ei + H) + kα(ej + H)| = max(|l|, |k|)
for all i, j = 1, . . . , n and k, l ∈ Z and define ‖.‖ on G by setting

‖g‖ := |α(g + H)|.
¤
Definition 2.1 extends naturally to actions of Abelian groups as follows.

Definition 3.2. Let G be a countable discrete infinite Abelian group and T =
(Tg)g∈G a measure preserving action of G on a σ-finite measure space (X, B, µ).

(i) Given a positive integer p > 0, the action T is called p-recurrent if for every
subset B ∈ B of positive measure and every g1, . . . , gp ∈ G, there exists a
positive integer k such that µ(B ∩ Tkg1B ∩ · · · ∩ Tkgp

B) > 0.
(ii) If T is p-recurrent for any p > 0, then it is called multiply recurrent.

Clearly, T is 1-recurrent if and only if it is conservative. Every finite measure
preserving G-action is multiply recurrent [11]. However in infinite measure we
demonstrate the following

Theorem 3.3.
(i) Given p > 0, there exists a p-recurrent (C,F )-action T such that no one

transformation Tg is (p + 1)-recurrent, g ∈ G∞. (Hence T is not (p + 1)-
recurrent.)

(ii) There exists a multiply recurrent (C,F )-action.

Proof. (i) We call a finite sequence g = (g1, . . . , gp) ∈ (G∞)p admissible if gi− gj ∈
G∞ for all i 6= j. Let {g(n) | n ∈ N} stand for the (enumerated) family of admissible
elements g(n) = (g(n)

1 , . . . , g
(n)
p ). Now we set

Cn := {0, kng
(n)
1 , . . . , kng(n)

p }
with kn being large enough to satisfy (1-3) and (1-5). Let T = {Tg}g∈G stand for
the associated (C, F )-action (see Remark 1.4).

It is clear how to modify the proof of Theorem 2.3 to establish that T is p-
recurrent. Notice that it suffices to check the inequality from Definition 3.2 on the
admissible sequences only.

By Remark 2.4(ii), Tg is not (p + 1)-recurrent for every g ∈ G∞.
(ii) can be proved in a similar way. ¤
Notice that Theorem 3.3(i) is stronger than Theorem 2.3. Actually, if T is p-

recurrent then so is Tg for every g ∈ G. We will show in Theorem 3.4 that the
converse does not hold. Now let us compare Theorem 3.3(ii) with Theorem 2.5.
It is easy to see that in case G = Z, T is multiply recurrent if and only if so is
T1. Moreover, T1 is multiply recurrent if and only if so is Tn for every 0 6= n ∈ Z.
Thus the multiple recurrence is equivalent to the “individual” multiply recurrence.
The same holds for G = Q or any other group of free rank one. Hence for such
groups the statements of Theorems 3.3(ii) and 2.5 are equivalent. However we will
demonstrate that this is no longer true for the groups of higher free rank.
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Theorem 3.4.
(i) Let the free rank of G be greater than one, {e1, e2} a Z-independent family

in G and ‖.‖ the corresponding pseudonorm on G from Lemma 3.1. Let Cn

be like that in Theorem 2.5 but kn chosen in such a way that the following
condition

(3-1) ‖f‖ ≤ 0.1‖gn‖ for all f ∈
∑

i<n

(Ci − Ci)

holds (in addition to (1-3)). Denote by T = {Tg}g∈G the associated (C, F )-
action. Then for every g ∈ G, the transformation Tg is rigid (and hence
multiple recurrent) but T is not 2-recurrent.

(ii) Let G be arbitrary, e1 ∈ G∞ and ‖.‖ the corresponding pseudonorm on G
from Lemma 3.1. Given p > 0, let Cn be like that in Theorem 2.3 but kn

chosen in such a way that the following condition

‖f‖ ≤ 0.1‖gn‖
p

for all f ∈
∑

i<n

(Ci − Ci)

holds (in addition to (1-3)). Denote by T = {Tg}g∈G the associated (C, F )-
action. Then for every g ∈ G, the transformation Tg is p-recurrent and not
(p + 1)-recurrent while T is not 2-recurrent.

Proof. (i) We only need to check that T is not 2-recurrent. Actually, if T is 2-
recurrent, then there exist x(0) ∈ X0 and m > 0 such that x(j) := Tmej x

(0) ∈ X0

for j = 1, 2. Let x(j) = (x(j)
i )∞i=1 with x

(j)
i ∈ Ci. Then there is l > 0 with

l∑

i=1

(x(j)
i − x

(0)
i ) = mej , j = 1, 2.

