EXPLICIT SOLUTION OF ROKHLIN’S PROBLEM ON
HOMOGENEOUS SPECTRUM AND APPLICATIONS

ALEXANDRE I. DANILENKO

ABSTRACT. For each n > 1, we construct explicitly a rigid weakly mixing rank n
transformation with homogeneous spectrum of multiplicity n. The fact of existence
of such transformations was established recently by O. Ageev via Baire category
arguments (a new short category proof is also given here). As an application, for any
subset M C N containing 1, a weakly mixing transformation whose essential range
for the spectral multiplicity equals n - M is constructed.

0. INTRODUCTION

Let (X,%, 1) be a standard non-atomic probability space and let Autg(X, )
stand for the group of p-preserving transformations of X. For each S € Autg (X, p),
we denote by M(.S) the set of essential values for the multiplicity function of the
unitary operator f +— f o S~! on the Hilbert space L3(X, ) := L?*(X,u) © C. We
consider the problem of

whether each subset of NU {oo} can be realized as M(S) for an ergodic S?

Recall that the first example of S with non-trivial M(S), i.e. M(S) # {1}, {0}
or {1,00}, appeared in [Os]. It was shown there that 2 < sup M(S) < 30. A
real breakthrough was made by E. Robinson in [R1], where for a given n € N, an
ergodic S with M(S) = {1,n} was constructed. In his example, S is a compact
group extension of a transformation admitting a good cyclic approximation. This
approach was further elaborated by various authors in [R2], [G-L], [KL] to obtain
finally the following result: for each subset M C N U {occo} such that 1 € M, there
exists an ergodic S with M(S) = M. (Later Ageev reproved this result in [A3] via
Baire catedory arguments.) However the case 1 ¢ M is considerably less studied.
For instance, the following Rokhlin’s problem on homogeneous spectrum was open
for several decades:

given n > 1, is there an ergodic transformation S with M(S) = {n}?

The affirmative answer to this problem was given for n = 2 in [Ry1] and indepen-
dently in [A1] by showing that M (S x S) = {2} for a generic S € Auty(X, p). Also,
a conjecture of A. Katok [Ka] was proved in [A1l]:

M(Sx -+ x8)={n,n(n—-1),...,n!}
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for a generic S € Auto(X, ). Recently, O. Ageev in [A4] applied a different, so-
called group action approach to solve affirmatively Rokhlin’s problem for any n.
The idea is to select, for each n, a non-commutative group G, and a point g,, € G,,
in such a way that for a generic (in a natural Polish topology) G,-action T, the
transformation 7}, is ergodic and has homogeneous spectrum of multiplicity n.

In Section 1 we give another—shorter and simpler—proof of Ageev’s result (see
Theorem 1.4). We show how to bypass the analytic approzimation technique which
is crucial in [A4]. In contrast, our approach (based on Proposition 1.1) is algebraic
without any use of the e-d-argument. We note also that our choice of G,, is different
from Ageev’s one.

In Section 2 we—following [A4]—investigate the ‘generic’ spectral multiplicity
of transformations 7T}, for some other points h € G,,, h # g,.

Notice that Ageev’s solution of Rokhlin’s problem is based on Baire category
arguments and it is not constructive. Thus, except for the case n = 2 (see [Ry2]
and [A2]) no explicit ergodic transformations with homogeneous spectrum have
been known so far. Our purpose in Section 3 is to apply the algorithmic (C, F)-
construction to produce such transformations for any n (see Theorem 2.4). We
recall that this construction appeared first in [Ju] (and, independently, in [Dal]) as
an algebraic counterpart for the cutting-and-stacking to produce (funny) rank-one
actions for a wide class of groups.

In Section 4 we use the explicit construction of Section 3 to contribute to the
general spectral multiplicity problem. Combining this construction with the com-
pact group extension method from [G-L] and [KL] we construct for each n € N
and a subset M C N containing 1, a weakly mixing S with M(S) = n- M (The-
orem 4.1). For this, we introduce a concept of (C, F')-cocycles. They are defined
on the orbit equivalence relation of the corresponding (C, F')-action. Since this
equivalence relation is an inductive tail equivalence relation on an infinite product
space, a (C, F')-cocycle is determined by a sequence of maps defined on finite sets.
Notice that (C, F')-cocycles are a generalization of Morse cocycles studied by many
authors (e.g. [Kel], [Ma], [G-L], [Go, Section 5]).

Acknowledgements. 1 would like to thank M. Lemanczyk for useful comments.

1. SHORT PROOF OF AGEEV’S THEOREM

From now on we fix n > 1 and a family ey, ..., e, of generators for Z". Define
a ‘cyclic’ group automorphism A : Z" — Z" by setting Ae; := e, ..., Ae,_1 :=¢€,
and Ae,, := e;. Let G denote the semidirect product Z" x 4Z with the multiplication
law as follows

(v,m)(w,l) := v+ A"w,m+1), v,weZ", m,lEZ.

Then we have a natural embedding v — (v,0) of Z™ into G. We also let eq :=
(0,1) € G and e,41 := ej. Notice that G is generated by e; and ey. Moreover,
eoeiegl = Ae; for all ¢ = 1,...,n. Let H be the subgroup of G generated by
€1,...,ent1. Then H is a free Abelian group with n 4+ 1 generators. It is normal
in G and the quotient G/H is a cyclic group of order n. Moreover, A extends
naturally to H via the conjugation by ey. We denote this extension by the same
symbol A. While multiplying elements of H we will often utilize the symbol +.
By an action T" of G we mean a group homomorphism G 3 g — T, € Auty(X, ).
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Proposition 1.1. There exists a free action T of G such that the transformation

T,, is ergodic and has a pure point spectrum.

Proof. Let Ay D Aa D --- be a nested sequence of lattices (i.e. co-finite subgroups)
in G such that ();2; A; = {1g}. Then the corresponding homogeneous G-spaces
G/A; are intertwined by the canonical G-equivariant projection maps:

G/Ay — G/Ay — -

Let (X, p) stand for the projective limit of the sequence (G/A;, A;)$2,, where A; is
the equi-distribution on G/A;. Denote by m; : (X, ) — (G/A;, \;) the canonical
projections. Then there exists a unique p-preserving action T of G on X such that
mioTy, =g -m foral g€ Gandi>1. Since 2, A; = {l¢}, it follows that T
is free. To complete the proof it suffices to select the sequence (A;)$2; in such a
way that the element ey € G acts transitively on G/A; for each i > 1. Let A; be
generated by ki je1,...,kp e, and k,11 (€1 + -+ ept1), where

(a) the positive integers ki ;, ..., kny1 are pairwise coprime and

(b) kj,i—l | kj,i and kj,i—l 7é kj,i for allj = 1, NN -+ 1.
It follows from (b) that Ay D As D -+ and ;o; A; = {1g}. Since A; C H and
e% ¢ H for any 1 < j < n, it remains to show that A; + Ze,+1 = H. Denote
by [ the index of the lattice A; + Ze, 11 in H. Then [ divides the index (in H)
of the sublattice generated by kaea, ..., kn i€n, knt1,i(e1 + -+ eny1) and epqq.
The latter index is kg ;- - - kp+1,4. In a similar way, [ | (l{:s_ll k1 knt1,) for each
s=1,...,n+ 1. Now it follows from (a) that { =1. O

It is well known that Auto(X,p) is a Polish group when endowed with the
weak topology [Ha] defined by: S,, — S if u(S,AASA) — 0 for each A € B.
Furnish the product space Auto(X,v) with the product topology. Denote by
Ag C Auty(X,v)¢ the subset of all measure preserving actions of G on (X, B, p).
It is clear that Ag is closed and hence Polish in the induced topology. There exists
a natural continuous action of Autg(X, 1) on Ag by conjugation:

(ReT), :=RT,R™" for R € Auto(X,p) and T € Ag.
Proposition 1.2. The following two subsets are residual in Ag:

S :={T € Aq | T., has a simple spectrum} and
W :={T € Ag | T, is weakly mizing for each g € G, g # 1a}.