Without loss of generality we may assume that x
(1)
l − x

(0)
l 6= 0. We denote fj :=∑l−1

i=1(x
(j)
i − x

(0)
i ). Then

(3-2) x
(j)
l − x

(0)
l = mej + fj , j = 1, 2.

Notice that Cl−x
(0)
l is an arithmetic progression. Every element of it is a multiple

of gl. Hence we deduce from Lemma 3.1(ii) that

‖x(j)
l − x

(0)
l ‖

‖gl‖ ∈ Z for j = 1, 2.

It follows from (3-1), (3-2) and Lemma 3.1 that



q1 := ‖x(1)
l −x

(0)
l ‖

‖gl‖ = m
‖gl‖ ± 0.1,

q2 := ‖x(2)
l −x

(0)
l ‖

‖gl‖ = m
‖gl‖ ± 0.1

for some 0 ≤ q1, q2 ∈ N, q1 6= 0. Hence q1 = q2. This implies x
(2)
l − x

(0)
l =

±(x(1)
l − x

(0)
l ). It follows from this and (3-2) that me1 ± me2 = f2 ± f1. By

Lemma 3.1(iv), m ≤ ‖f1‖+ ‖f2‖. Applying (3-1) we obtain

0.9 ≤ q1 − 0.1 ≤ m

‖gl‖ ≤ 0.1 + 0.1,

a contradiction.
(ii) Use a similar idea to show that X0 ∩ Tme1X0 ∩ T2pme1X0 = ∅ for any m >

0. ¤
10



4. Polynomial recurrence

In this section we are concerned with the polynomial recurrence of (C,F )-
transformations. For simplicity, we only consider the case G = Z. However, the
interested reader may extend the results to general Abelian groups. Clearly, polyno-
mial recurrence implies multiple recurrence. We show however that the converse is
not true. We also construct, for any p > 0, a transformation which is p-polynomially
recurrent but not (p + 1)-recurrent. Finally, we prove that the set of polynomially
recurrent transformations is generic in the group Aut0(X,µ) of µ-preserving trans-
formations furnished with the weak topology.

Let P := {q ∈ Q[t] | q(Z) ⊂ Z and q(0) = 0}.
Definition 4.1. Let T be a measure preserving transformation of (X, B, µ).

(i) T is called p-polynomially recurrent if for every q1, . . . , qp ∈ P and B ∈ B
of positive measure there exists n ∈ N with

µ(B ∩ T q1(n)B ∩ · · · ∩ T qp(n)B) > 0.

(ii) If T is p-polynomially recurrent for every p ∈ N then it is called polynomially
recurrent.

We first show that in infinite measure there are multiply recurrent (even rigid!)
transformations which are not polynomially recurrent.

Theorem 4.2. Let Cn := {0, kn, 2kn, . . . , k2
n}, where kn is large so that (1-3) is

satisfied and, in addition,

(4-1)
∑

i<n

k6
i < 0.1kn.

Denote by T = (Tn)n∈Z the associated (C, F )-action. Then T1 is rigid but not
2-polynomially recurrent.

Proof. If X0∩T−m
1 X0∩T−m3

1 X0 6= ∅ for some m > 0 then there exist l and l′ such
that

(4-2)

{ ∑l
i=1(x

(1)
i − x

(0)
i ) = m,

∑l′

i=1(x
(2)
i − x

(0)
i ) = m3

with x
(j)
i ∈ Ci, x

(1)
l 6= x

(0)
l and x

(2)
l′ 6= x

(0)
l′ . It follows from (4-1), (4-2) and the

definition of Cn that
{ 0.9kl < kl −

∑
i<l k

2
i ≤ m ≤ ∑

i≤l k
2
i < 1.1k2

l ,

0.9kl′ < m3 < 1.1k2
l′ .

This implies {
0.93k3

l < 1.1k2
l′ ,

0.9kl′ < 1.13k6
l

which is incompatible with (4-1). Hence T1 is not 2-polynomially recurrent. By
Corollary 1.6(i), T1 is rigid. ¤

Now we provide examples of ergodic transformations with all possible “indices”
of polynomial recurrence.

11



Theorem 4.3.
(i) For every p > 0, there exists a (C,F )-transformation which is p-polyno-

mially recurrent but not (p + 1)-recurrent.
(ii) There exists a (C,F )-transformation which is polynomially recurrent.

Proof. We will prove only the second claim. The first one can be demonstrated in
a similar way.

We consider pairs (p, q) with p ∈ N, q = (q1, . . . , qp) ∈ Pp, qi 6= 0 and qi 6= qj

whenever i 6= j. Let (pn, qn) be a sequence of such pairs where every possible pair
occurs infinitely often. Let qn = (q(n)

1 , . . . , q
(n)
pn ). We put

Cn := {0, q
(n)
1 (kn), . . . , q(n)

pn
(kn)},

where kn is large enough to satisfy (1-3). Denote by T the associated (C,F )-action
of Z. A slight modification of the proof of Theorem 2.3 is only needed to show that
the transformation T1 is polynomially recurrent. We leave this to the reader.

Remark that T1 enjoys the following property (cf. Lemma 2.2) which is stronger
than polynomial recurrence: given p > 0, a subset B ∈ B of finite measure and
polynomials q1, . . . , qp ∈ P then there exist infinitely many k > 0 with

µ(B ∩ T
q1(k)
1 B ∩ · · · ∩ T

qp(k)
1 B) ≥ µ(B)

2(p + 1)
.

¤
We endow the group Aut0(X,µ) with the weak topology. Recall that a sequence

Qn of µ-preserving transformations converges weakly to Q ∈ Aut0(X, µ) if and only
if µ(QnB4QB) → 0 as n →∞ for every subset B ∈ B of finite measure.

Theorem 4.4. The subset H of polynomially recurrent transformations is generic
in Aut0(X,µ), i.e. contains a dense Gδ.

Proof. For (q1, . . . , qp) ∈ Pp, we set

A(q1, . . . , qp) := {T ∈ Aut0(X,µ) | there exists ni →∞ such that

lim inf
i→∞

µ(B ∩ T q1(ni)B ∩ · · · ∩ T qp(ni)B) ≥ µ(B)
2(p + 1)

for every B ∈ B, µ(B) < ∞}.
We also set A =

⋂∞
p=1

⋂
(q1,...,qp)∈Pp A(q1, . . . , qp). Clearly, A ⊂ H. Fix a dense

countable family (Bi)∞i=1 in B with µ(Bi) < ∞ for each i. Since

A(q1, . . . , qp) =
∞⋂

t=1

⋂

k>3p

∞⋂

M=1

⋃

n>M

t⋂

i=1

{
T ∈ Aut0(X, µ)

∣∣∣∣

µ(Bi ∩ T q1(n)Bi ∩ · · · ∩ T qp(n)Bi) >

(
1

2(p + 1)
− 1

k

)
µ(Bi)

}

and the map Aut0(X,µ) 3 T 7→ µ(Bi∩T q1(n)Bi∩· · ·∩T qp(n)Bi) ∈ R is continuous,
it follows that A(q1, . . . , qp) and hence A is a Gδ. Next, we observe that A is
not empty. Actually, the ergodic transformation constructed in Theorem 4.3(ii)
belongs to A if we choose (Bi)i = K. Observe also that if a transformation T ∈ A
then the entire conjugacy class of T is contained in A. Now it suffices to apply [7,
Theorem 7] which states that the conjugacy class of every ergodic transformation
is dense in Aut0(X,µ). ¤
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5. Power weak mixing and multiple (and polynomial) recurrence

In this section we construct new examples of (C, F )-actions. Unlike those that
have already appeared in this paper these actions have “strong” weak mixing prop-
erties. Namely, for each group G and p > 0, we provide a power weakly mixing
(C,F )-action of G such that every transformation Tg, g ∈ G∞, is p-recurrent but
not (p + 1)-recurrent (Theorem 5.5).

We first observe that the (C, F )-construction is well suited to control the Carte-
sian powers of the actions.

Observation 5.1. For a (C,F )-action T = (Tg)g∈G associated with (Cn)n>0 and
(Fn)n≥0, consider its r-fold Cartesian product T (r) = (T (r)

(g1,...,gr))(g1,...,gr)∈Gr , where

T
(r)
(g1,...,gr) := Tg1 × · · · × Tgr .