Proof. In view of the following facts:

(i) the subsets of weakly mixing transformations and transformations with sim-
ple spectra are both Gs in Autg(X, p) and invariant under conjugation;
(ii) the map Ag 2 T +— T, € Auto(X,p) is continuous and Autg(X, p)-
equivariant for each g € G
(iii) the Auto(X, p)-orbit of any free G-action is dense in A¢g by [FW, Claim 18],

it remains to show that S and W contain at least one free G-action. Each Bernoul-
lian G-action is free and belongs to WW. Since each ergodic transformation with
pure point spectrum has a simple spectrum, S contains a free G-action by Propo-
sition 1.1. [
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According to an advice of the referee, we now briefly outline the proof of (iii)
in order to make our exposition self-contained. By [GIK], the set of free actions is
dense in Ag. Next, we note that GG is a monotilable group. This means that there
exist a Fglner sequence (F,)22; and a sequence (C,,)>2; such that {F,,c|c e Cy,}
is a partition of G for each n. Take two free G-actions T and T’. Fix ¢ > 0
and finite sequences g1,...,9x € G and By,...,Br € B. Find N large so that
#(gi FNAF,)/#FNn < € for all 1 < i < k. By Rokhlin’s lemma for monotilable
groups [OW], there is a subset A € B such that the sets T, A, g € Fy, are pair-
wise disjoint and (| |,¢, TgA4) > 1 — €. Denote by A’ a subset with the similar
properties corresponding to 77. Without loss of generality we may assume that
w(A) = p(A’). Let R: A — A’ be a p-preserving bijection. Then we can extend it to
a p-preserving one-to-one transformation R of X in such a way that RTyx = T, Rx
for all z € A and g € Fy. It follows that pu(RT, R™'B;AT, B;) < 3e for all
1 <i,7 < k. This implies that 7" belongs to the closure of the Auty(X, p)-orbit of
T.

Lemma 1.3. Let H be a separable Hilbert space and let U : H 5 h — U}, € U(H)
be a unitary representation of H in H. If U is unitarily equivalent to U o A and for
each 1 <1 < n with [ | n, the operator U, has no non-trivial fixed vector then

€i+1—€1
M(U,,.,) C{n,2n,...} U{occ}.
Proof. By the spectral theorem for U, there exist a probability measure o on the

dual group H and a Borel map k : H—NuU {oo} such that the following decom-
position holds (up to unitary equivalence):

(1-1) L2(X, ) = /ﬁ Hay do(w) and Up = /ﬁ w(h) L do(w),

for each h € H, where w — H,, is a Borel field of Hilbert spaces, dim H,, = k(w)
and [,, the identity operator on H,,. The inclusion Z > m — me,+1 € H induces a
projection 7 : H — T. Let o = Jp 02 do(z) denote the desintegration of ¢ relative
to this projection. Then we derive from (1-1) that

L3(X, 1) = /T H.d5(z) and U.,.,, — /T o1, d5(2),

where H., := [ Hy do.(w). Let I(z) :=dimH/,, z € T. Then

o0, if o, is not purely atomic
(1-2) I(z) =

; >0 (w)>0 k(w), otherwise.

Since U is unitarily equivalent to U o A and A™ = Id, we may assume without loss
of generality that k and o are both invariant under the dual (to A) automorphism
A* of H. We claim that

(1-3) for o-a.a. w € H, the A*-orbit of w has length n.

Indeed, otherwise there exists 1 <[ < n such that oc({w € H| (A" = w}) >0
and [ | n. Then (1-1) implies that the unitary U, _ai., has a non-trivial fixed
vector. However this contradicts to a condition of the lemma.

Since Ae, 11 = €41, we have mo A* = 7. Therefore it follows from the invariance
of o under A* that 0, 0 A* = o, for g-a.a. z € T. Hence (1-2), (1-3) and the fact
ko A* =k imply that n | I(z) for 7-a.a. 2, i.e. M(Te,,,) C {n,2n,...}U{cc}. O

Now we state and prove a modified version of the main result from [A2].
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Theorem 1.4. For each T € SNW, i.e. for a generic action from Ag, the

transformation T, is weakly mizing and M(Te, . ) = {n}.

Proof. Denote by U : G > g — U, € U(L3(X,u)) the unitary representation of
G associated with T'. Since T' € W and UeOUhUe_O1 = Uy, for each h € H, it
follows from Lemma 1.3 that M(T,,_,) C {n,2n,...} U{oco}. On the other hand,
M(Te,) = {1} since T' € S. Hence M(T,,,,) is bounded by n from above (we
recall that e,41 = e}). Therefore M(T,, . )= {n}. O

Remark 1.5. Indeed we established more: if U = (Uy)4cc is a unitary representa-
tion of G such that the operator U,, has a simple spectrum and for each 1 <[ <n
with [ | n, the operator U, , ., has no non-trivial fixed vectors then the operator

Ue, ., has a homogeneous spectrum of multiplicity n.

Remark 1.6. Define a group automorphism A’ of Z"~! by setting A’e; := es,...,
Ae,_o:=e,_1and A'e,_1 := —e; —---—e,_1. Ageev in [A2] considers the group
G* := Z"! x4 Z instead of G. Notice that the results of Section 1 (and their
proofs) hold as well for G* with obvious minor modifications. The advantage of
G will become apparent in Section 2, where we investigate the generic multiplicity
function for T, and in Sections 3 and 4, where we construct explicit actions of G.

2. T,, HAS A SIMPLE SPECTRUM FOR A GENERIC T € Ag

Recall that G is generated by ey and e;. We studied the spectral multiplicity of
the transformation 7., for a generic G-action 7" in Section 1. Now we are going to
investigate the spectral multiplicity of T,, (as Ageev did in [A2] for the group G*,
see Remark 1.5). We let

€:=A{T € Ag | M(T,) = {1}}.

The following statement is the main result of this section.
Proposition 2.1. & is a dense G in Ag.

Arguing in the same way as in the proof of Proposition 1.1 we see that & is
a dense G5 whenever £ contains a free G-action. Thus to prove Proposition 2.1
it is enough to construct such an action. For this, we will exploit the concept of
co-induced action introduced by Dooley, Golodets, Rudolph and Sinelshchikov.

Definition 2.2 ([D-S], [GS]). Let I' be a countable group and A a subgroup of
. Let T = (f n)hea be a measure preserving action of A on a standard probability
space (Y, €&, v). Select a cross-section o : A\I' — I' of the quotient map I" —
A\I" with o(A) = 1p. Define an action T' = (T)g4er of I' on the product space
(X,B, 1) := (Y, ¢, v)M\I by setting

(ngl,‘) (Ag,) = U(Ag’)ga(Ag’g)*lm(Ag/g)

for all maps z: A\I' = Y and g € I. Then T is said to be co-induced from T.