It is easy to see that T (r) is just the (C, F )-action associated with (Cr
n)n>0 and

(F r
n)n≥0. The upper indices mean the r-fold Cartesian product. Notice that

(Cr
n)n>0 and (F r

n)n≥0 enjoy (1-2)–(1-4) since (Cn)n>0 and (Fn)n≥0 do. Moreover,
if (Cn)n>0 satisfies (1-5) then so does (Cr

n)n>0.
The following lemma follows easily from [8, Lemma 2.4]

Lemma 5.2. Let T be a (C, F )-action and δ : G → R∗+ a map with
∑

g∈G δ(g) < 1
2 .

Take g ∈ G∞. If for any n > 0 and f, f ′ ∈ Fn there exist N ∈ Z and A ⊂ [f ]n such
that µ(A) ≥ δ(f ′ − f)µ([f ]n) and TN

g A ⊂ [f ′]n then Tg is ergodic.

For the reader’s convenience we first illustrate the idea incorporated in the proof
of the main result of § 5 on the following—somewhat simpler—statement.

Proposition 5.3.

(i) Given p > 0, there exists a (C, F )-action T such that for each g ∈ G∞, the
transformation Tg is of infinite ergodic index, p-recurrent but not (p + 1)-
recurrent.

(ii) There exists a (C, F )-action T such that for each g ∈ G∞, the transforma-
tion Tg is of infinite ergodic index and multiply recurrent.

Proof. (i) According to Remark 1.4, we are only to define Cn, n ∈ N. Suppose that
on the n-th step we already have Fn−1. Let Fn−1 − Fn−1 = {f (n−1)

i | i = 1, . . . , k}
with f

(n−1)
1 = 0. We select integers d0, d1, . . . , dk in such a way that d0 = 0 and

di

d ≥ δ(fi), i = 1, . . . , k, where d := d1 + · · · + dk and δ : G → R∗+ a map from
Lemma 5.2. Recall that G∞ is enumerated as {gn | n ∈ N}. Take any pseudonorm
‖.‖ on G satisfying (i)–(iii) from Lemma 3.1. Now we put

Ai := {j(qngn + f
(n−1)
i ) | j = 0, . . . , p}, i = 1, . . . , k and

Cn :=
k⊔

i=1

d1+···+di−1⊔

s=d0+···+di−1

(hs,ngn + Ai),

13



where qn and hs,n are integers such that the following properties are satisfied

#Cn = (p + 1)d,

max
{‖f‖
‖c‖

∣∣∣∣ f ∈ Fn−1 − Fn−1, 0 6= c ∈ Cn − Cn

}
≤ 0.1

p
,(5-1)

k⋃

i=1

{‖c′‖
‖c‖

∣∣∣∣ c, c′ ∈ (Cn − Cn) \ (Ai −Ai)
}
∩

(
1
3p

, 3p

)
= ∅,(5-2)

max
1≤i≤k

{‖a′‖
‖a‖

∣∣∣∣ a, a′ ∈ Ai −Ai, a 6= 0
}
≤ p + 0.1.(5-3)

Notice that (5-1) implies (1-3). Hence the corresponding (C, F )-action T of G is
well defined.

It is easy to calculate that

lim sup
n→∞

max
0 6=m∈Z

#(Cn(mg) ∩ Cn(2mg) ∩ · · · ∩ Cn(pmg))
#Cn

≥ δ(0)
p + 1

.

Hence Tg is p-recurrent by Remark 2.4(i). Let us prove that it is not (p + 1)-
recurrent. To achieve this we can not utilize Remark 2.4(ii) any longer, since (1-5)
does not hold for Cn. Thus we have to argue in a different way. If Tg were (p + 1)-
recurrent, then there exist x(0) ∈ X0 and m > 0 with Tmgx

(0) =: x(1) ∈ X0 and
T(p+1)mgx

(0) =: x(p+1) ∈ X0. Let x(s) = (x(s)
i )∞i=1 with x

(s)
i ∈ Ci, s = 0, 1, p + 1.

Denote by n the smallest integer such that
∑

i<n

(x(s)
i − x

(0)
i ) + (x(s)

n − x(0)
n ) = smg, s = 1, p + 1.

It follows from (5-1) that x
(s)
n − x

(0)
n 6= 0 and

‖x(s)
n − x(0)

n ‖
(

1± 0.1
p

)
= sm‖g‖

for s = 1, p + 1. Hence

(5-4)
‖x(p+1)

n − x
(0)
n ‖

‖x(1)
n − x

(0)
n ‖

= (p + 1)
(

1± 0.3
p

)
= p + 1± 0.6.