It is easy to see that T' does not depend (up to conjugacy) on the choice of o.
Moreover, if T is free or ergodic then so is 7.
Now we are going to apply the co-inducing procedure to the pair H C GG. Take a
family 21, ..., 2,41 of ‘rationally independent’ elements of the circle T. This means
5



that if zil . zf{ff =1 for some tq,...,t,41 € Z then t; = --- =t,4+1 = 0. Define
an action T of H on the circle T equipped with Haar measure At by setting
ft “‘en_;,_lz —Zil" Zf;rllz tl,...,tn+1€Z.
€ n+1
It is obvious that T is free and ergodic. Let o(Hel) :=¢) forall j =0,...,n—1.

Then the G-action T co-induced from T via the cross-section o is defined on the
n-torus (T™, Apn). The generators of G act as follows

A~ A~

Te, (21, y2n) = (felzl,TeQz’g cosTe zn)

Teo(21, -y 2n) = (22, -y 2ns Lo, 21)-

We see that the transformation 7%, is ergodic and has a pure point spectrum. Hence
M(Te,) = {1}, ie. T € &. It remains to note that T is free (and ergodic) since so
is T

3. (C, F)-ACTIONS, RANK AND HOMOGENEOUS SPECTRUM

We start this section by reminding the (C, F')-construction (see [Dal]-[Da3],
[DS1] and [DS2] for details). Let (Cy,)5o_; and (F,)5°_, be two sequences of finite
G-subsets such that for each m > 0 the following properties are satisfied:

FmCm+1 C Fm_|_1, #Cm+1 >1 and

3-1 . C
(3-1) the sets Fi,c, c € Cp,41, are pairwise disjoint.

We put X, := Fy, X Cpq1 X Cpgg X -+, endow X, with the (compact) product
topology and define a continuous embedding X,, — X,,11 by setting

(fma Cm+1,Cm+2, - - ) = (fmcm—i—l; Cm+2, - - )

Then we have X; C Xo C ---. Let X :=J,, Xi» stand for the topological induc-
tive limit of the sequence X,,. Clearly, X is a locally compact totally disconnected
metrizable space without isolated points and X, is clopen in X. Hence the corre-
sponding Borel o-algebra B is standard. Assume in addition that

F
(3-2) H #F??fn#c—i’—:ﬁ-l R

Then it is easy to see that there exists a unique probability measure p on (X, B)
such that the restriction of u onto each X,, is the infinite product measure

Tm X)\m_|_1 X)\m+2 Xoeee
where \; is the equidistribution on C; and 7, is a finite measure on F,, with

Tm(f) = T (f') for all f, f’ € F,,. Thus (X,B, 1) is a standard probability space.
Given g € G and m > 0, we set

D™ = (Fyy Mg~ Fin) X Cpgt % Crga -+ and RY™ := D™,
6



Clearly, ng) and Rém) are clopen subsets of X,,. Moreover, Dém) - Démﬂ) and
RY™ c R{™Y. Define a map T.™: DS™ — RU™ by setting

Tg(m)<fmacm+17 o) = (9 fmy Cmtt, )

Clearly, it is a homeomorphism. Put

Dy:= | J D{™ and Ry:= ] R(™ =Dy

m=1 m=1

Then D, and R, are open subsets of X. Moreover, a homeomorphism 7,: D, — R,
is well defined by T} | Dém) = Tém) for all m. Suppose now that

(3-3) (Fm)m>0 is a left Fglner sequence in G.

This implies p(Dém)) — 1 as m — oo. Hence p(Dy) = u(Ry) = 1. Since p(O) >0
for each open subset O C X, it follows that the subset D := (.5 Dy = (,eq By
is a dense G of full p-measure. It is easy to see that Ty,, = T,,7T, on D for
all g1,92 € G. Thus T := (T)4ec is a continuous G-action on the Polish (in the
induced topology) space D. This action is minimal. (To see this, just notice that
the T-orbit equivalence relation restricted to any X,, is just the tail equivalence
relation on X,,,.) Moreover, T' preserves p and T is free and ergodic.

Definition 3.1. We call T the (C, F)-action of G associated to (Cryt1, Fin)oo_-

In the sequel we will not distinguish between sets, maps, transformations which
agree a.e. For each subset A C F},,, we let

(Al ={x = (fm,Cma1,---) € Xon | frn € A}
and call it an m-cylinder. The following holds

[AN Bl = [Al;n N [Blm and [AU Bl,, = [A], U [Blom,
[Alm = [ACmialmi1 = || [Adms1,

CECerl
Ty[Aly, = [gA]m if gA C F,
p([Alm) = #Cry1 - p([Aclmy) for every ¢ € Cpya,
(

(Alw) = u(Xn) T2

/"L #Fm,

where the sign LI means the union of mutually disjoint sets. Moreover, given Y € B,
(3-4) mingc g, p(YA[A]n) — 0 as m — oo.

Now we remind the definition of rank. Let S be an ergodic transformation of a
standard probability space (Y, §, ).
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Definition 3.2. The rank of S—we will denote it by rk(S)—is the smallest r € N
(or infinity) such that there exist measurable subsets B](-m) and positive integers
h;m) such that the subsets SiB§m), jg=1,...,r, i = 1,...,h§m), are pairwise
disjoint and approximate the entire o-algebra § as m — oo. The latter means that
given B € §, there are subsets A(™) such that v(BAA(™)) — 0 and every A(™) is

a union of several subsets SiBJ(-m) with0 <j<rand1<:< hg-m). If, moreover,
hgm) =...= hgm) for each m, we say that S has uniform rank r.
We now reproduce a simple but useful statement from [A4].

Lemma 3.3.

(i) If rk(S) =1 and sup M(S™) = n then S™ has uniform rank n.
(ii) If rk(S) =1 and M(S™) = {n} then S™ is weakly mizing.

Proof. (i) Of course, rk(S™) < n -rk(S). By [Ch], sup M(S) < rk(S). This im-
plies that if rk(S) = 1 and sup M(S™) = n then rk(S™) = n. Moreover, it is
straightforward that in this case the rank of S™ is uniform.

(ii) Since S has rank one, S is ergodic. Hence the dimension of the subspace
H:={f € L& X,p) | foS™ = f} is at most n — 1. However M(S™) = {n} and
therefore H is trivial, i.e. S™ is ergodic. Then the multiplicity of each eigenvalue of
S™ is 1. Hence if S™ were not weakly mixing then M(S™) 2 1, a contradiction. [J

Our purpose now is to construct a (C, F')-action T' € A¢ satisfying the conditions
of Remark 1.4. To this end we will determine the sequence (C,41, Fin)oo_ via an
inductive process. We need some notation. Given a > 0 and [y, ...,l,4+1 > 0, define
a cube and a parallelepiped in H by setting

n+1
I(a) := {Ztiei | t; € Z,0 < t; < a for all z} and

=1

J(y - lpg) = {Ztiei +tnri(er +- o Fenp1) [ 6 € Z,0 < t; <; for all Z}
i1

Fix an increasing sequence of integers r,, — oo. Notice that G = | |, j<n egH .
Suppose that for some k > 0, there exists a; > 0 such that

(3—5) F5k == |_| eé[(ak).
0<j<n
We are going to construct Csg+1, Fsi+1, Csk+2, - - -, F5i45 in five consecutive steps.