From (5-2) we deduce that x
(p+1)
n −x

(0)
n , x

(1)
n −x

(0)
n ∈ Ai−Ai for some i ∈ {1, . . . , k}.

But then (5-4) contradicts (5-3).
Now let us demonstrate that Tg is ergodic. For n > 0 and f, f ′ ∈ Fn, let m > n

be a positive integer such that gm is a power of g. Since 0 ∈ ⋂
n>0 Cn, it follows

that Fn ⊂ Fm−1 and hence Fn − Fn ⊂ Fm−1 − Fm−1. Therefore f ′ − f = f
(m−1)
i

for some i. We set

A :=
⊔

cn+1∈Cn+1,...,cm−1∈Cm−1

d1+···+di−1⊔

s=d0+···+di−1

[f + cn+1 + · · ·

+ cm−1 + hs,mgm + qmgm + f
(m−1)
i ]m.
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Clearly, A ⊂ [f ]n and

µ(A)
µ([f ]n)

=
1

p + 1
di

d
>

1
p + 1

δ(f ′ − f).

Moreover,

T−qmgm
[f + cn+1 + · · ·+ cm−1 + hs,mgm + qmgm + f

(m−1)
i ]m

= [f ′ + cn+1 + · · ·+ cm−1 + hs,mgm]m ⊂ [f ′]m.

Thus we deduce from Lemma 5.2 that Tg is ergodic.
In view of Observation 5.1, only a slight modification of the above argument is

needed to show that the transformation Tg × · · · × Tg︸ ︷︷ ︸
r times

is ergodic for every r > 1.

(ii) is easier than (i). To define Cn now we need only to satisfy (1-3) instead of
(5-1)–(5-3). However p is no longer fixed. It runs over N. ¤
Remark 5.4. Let T be any (C,F )-action of G. Slightly modifying the above proof
of the ergodicity we can establish a more general fact: if

lim sup
n→∞

max
m∈Z

min
f∈Fn−1−Fn−1

#Cn(f + mg)
#Cn · δ(f)

≥ 0

then Tg is ergodic.
Now we are ready to prove

Theorem 5.5.
(i) Given p > 0, there exists a (C,F )-action T of G such that for every finite

sequence g1, . . . , gr ∈ G∞, the transformation Tg1 × · · · × Tgr is ergodic,
p-recurrent but not (p + 1)-recurrent.

(ii) There exists a (C, F )-action T of G such that for every finite sequence
g1, . . . , gr ∈ G∞, the transformation Tg1 × · · · × Tgr is ergodic and multiply
recurrent.

Proof. Part (i) is similar to that of Proposition 5.3(i). We only define (Cn)n>0.
Let us enumerate all finite sequences of elements from G∞: g(1), g(2), . . . . Let
g(n) = (g(n)

1 , . . . , g
(n)
ln

) and Fn−1 − Fn−1 = {f (n−1)
i | i = 1, . . . , k} with f

(n−1)
1 = 0.

Select d0, d1, . . . , dk exactly as in the proof of Proposition 5.3. Now we put

Ai,t := {j(qng
(n)
t + f

(n−1)
i ) | j = 0, . . . , p},

Cn :=
ln⊔

t=1

k⊔

i=1

d1+···+di−1⊔

s=d0+···+di−1

(hs,t,ng
(n)
t + Ai,t),

where qn and hs,t,n are integers such that the following properties are satisfied

#Cn = (p + 1)lnd,

max
{‖f‖
‖c‖

∣∣∣∣ f ∈ Fn−1 − Fn−1, 0 6= c ∈ Cn − Cn

}
≤ 0.1

p
,

k⋃

i=1

ln⋃
t=1

{‖c′‖
‖c‖

∣∣∣∣ c, c′ ∈ (Cn − Cn) \ (Ai,t −Ai,t)
}
∩

(
1
3p

, 3p

)
= ∅,

max
1≤i≤k,1≤t≤ln

{‖a′‖
‖a‖

∣∣∣∣ a, a′ ∈ Ai,t −Ai,t, a 6= 0
}
≤ p + 0.1.
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Denote by T the associated (C, F )-action of G. For f = (f1, . . . , fr) ∈ F r
n−1, we let

δr(f) := δ(f1) · · · δ(fr). Then we have

lim sup
n→∞

max
0 6=m∈Z

#Cr
n((mg1, . . . ,mgr)) ∩ · · · ∩ Cr

n((pmg1, . . . , pmgr))
#Cr

n

≥ δ(0)r

(p + 1)rrr

lim sup
n→∞

max
m∈Z

min
f∈Fn−1−Fn−1

#Cr
n(f + (mg1, . . . ,mgr)

#Cr
nδr(f)

≥ 1
(p + 1)rrr

.