Step 1. We define first three maps ¢s, : H — H, o5, : H — {0,...,n — 1} and
csk+1 - H — G by setting
¢5k(t) = (ak + 1)157
os5k(t) =t1 + 2to + - - -+ nt, (mod n) and
ek (t) == e i (1),
where t = t1e1 + -+ thr1enr1 € H with t1,...,t,11 € Z. Then ¢5; is a group

homomorphism with the following tiling property:

(3-6) H = | |(¢sx(t) + I(ax + 1)).
teH
8



The ‘perturbation’ o5 satisfies
(3-7) osk(t) — o5kt + Al (e —e2)) € {1,1 —n}

for all t € H and j € Z. Since egl(ax) = I(ak)ep and ejl(ar) C I(ar + 1), we
obtain

Fseesnin(t) = || & ™™ (gsn(®) + I(an)) || eb(@su(t) +I(ax +1)).

0<j<n 0<j<n

This and (3-6) yield Fsxcsgpr1(t) N Fsreser1(t') =0 whenever ¢t # t'. We now set

Csk+1 = csk11(I(rg)) and Frpyq := |_| e%](m(ak +1)).

0<j<n
It is straightforward that
F 1 n+1
(3-8) i S (1 + _) _
#E5k#Csi11 a

Consider a map o : H 3t at) :=t + A=75+)(e; —ey) € H. Tt is easy to derive
from (3-7) that

(3-9) « is one-to-one and hence

#(a(l(rg))Al(ry)) 4\"
#1(ry) = (_) '

Tk
Next, we have

dsk(er — e2)I(ag)Csri1 = |_| I(ak)685k(t)¢5k(x4_g5’“(t)(61 —e2))osk(t)
te[(rk)

_ |_| I(ak)egSk(t)_USk(a(t))C5k+1(Oé(t)).
tEI(Tk)

It follows from this, (3-7) and (3-9) that

#(osx(e1 — e2)I(ar)Cskr1De0l (ag)Cspit) - 3 . < 4 )”‘

#1(ar)#Csr41 — ag

This inequality holds also—with the same proof—if we replace e; — es in the left-
hand side with A7(e; — e3) for each j = 1,...,n — 1. This, in turn, yields

_ #(psr(er — e2)7I(a)Csppr AefI(ar)Cspqr) <3 <i)n)
(3-10) #1(ag)#Csk41 =" - '

ag Tk

Tk

Step 2. We now let b := (ar + 1)rg + ri. Define three maps ¢sx41, S5k+1, Csk °
H — H by setting

Gs5k+1(t) == byt,

t2 +t n+1
1
S5t (t) == = 5 €l +t E t;e; and
i—2

Csk+2(t) = Ssr41(t) + P51 ().
9



Then ¢5x41 is a group homomorphism with the following tiling property:
(3-11) H = | | (#srr1(t) + I(bi)).

teH
The ‘perturbation’ ss;1 satisfies

n+1
(3—12) S5k+1<t + €; — 61) - S5k+1<t) tl - 1 Zt €, j % 1

for all t € H. Since

Foppacsera(t) = || ed(ssrra(t) + donsr(t) + I((ar + 1)ri))
0<j<n

C | ed@shea(®) + I(x)),

0<i<n

it follows from (3—11) that F5k+105k+2( ) N F5k+105k+2( ) = @ if ¢ 75 t/ We now
set

C5k_|_2 = C5k+2(I(7‘k)) and F5k+2 = |_| G%I(kak).

0<j<n
It is straightforward that

F n+1
# F5k1#Cska2 ap +1

Step 3. We now define a map ¢si42 : H — H by setting

n+1

Pskr2(t) == brry Z tie;.
i=1
Then ¢5x42 is a group homomorphism with the following tiling property:

H = | | (dsk12(t) + I(rb)).

teH

This implies that Fsgiopsrio(t) N Fspiodsrio(t’) = O whenever ¢ # t'. Select

pairwise coprime integers lgk), e lfﬂl and a finite subset Ly C H in such a way

dsra(Li) + I(rgby) € JAP 1)) and

(3-14) #I (D) (Borea (L) + 10rby)) _ 1
#1858 L

We now set

C5k+3 = ¢5k+2(Lk) and F5k+3 = |_| eéJ(lgk), 711(1]:21)

0<j<n
It follows from (3-14) that
#5543 1
3-15 <14+ —.
(3-15) #E51412#Cs43 ay

10



Step 4. We now define a group homomorphism ¢sx4+3 : H — H by setting

Gsk43(t) = Z tilgk)ei + tn+1lffiﬁl(e1 + -t eny)-
i=1

Then we have H = | |, 5 (¢5x43(t) + J(lgk), Cee lgﬂl)) This implies

Fit305k+3(t) N Fopiagsria(t) = 0 if t # .
It follows from the proof of Proposition 1.1 that if we write e}, as e} = fipspr3(t™?)
with f; € Fsp43 and t() € H then {fili=0,...,#Fs5k43 — 1} = Fsp4+3 (we make

use of the fact that lgk), ey lfﬂl are pairwise coprime). Put

Z o ={tW |i=0,... #F55—1}
and take mj large so that

#(Zy+Tm) N I0me) | 1

(3-16) () o

Now we set
Cskta := Pskr3(I(my)) and Fypiq = |_| e%J(mklgk), - mklfﬁal).
0<j<n
Notice that
(3-17) Fspya = Frp43C5044-
Step 5. Now we define a group homomorphism ¢s5,44 : H — H by setting
Pskra(t) == mpdspis(t).

Then we have H = | |, (¢5x44(t) + J(mklgk), ceey mklgle)). This implies

Frira0sita(t) N Fsppadsia(t) =0 if t # 1.
Select now a positive integer a;y1 and a finite subset My C H in such a way that

dokra(Mi) + J(ml®, . omdl™) ) € I(agyy)) and

(3-18) 1 (ar1) \ (Dsera(My) + Tmelf™ ol () 1
< —.
#1(ak+1) Ok

Now we set

Csits = ¢spra(My) and Frpys = |_| el (apy1).

0<i<n
It follows from (3-18) that
#5145 1
3-19 <14+ —.
(3-19) #5141 4#Cs545 ay

Now starting with arbitrary (Cy,y1, Fin)t,—o and iterating the above 5-steps-
procedure infinitely many times we obtain two sequences (Cy,)oo_; and (F,,)50_.
Notice that (3-1) is satisfied automatically by the construction. Moreover, it is easy
to see the sequence (a,,)5°_; appearing as a byproduct of the construction grows
fast so that > °_ rp/am < oo. Therefore (3-8), (3-13), (3-15), (3-17), (3-19)
imply (3-2). Of course, (3-3) holds. Hence the (C, F)-action T" of G associated with
(Crnt1, Fin)yo—q is well defined on a standard probability space (X, B, u). Now we
state one of the main results of this paper.

11



Theorem 3.4. The transformation T
form rank n and M(T,, . ,) = {n}.

We preface the proof of this theorem with several auxiliary lemmata.

41 18 weakly mizing and rigid. It has uni-

Lemma 3.5. The subaction (Th)nen is ergodic.

Proof. We will use the notation introduced on Step 1. Suppose that (T} )pecq is not
ergodic, i.e. there exists a subset B € 9B such that 0 < p(B) < 1 and T}, B = B for
all h € H. Since (Ty)4eq is ergodic, we can find [ > 0 such that [ | n and

-1
i . . 1 j
(3-20) T BNB=0if0<j<l, T B=DB and u(UTgB) =1.
Jj=0

In what follows we will assume that [ = n. (The general case is considered in a
similar way.) Let € := 107%n=%. In view of (3-4) and (3-5) there exist k& > 0 and
subsets By, ..., By_1 C I(ax — 1) such that € > n(2/ay + (4/r)") and

(3-21) € > M(BA[ | ] e‘éBj} ) = u(BA || 7 [Bj]5k)
0<j<n 5k 0<j<n
Since B = T,! B and ey B; = e, 41 + Bj C I(ay), it follows from (3-21) that
> u([Bjlsk AT [Bjlsr) < 2.
0<j<n
This inequality plus (3-20) and (3-21) imply that
w([Bjlsk N [Bjlsk) < 6e for all 0 < j # j' < n and

(3-22) H(Dl[Bj]M) > % — 2.

§=0
On the other hand, it follows from (3-10) that
T (er—eni L (ar)lsu Deg I (an)]sr) < e.
Since Ty, (e, —e,) B = B, we obtain

BT (01 —en)d (BN T (ar)lse) A (B N [eg ] (an)]sn)) < e.
Hence 11(Th,, (c1 —cs)s [Bolsk A€l Bjsk) < 3¢ and therefore

|([Bolsk) — p([Bjlsk)| < 3e for all j.
Comparing this with (3-22) we deduce that

1
(3-23) w([Bjlsk) = 3 +15n€e for j=0,...,n— 1.

Now, given a permutation 7 of I(ay), we define a transformation R, € Auty(X, )
by setting
R { Trpy—px, if x € [b]sy for some b € I(ay)
SRES
x, otherwise.

Since 7(b)—b € H for all b € I(ay), it follows that B is invariant under R,. Then we
deduce from (3-21) that wu([BolseA[T(Bo)]sk) < 2e. Since 7 is arbitrary, it follows
that either p([Bolsk) < € or u([Bo]sk) > n~! — e. However neither is compatible
with (3-23). O

12



Lemma 3.6. For eachl=2,...,n+ 1, the transformation T¢,_., is ergodic.

Proof. We will use the notation introduced on Steps 1 and 2. Since the proof of
the ergodicity is similar for all of these transformations, we consider only the case
[l = 2. Let B,D be two measurable subsets of X with u(B) = u(D) > 0. Let
€ := u(B)*n""1075. By (3-4) we can approximate D with a cylinder D’ such that
p(DAD') <e. For k>0 and t € H, we let

Br(t) == ssp41(t + €2 —e1) — ssr41(t).

Then QZ55]€_|_1<61 — 62) —+ C5k+2(t) = 6k (t + e — 62) —+ C5k+2 (t +e1 — 62) for all ¢ € H.
Denote by Ay the following bounded linear operator in L2(X, u):

1
Apf = Z foTy.
#I(rk) he€Bi(I(rk))

Since 1 /" 400, it follows from (3-12) that Gy (I(rk)) is an increasing Fglner se-
quence in H. Since (Th)pepy is ergodic by Lemma 3.5, we derive from the mean
ergodic theorem that My f — [ fdu strongly for each f € L?(X,p). Select k so
large that the following are satisfied:

(i) ||~Ak:XD’ —uD)l2 <
(i) 7

(iii) D’ is a (5k;—|— 1)-cylinder, i.e. D' = [D*|5541 for a finite subset D* C Frp41,
(iv) there exists a finite subset B* C Fsr41 N H such that pu([B*|sk+1 \ B) < €

and i([B*Jsk11) > B2).

Only (iv) needs to be explained. Let t —t' = ZnHt e; for some tq,...,t,41 € Z.

If t1,...,t, are multiples of n then o5, (t) = o5x(t'). Since ry /" 400, we obtain
#{t € I(ry) | o5(t) = j} 5 2
#I(ry) 3nn

for every j € {0,...,n — 1} whenever k is large enough. This implies, in turn, that

#(fCsr41 N H) S 2
#Csh41 3n™

for every f € Fyp.

Hence if B is any subsets of Fj, then M([B05k+1 N Hlskt1) > 2nn,u([§]5k) It
remains to put B* := BC5k+1 N H for a subset B C F5i such that the cylinder
[B]5k approximates B up to € in p.

In view of (iv) we may assume without loss of generality that B*+1(ry)—1(ry) C

13



Fspi1. Let I' :== I(rg) N (I(rx) + e2 — e1). Then we have

H’(T¢5k+1(61—€2)B N D) > N(T¢>5k+1(61—62)[B*]5k+1 N D/) — 2e
= Y (Tpsps(er—en) [B* + orya(t)]shya N D') — 2e

tel(ry)
> Z p([psk+1(er — e2) + B* + cspr2(t)]sk42 N D') — 3e
tel’
= Z p([Bi(t + e1 — e2) + B* + cspqa(t + €1 — €2)|sk42 N D') — 3e
ter’
= Y p((Be(t) + B*) N D*) + copra(t)]shra) — €
tel’+e1—es
1
= EI0rn) > wl(Be(t) + BY) N D*)sks1) — 3e
tel’+e1—es
]' * /
> #I(Tk) te]z(; )/J’(Tﬁk(t)[B ]5k+1 nD ) — de

= <X[B*]5k+1ﬂAkXD/> - 467

where (.,.) denotes the inner product in L?(X, u). Applying (i) and (iv) we obtain

wB)?

0.
o € >

H’(T¢5k+1(61—82)B M D) > :U’([B*]5k+1)ﬂ(D/) — 0€ >

It remains to notice that ¢si11(e7 — e2) is a multiple of e; — ey, [
Lemma 3.7. The transformation T,, has rank one.

Proof. We will use the notation introduced on Step 4. Let

By = (Zk —+ I(mk)) N I(mk) and Sy = [¢5k+3(Bk)]5k:+4 C [0]5k+3~

Then we have ‘ '
T Sk = [fitsr+3 ('Y + Bi)lsksa C [filsnrs.

Hence TeiOSk N Tei;Sk =0if0<i+#1i < #F5,13. We claim that the sequence of
T.,-towers {Teio Sk |i=0,...,#Fs,13— 1} approximates the whole o-algebra B as
k — oo. Indeed (3-16) implies that

p([filskas \ TeiOSk) < M
ag

for all i =0,...,#Fsr+3 — 1. It remains to make use of (3-4). O

Remark 3.8. Also, it is easy to see that T2, **3S), C [0]skrs. This implies that

TEF3 . 1d as k — oc.

Proof of Theorem 3.4. It follows from Remark 1.5, Lemmata 3.6 and 3.7 and the
fact that each rank-one transformation has a simple spectrum ([Ba], [Ch]) that
M(Te,.,) = {n}. Then Lemma 3.3 yields that Tt is weakly mixing and has
uniform rank n. Since #Fkiy3 is divisible by n and e,y = e, we derive from
Remark 3.8 that T, is rigid. [

Ent1
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4. (C, F)-COCYCLES AND THE SPECTRAL MULTIPLICITY FOR
COMPACT GROUP EXTENSIONS OF (C, F')-TRANSFORMATIONS

Our purpose in this section is to prove the following assertion.

Theorem 4.1. Given a subset M C N with 1 € M, there exists a weakly mizring
transformation S such that M(S)=mn- M.