It follows from Remark 2.4(i) and Remark 5.4 that Tg1 × · · · × Tgr
is p-recurrent

and ergodic respectively.
Since the Cartesian product of a non-(p + 1)-recurrent transformation with any

transformation is not (p + 1)-recurrent, it only remains to show that Tg is not
(p + 1)-recurrent for every g ∈ G∞. To this end just repeat the corresponding part
of the proof of Proposition 5.3 almost verbatim.

(ii) It is easy to verify that for the (C, F )-actions T from [8, Theorem 2.13], the
ergodic transformation Tg1 × · · · × Tgr is multiply recurrent. ¤
Remark 5.6. The interested reader may refine Theorem 5.5 by replacing the p-
recurrence and multiply recurrence properties with p-polynomial recurrence and
polynomial recurrence respectively. Another way to improve this theorem is to
arrange p-recurrence and multiply recurrence for the “whole action” T (r)of Gr,
r > 1.

6. On topological recurrence

In this section we discuss topological counterparts of the results from § 2–5.

Definition 6.1 (cf. 2.1).
(i) Let p be a positive integer. A homeomorphism T of a topological space X

is called topologically p-recurrent if for every nonempty open subset O ⊂ X
there exists a positive integer k such that

(6-1) O ∩ T−kO ∩ · · · ∩ T−kpO 6= ∅.

(ii) If T is topologically p-recurrent for any p > 0, then it is called topologically
multiply recurrent.

Clearly, it suffices to check (6-1) only on a base of the topology. In a similar way
one can state topological analogues of Definitions 3.2 and 4.1, i.e. the concepts of
topological p-polynomial recurrence and p-recurrence of a topological action of G.

Recall that every (C, F )-action is a minimal free action of G on a locally compact
Cantor set. Analyzing the proofs of the results from § 2–5 we can get immediately
topological counterparts for most of them. Actually, when establishing (measure
theoretical) p-recurrence and ergodicity we worked only with the cylinders. Every
cylinder is of positive measure and the ring of cylinders form a base of the topology.
Next, while checking the lack of (p +1)-recurrence we were only to show that some
intersections of subsets are of measure zero. However we proved indeed the stronger
fact that these intersections are empty. That is exactly what we need to establish
the lack of topological (p + 1)-recurrence.

Thus, as a byproduct of the proofs of Theorems 2.3 and 2.5 we may record the
following statement.
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Theorem 6.2.
(i) Let T be the (C, F )-action from Theorem 2.3. Then for every g ∈ G∞, the

transformation Tg is topologically p-recurrent but not topologically (p + 1)-
recurrent.

(ii) Let T be the (C, F )-action from Theorem 2.5. Then for every g ∈ G∞, the
transformation Tg is topologically multiply recurrent.

In a similar way we can also ‘topologize’ Theorems 3.3, 3.4, 4.2, 4.3, 5.5. In
doing so, we have to replace the terms “rigid” and “ergodic” in the statements of
these theorems with “topologically multiply recurrent” and “topologically transi-
tive” respectively. Recall that a homeomorphism is topologically transitive if the
orbit of every nonempty open set is dense.
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formations, J. d’Analyse Math. 31 (1978), 275–291.

[12] K. Gruher, F. Hines, D. Patel, C. E. Silva and R. Waelder, Power weak mixing does not
imply multiple recurrence in infinite measure and other counterexamples, New York J.
of Math. 9 (2003), 1–22.

[13] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. I, Springer-Verlag, Berlin-
Heidelberg, 1963.

[14] A. del Junco, A simple map with no prime factors, Isr. J. Math. 104 (1998), 301–320.
[15] A. Leibman, Multiple recurrence for nilpotent group actions, J. Geom. and Funct. Anal.

4 (1994), 648–659.

Division of Mathematics, Institute for Low Temperature Physics and Engineer-
ing, 47 Lenin Ave., Kharkov, 61103, UKRAINE

E-mail address: danilenko@ilt.kharkov.ua

Department of Mathematics, Williams College, Williamstown, MA 01267, USA
E-mail address: csilva@williams.edu

17