To prove this theorem we incorporate the main ideas from [G-S] and [KL] into
the construction outlined in Section 3.

Let T'= (Ty)4ec be a free measure preserving action of G' on a standard proba-
bility space (X, B, u). Denote by R the T-orbit equivalence relation on X.

Definition 4.2 [FM]. Let K be a compact metric Abelian group.

(i) A Borel map a: R — K is called a cocycle of R if there exists a p-conull
subset X™* C X such that

a(z,y)a(y, z) = a(z, z) whenever x ~g y ~g z and x,y,z € X™.

(i) Two cocycles a, 3 : R — K are cohomologous if there exist a Borel map
¢ : X — K and a conull subset X* C X such that

a(z,y) = ¢(x)B(z,y)(y) " for all (z,y) € RN (X* x X¥).

Denote by Ax Haar measure on K. Then for each cocycle a : R — K, we can
define a G-action T = (T;')4ec on the product space (X x K, X Ax) by setting

T3 (2, k) = (Tyx, a(Tyz, x)k).

This action is called a compact group extension of T. Denote by U:G> g ﬁg the
associated (with T'*) unitary representation of G' on the space L?(X x K,y X A\g).
Then we have a natural decomposition of this space into a countable sum of U-
invariant subspaces:

L*(X x K, ux M) = @@ L*(X,p) @ 1.
nEI?

Notice that the restriction of U to L2 (X, p) ®n is unitarily equivalent to the unitary
representation U, : G 3 g — U, (g) on L*(X, u) given by

(Un(9) ) (@) := (T, , 2)) (T M), o € X,
We will denote by U the restriction of U- 1, to L3(X, u). If Ky is a closed subgroup of

K then it determines a factor G-action T*0 = (T®50) c of T on the quotient
space (X x K /Ko, i X Ag/Kk,) by

T;"KO (x,kKo) = (Tyx, o(Tyx, x)kKo).
Let K :={ne K |n(h)=1for all h € K}. Then (up to a natural identification)
L*(X x K/Ko, it x Ax/k,) = @ L*(X, 1) @1
nex

and L?(X, ) ®n is now invariant under the unitary representation of G associated
with 7%%o_ Given a continuous group automorphism v of K, we set

O(v, Ko) := {#{n,nov,nov? ...} NK) | n € K}.

The following algebraic lemma was proved in [KL].
15



Lemma 4.3. Given a finite subset M C N with 1 € M, there exist a compact
metric Abelian group K, a subgroup Ko C K and a continuous group automorphism

v: G — G such that O(v, Ky) = M.

Theorem 4.4. Let o : R — K be a cocycle, Ky a closed subgroup of K and v a
continuous group automorphism of K. If the following are satisfied:
(i) the unitary operators Uy(ent1) and Upoy(ent1) are unitarily equivalent for
each n € K ;
(ii) the measures of mazimal spectral type of Uy (ent1) and Uy (en41) are disjoint
whenever ' #nov' for any i € Z;
(iii) the unitary operator U,(eg) has a simple spectrum for each n € K;
(iv) the unitary operators U(e;41 — e1) and Uy(ej41 — e1) have no non-trivial
fized vectors for any 1 <1 < mn with l | n and non-trivial n € K
then M(Tf;flo) =n-O(v, Kyp).

Proof. 1t follows from (iii), (iv) and Remark 1.5 that the operator U(e,+1) and the

operators Uy (en41), n € K \ {1z}, have homogeneous spectra of multiplicity n. It
remains to apply (i) and (ii). O

Fix an arbitrary K and an automorphism v : K — K with #{nov®|i € Z} <
for each n € K. To derive Theorem 4.1 from Theorem 4.4 and Lemma 4.3 it remains
to construct a dynamical system (X,B, u,T) and a cocycle o : R — K satisfying
(i)—(iv) and such that the transformation 7%  is weakly mixing.

€n41

Let C(G) stand for the center of G and let C'(T") denote the centralizer of T', i.e.
C(T) :={S € Auto(X, p) | ST, =T,S for all g € G}.

If S € C(T) then (SxS)R = R. Hence the map aoS : R 3 (z,y) — a(Sz,Sy) € K
is a well defined cocycle of R.

To satisfy Theorem 4.4(i) we will use the following simple statement whose proof
we leave to the reader (cf. [G-M, Proposition 1]).

Lemma 4.5. Let S € C(T). If the cocycles v o« and oo S are cohomologous

then for each n € K, the unitary representations U,, and Uyo, of G are unitarily
equivalent.

To satisfy Theorem 4.4(ii) we—following [G-L]—will exploit the concept of 6-
weak mixing.

Definition 4.6. Let 6 be a complex number, |6 < 1. A unitary operator W on a
Hilbert space 'H is called 6-weakly mixing if there exists a sequence m; < mg < - - -
such that (W™ih, h) — 0||h||? as i — oo for every h € H.

If @ # 1 then W has no non-trivial fixed vectors. If |#] # 1 then W has no
non-trivial eigenvectors (e.g. [G—L]).

Lemma 4.7 [G-L]. If two unitary operators W;, i = 1,2, are 0;-weakly mizing
(along the same sequence) and 61 # O then the measures of maximal spectral types
of W1 and Wy are disjoint.

Next, we recall that a sequence m; < mo < --- is called rigid for a transformation
R € Auto(X, p) if R™ — Id in Auto(X, u). We will use the following criterion for
f-weak mixing.
16



Lemma 4.8 ([G-L, Proposition 5] and [KL, Proposition 1]). Let g € G and let
my < mg < -+ be a rigid sequence for Tg. If [y n(a(T, ™ x,x))du(xr) — 60 as
i — oo then the unitary operator V,(g) is 0-weakly mizing along (m;)52 .

From now on (X, B, u, T') is the dynamical system constructed in Section 3. This
means that 7" is the (C, F')-action of G associated with the sequence (Cyt1, Fin)oo_g
that was explicitly determined there. Below we will use extensively the notation
introduced in Section 3. As we already noted the T-orbit equivalence relation R
coincides with the tail equivalence relation on (a p-conull subset of) X. We say

that two points z, 2’ € X are tail equivalent if there exists m > 0 such that

(4-1) == (fimsCma1,Cma2,---) € X and ' = (f], Cmi1, Cmt2y---) € X

Now we distinguish a special class of cocycles. Suppose that there are maps 3,, :
F, — K and «,, : C,, — K such that

(4-2) Fm+1(f€) = Bm(f)amia(c) for all f € Fp,c € Cppa.

Take a point (z,2’) € R. Then we can find m > 0 such that (4-1) holds. Now we
put

a(w, :L") = ﬁm(fm)ﬁm(fr/n)_l-

It is easy to derive from (3-1) and (4-2) that « is a well defined cocycle of R with
values in K.

Definition 4.9. We call « the (C, F')-cocycle associated with (tm+1, Bm)oe—o-

It is an easy exercise for the reader to verify that the cohomology class of « is
determined completely by the sequence (o, )m>0 alone. Hint: consider the restric-
tion of o to R N (X x Xp). Moreover, given any sequence of maps a,, : C,,, — K,
we can define the second sequence (3,, : F},, — K recurrently by setting

Bm—1(f)am(c), ifd= fcwith f € F,,_1 and ¢ € Cp,

O (d) := { 1k, if d € Frp \ (Fr—1Cm).

Then (4-2) is obviously satisfied. In this case we say that the corresponding (C, F)-
cocycle is associated with (ou,)oo_,.

From now on « is the (C, F')-cocycle associated with a sequence (a,)5°_;. Our
purpose is to select this sequence in such a way to satisfy the conditions (i)—(iv)
from the statement of Theorem 4.4. We will do this step by step. The following

lemma shows how to satisfy (iii).

Lemma 4.10. If asgia(c) = 1k for all ¢ € Csipyq and k € N then the operator
Uy(eo) has a simple spectrum for each n € K.

Proof. We first refer the reader to the proof of Lemma 3.7, where the subset S
was defined. Recall also that for any k, there exists an enumeration {f; | i =
0,...,#Fs5k4+3 — 1} of Fsiys3 such that if y € Si and y = (1g, C5k+4, C5k45,---) €
X5k_|_3 then
Teo—iy = (fu C/5k:+47 C5k+5; - - )
17



for some ¢, 4 € Csx44 depending on y and 4. This and the condition of the lemma
imply that

Oé(TeO—i Y, y) = Bsits(fi)skra(chppa)asiia(csrra) Borrs(la) ™

= Bok+5(fi)Bokrs(la) ™!

Hence for each ¢ = 0,...,#F5,43 — 1 and n € }A{, there exists a complex number
d; € T such that U,(ef)xs, = dixt,s,- Therefore the linear span of the family
€0

of vectors {U,(e})xs, | 0 <i < #Fsp13} in L?(X, p) equals to the linear span of
{XT;OSk | 0 <@ < #Fspq3—1}. It remains to note that the T, -towers {77 Sy | 0 <

i < #F5r+3} approximate B as k — oo by Lemma 3.7. [

Now we pass to (i) from the statement of Theorem 4.4. Without loss of generality
we may assume that the sequence (F),)o°_, satisfies the following condition

#(FmFyglFm—l—l N Fm—l—l)
#Fm—l—l

(4-3) — 1.

Now let Z = (2,,)5°_; be a sequence of elements from C(G) such that

(4-4) Z #(Cm AZ’” m) o

For a positive integer m, we let

XZ = (Fn Nzt o2 Fy) X (Cragpr N2k 1Cm1) X o+ C X

It follows from (4-3) and (4-4) that #(z; ' 2.  Fyp N Ey,)/#F — 1 and hence
(4-5) X;fcX;cC- and p(X7)—1asm — oo.

For each © = (fm, Cm+1, Cma2,--.) € X7, we let

(4-6) S:x:= (21 Zmfms Zm+1Cm+1, Zm+2Cm+2y - - - )-

Then it is easy to verify that (4-6) defines a measure preserving transformation of
(X,B, ). Moreover, S; € C(T).

Lemma 4.11. Suppose that (4-3) holds. Let
(4-7) Co i={c€CpnNz Cn| am(czm) =v(an(c)}

If 2 (1 —#C%, /#Cy) < 0o then the cocycle oo Sz is cohomologous to v o a.

Proof. By Borel-Cantelli lemma and (4-5) for pu-a.e. x € X, there exists m > 0
such that © = (fin, cmt1,...) € X with finz1--- 20 € Fy, and ¢; € CF for all
1 > m. We now set

() == B (fmzr - - Zm)v(ﬂm(fm))_l
18



The following calculation exploiting (4-2) and (4-7) shows that ¢(z) is well defined:

Bt (FmCmr121 -+ Zma1) 0Bt (frms1me1)) "
= B (fm21 -+ 2m) mi1 (Cm1 2m11)0( @1 (Ems1)) T 0B (fi)) ™
= B (fmz1 - 2m )0 (B (fin)) -
Of course, ¢ is a Borel map from X to K. It remains to notice that if z,2" € X,,

and (4-1) is satisfied for the pair (x, ) and moreover f,,z1 - zpm, f.21 -+ 2m € Fin
then

aoS:(z,7') = a(Ssx, Ssx')
= B (fmz1 -+ 2m) B (fraz1 - - 2m) 7
= ¢(@)0(Bn ()0 (B (f1)) ()~
= ¢(z)voalx,z)p(x') L.
0

Now (i) follows from Lemmata 4.11 and 4.5.

Our next step is to find a sufficient condition for (ii). We first state without
proof a simple sufficient condition for a sequence of integers to be rigid for T,
(use the fact that e,+1 € C(Q)).

n+1

Lemma 4.12. Let mp < mg < --- and
#C;

Then the sequence (m;);>1 is rigid for T,

—0 as 1 — oo.

n+1"°

For each n € K , we denote by p(n) the smallest positive integer p such that
nov? =n. We also define a function 7,, € L?(K, Ak) by setting

1 p(n)—1 '
Ty 1= —— nowvl.
T pn) ;

Of course, ||7y|l2 = 1. Denote by K, the set of pairs (n,1') € K x K such that
n #mnowvl for any j € Z. If (n,7/) € K, then 7, L 7y in L?(K, A\k) and hence
there exists z,,» € K with 7,(2y,,) # Ty (25,n/). In particular, for each non-trivial
n e K , there exists z, € K such that 7,(z,) # 1. This condition is enough to show

the ergodicity of T¢ .- We however want T,?  to be weakly mixing. For this, we

claim that for each non-trivial n € K , there are two points z,, 27’7 € K such that

1
§|Tn(zn) + 7'77(2'1/7)‘ <L

Indeed this claim is obvious if p(n) = 1. If p(n) > 1 then there exists 2z, € K
with [7,(2,)] < 1 and we put z; := z,. Partition N into infinite subsets indexed as
follows
N=NU || Mu || N
1;{;«67;6[? (n.n")EK
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Now we refer the reader to Step 3 from Section 3, where the sets L were defined.
Recall that we tiled there a ‘large’ parallelepiped J (lgk) lfﬁal

disjoint translations of a cube I(ribx) up to é Then ¢>5k_2(Lk) was defined as

the corresponding set of ‘tiling centers’. Enlarging, if necessary, lgk), .. ,lﬂl we

may assume without loss of generality that Lj is rather regular, i.e. it has a shape
of ‘almost parallelepiped’. Therefore for each k € N\ N, there exist a finite subset
D, C H and positive integers ps, qx such that

) with mutually

#Dy, is even;

n+1Dk N en+1Dk = ) whenever 0 < j # j' < prax;
qrpr—1
(4-8) the set L}, := |_| el .1 Dy is contained in Ly;
j=0
L\ L]
(4-9) %Ho,pkﬂmaskeooalongﬁl\/\/;
k
1
(4-10) Z — < 00;
keN\N r
(4-11) if k € NV, for a non-trivial n € K then p(n) | qx;

if k e N, for a (n,n') € Ko then lem(p(n), p(n")) | qk-

Recall that Csgy3 := ¢sxr2(Lg).

Lemma 4.13. For each k € N\ N, we partition Dy, into two subsets D) and D}
of equal cardinality. If for each 0 < j < qi and 0 < i < pi, we have

v (z,%),  ifkeN, and d e Dj
siera(Pspra(ePd)) = w207, ifk €N, and d € DY
( 77 />7 ikaNUW'

then
(a) for each non-trivial n € K, the operator Un(en+1) is 5(my(zn) + T (2y))-
weakly mizing.
(b) for each pair (n,n') € Ka, the operators U, (en,) and U,y (ey,) are (2 o )-
and Ty 2y, )-weakly mizing respectively along the same sequence.

Proof. Since Ty, ,(e1r) = ToF™, it follows from (4-8), (4-9) and Lemma 4.12 that

€nt1’
the sequence (by7%)ken\ v is rigid for T, . Now we set
Cliys = {dsira(elPkd) | 0 < j < qx,0 < i < py and d € Dy} and
Xék—i—Q = F5k:—|—2 X C5k:—|—3 X C5k_|_4 X C5k—|—5 X oo
Then we have

M(Xék+2) #L/ 1
,u(X5k+2) #Lkz Pk




Moreover, if x € X/, ., and = (fsp2, ¢5k+2(eﬁﬁffrid), ...) then Tq;;z(enﬂ)x €
Xspto. If k € N, then

(4-12) o(T;)! z) = 3z~ (0 (7)) 7 = (2),

XT
dskr2(ent1)?

where z = 2, if d € D or z = z; if d € D}/. Using (4-9), (4-12) and the fact
#D, = #D; = 0.5#Dj, we obtain

a(T 1 T, T x) = a(Tt x,T T o
[ @ redn@) = [ na(l e dute) + o)

5k42
LS LS (S s X e
Ly L W)+ 3 0w ) +o)
G =5 Pr = #Dk ieD, deD!

— o (T e + X i) +o),

3=0 g=0

where 0(1) denotes a sequence that tends to 0 as k — oo. Using (4-11) and then
passing to the limit along N, we obtain

O ) dinte) = 5 20) + 7))

Since any subsequence of a rigid sequence is rigid itself, (a) follows now from
Lemma 4.8.
The claim (b) is demonstrated in a similar way. [

Now we show how to satisfy (iv) of the statement of Theorem 4.4. For this, we
are going to adapt the ideas used in the proof of Lemma 4.13. First, we need a
sufficient condition for a sequence of integers to be rigid for Tez+ 1 Notice that

Lemma 4.12 stated for T¢, , does not work for T, et since eiriert € C(Q).

1€

However it is not difficult to modify the lemma as follows.

Lemma 4.14. Let g€ H, g # 1. Let my < mo < --- and

0 gMed C;AC; .
max #(eog 0 )—>0 as © — 00.

0<o<n #Cz

Then the sequence (m;);>1 is rigid for T,.

Proof. For each f € F;_1, there are h € H and 0 < 0 < n such that f = hef. It
remains to notice that ¢ fc = feg?g"egc for each c € C;. 0O

It is easy to see that the elements A"(elﬂel_l), k=0,...,n — 2, are rationally
independent in H and A" !(eji1e]!) = HZ;(Z) Af(er1e7 )™ Recall that the
group automorphism A : H — H was defined in Section 1. Partition N into
infinite subsets indexed as follows

n—1
v=1U U

=1 11?757}€I?
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Without loss of generality we may assume that for each k € N, ,5”, there exist a finite
subset D C H and positive integers pg, qi such that the following are satisfied:

7 n—2 —1\i, . . .
— thesets e}, Dy [[.—g A%(ery1e7 )", 0 < j < qr, 0 <o, ..., 0in—2 < py, are
pairwise disjoint;
o : : ;oo | 19k~ 1| pr—1 J n—=2 pp(_i —1\i,.
their union Ly = [ 2, Ll i, ,—0 €1 Dk [1—o A" (€161 7)™ is con-

tained in Lyg;
— #(Ly \ L,)/#Lk — 0 and p, — o0 as k — oo along N;
— p(n) | g and

(4-13) > 1o

keN dk

Lemma 4.15. If for each k € ngl), we have

n—2

a5k+3(¢5k+2(ei+1d H Aﬁ(el_’_lel—l)in)) — Uj(Zn_iO_m_i"—z)

k=0

forall0 < j <qg, 0<ig,...,in_o < pr and d € Dy then the operator Un(€l+1€1_1)

is (nT_lTn(zn) + %Tn(Z;n+1))—weakly mixing.

Proof. We consider only the case [ =1 (the other cases are similar).

Since T _1, = TP, it is easy to deduce from the definition of L. and
sk+2(e2e1 ) ese]

Lemma 4.14 that the sequence (bx7y)rem s rigid for Tezefl. Recall that Fsio =
Uo<o<n €6 1(rrby). I z € [e§I(riby)]sk+2 and

n

x = (fsnt2, bsnta(el 1d H(ene;il)ik),c5k+4, o)

k=2

—1

with 0 <'ig,...,7, < pp—1then T%Hz(@e;l)ﬂﬂ = (fsk42s Chpyss Cokads - - ) € Xspyo,

where
¢5k+2(efm+1dez_lel HZZQ(eRe;il)i’“), ifo=0
oz = S Gsur2(€l1der s ne1—oin [[nslene l))™), f2<0<n
¢5k+2(e}7¢+1dHZ:2(ene;i1)ik+1>a ifo=1
Hence ,
o 1 )= UJ.(ZU), ifo#1
bskta(eze; ) v/ (Zn_n"H), ifo=1.

This yields

W@ zw))dur) = /" +1/ +a(1)
/X bok+a(ezer ) Z (e§ I(Tkbr)]5k+2 leoI(Tbr)]5k+2

o#l
n—1 qr—1 . 1 qr—1 .
=N ) + - 3w () 4 0(1)
nqg =0 nq —0
j= Ji=
n—1 1 _n _
= Tn(2n) + ﬁTn(zn Y 4+5(1)



It remains to pass to the limit when £ — oo along /\/}§2) and apply Lemma 4.8. [J

Proof of Theorem 4.1. By Lemma 4.3, there exists a compact Polish Abelian group
Ky C K and a continuous group automorphism v : K — K such that O(v, Ky) =
M. Let (X,9, u,T) be the dynamical system constructed in Section 3. To define
a sequence of maps o, : Cp, — K we consider two cases. If m # 3 (mod 5) then
we set «,, = lg. In the case m = bk + 3 for some k € N, we first define a,,
on ¢spy2(Ly) C Cp, via the formulae from the statements of Lemmata 4.13 and
4.15 and then extend «,, in an arbitrary way to the rest of C,,. Let a denote the
(C, F)-cocycle associated with (a,)o0_;. Now let

la, if m # 3 (mod 5)
Zm =S ¢spt2(ebl ), if m =5k + 3 for some k € N\ N
¢skr2(€nt1), if m =5k + 3 for some k € N

and let Z := (2,)5°_;. Since Y o qik < o0 by (4-10) and (4-13), it follows from
the definition of o and Lemma 4.11 that the cocycle a o Sz is cohomologous to

v o . Hence Lemma 4.5 implies Theorem 4.4(i). Since 7,(2yn) # Ty (2y,n’)

whenever (17,7') € K,, Lemmata 4.13(b) and 4.7 imply Theorem 4.4(ii). We
deduce Theorem 4.4(iii) from Lemma 4.10. Notice that the fact 7,(z,) # 1 en-
tails =17, (z,) + £7y(2,"*") # 1. Therefore Theorem 4.4(iv) follows from Lem-
mata 4.15 and 3.6. Thus all the conditions of Theorem 4.4 hold and we deduce
from it that M(T2K0) = n - O(v,Ky) = n- M. Since |5(7,(2y) + m(2p))| # 1

€n+1
for any non-trivial n € K, it follows from Lemma 4.13(a) that the transformation
T, ., is weakly mixing. Hence TeO;’flO is weakly mixing too. [J
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