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Abstract. For each n > 1, we construct explicitly a rigid weakly mixing rank n

transformation with homogeneous spectrum of multiplicity n. The fact of existence

of such transformations was established recently by O. Ageev via Baire category
arguments (a new short category proof is also given here). As an application, for any

subset M ⊂ N containing 1, a weakly mixing transformation whose essential range

for the spectral multiplicity equals n · M is constructed.

0. Introduction

Let (X, B, µ) be a standard non-atomic probability space and let Aut0(X, µ)
stand for the group of µ-preserving transformations of X. For each S ∈ Aut0(X, µ),
we denote by M(S) the set of essential values for the multiplicity function of the
unitary operator f 7→ f ◦ S−1 on the Hilbert space L2

0(X, µ) := L2(X, µ)	 C. We
consider the problem of

whether each subset of N ∪ {∞} can be realized as M(S) for an ergodic S?

Recall that the first example of S with non-trivial M(S), i.e. M(S) 6= {1}, {∞}
or {1,∞}, appeared in [Os]. It was shown there that 2 ≤ supM(S) ≤ 30. A
real breakthrough was made by E. Robinson in [R1], where for a given n ∈ N, an
ergodic S with M(S) = {1, n} was constructed. In his example, S is a compact
group extension of a transformation admitting a good cyclic approximation. This
approach was further elaborated by various authors in [R2], [G–L], [KL] to obtain
finally the following result: for each subset M ⊂ N ∪ {∞} such that 1 ∈ M , there
exists an ergodic S withM(S) = M . (Later Ageev reproved this result in [A3] via
Baire catedory arguments.) However the case 1 /∈ M is considerably less studied.
For instance, the following Rokhlin’s problem on homogeneous spectrum was open
for several decades:

given n > 1, is there an ergodic transformation S with M(S) = {n}?

The affirmative answer to this problem was given for n = 2 in [Ry1] and indepen-
dently in [A1] by showing thatM(S×S) = {2} for a generic S ∈ Aut0(X, µ). Also,
a conjecture of A. Katok [Ka] was proved in [A1]:

M(S × · · · × S︸ ︷︷ ︸
n times

) = {n, n(n− 1), . . . , n!}
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for a generic S ∈ Aut0(X, µ). Recently, O. Ageev in [A4] applied a different, so-
called group action approach to solve affirmatively Rokhlin’s problem for any n.
The idea is to select, for each n, a non-commutative group Gn and a point gn ∈ Gn

in such a way that for a generic (in a natural Polish topology) Gn-action T , the
transformation Tgn

is ergodic and has homogeneous spectrum of multiplicity n.
In Section 1 we give another—shorter and simpler—proof of Ageev’s result (see

Theorem 1.4). We show how to bypass the analytic approximation technique which
is crucial in [A4]. In contrast, our approach (based on Proposition 1.1) is algebraic
without any use of the ε-δ-argument. We note also that our choice of Gn is different
from Ageev’s one.

In Section 2 we—following [A4]—investigate the ‘generic’ spectral multiplicity
of transformations Th for some other points h ∈ Gn, h 6= gn.

Notice that Ageev’s solution of Rokhlin’s problem is based on Baire category
arguments and it is not constructive. Thus, except for the case n = 2 (see [Ry2]
and [A2]) no explicit ergodic transformations with homogeneous spectrum have
been known so far. Our purpose in Section 3 is to apply the algorithmic (C, F )-
construction to produce such transformations for any n (see Theorem 2.4). We
recall that this construction appeared first in [Ju] (and, independently, in [Da1]) as
an algebraic counterpart for the cutting-and-stacking to produce (funny) rank-one
actions for a wide class of groups.

In Section 4 we use the explicit construction of Section 3 to contribute to the
general spectral multiplicity problem. Combining this construction with the com-
pact group extension method from [G–L] and [KL] we construct for each n ∈ N

and a subset M ⊂ N containing 1, a weakly mixing S with M(S) = n ·M (The-
orem 4.1). For this, we introduce a concept of (C, F )-cocycles. They are defined
on the orbit equivalence relation of the corresponding (C, F )-action. Since this
equivalence relation is an inductive tail equivalence relation on an infinite product
space, a (C, F )-cocycle is determined by a sequence of maps defined on finite sets.
Notice that (C, F )-cocycles are a generalization of Morse cocycles studied by many
authors (e.g. [Ke], [Ma], [G–L], [Go, Section 5]).

Acknowledgements. I would like to thank M. Lemańczyk for useful comments.

1. Short proof of Ageev’s theorem

From now on we fix n > 1 and a family e1, . . . , en of generators for Zn. Define
a ‘cyclic’ group automorphism A : Z

n → Z
n by setting Ae1 := e2, . . . , Aen−1 := en

and Aen := e1. Let G denote the semidirect product ZnoAZ with the multiplication
law as follows

(v, m)(w, l) := (v + Amw, m + l), v, w ∈ Z
n, m, l ∈ Z.

Then we have a natural embedding v 7→ (v, 0) of Zn into G. We also let e0 :=
(0, 1) ∈ G and en+1 := en

0 . Notice that G is generated by e1 and e0. Moreover,
e0eie

−1
0 = Aei for all i = 1, . . . , n. Let H be the subgroup of G generated by

e1, . . . , en+1. Then H is a free Abelian group with n + 1 generators. It is normal
in G and the quotient G/H is a cyclic group of order n. Moreover, A extends
naturally to H via the conjugation by e0. We denote this extension by the same
symbol A. While multiplying elements of H we will often utilize the symbol +.

By an action T of G we mean a group homomorphism G 3 g 7→ Tg ∈ Aut0(X, µ).
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Proposition 1.1. There exists a free action T of G such that the transformation
Te0

is ergodic and has a pure point spectrum.

Proof. Let Λ1 ⊃ Λ2 ⊃ · · · be a nested sequence of lattices (i.e. co-finite subgroups)
in G such that

⋂∞
i=1 Λi = {1G}. Then the corresponding homogeneous G-spaces

G/Λi are intertwined by the canonical G-equivariant projection maps:

G/Λ1 ← G/Λ2 ← · · · .

Let (X, µ) stand for the projective limit of the sequence (G/Λi, λi)
∞
i=1, where λi is

the equi-distribution on G/Λi. Denote by πi : (X, µ) → (G/Λi, λi) the canonical
projections. Then there exists a unique µ-preserving action T of G on X such that
πi ◦ Tg = g · πi for all g ∈ G and i ≥ 1. Since

⋂∞
i=1 Λi = {1G}, it follows that T

is free. To complete the proof it suffices to select the sequence (Λi)
∞
i=1 in such a

way that the element e0 ∈ G acts transitively on G/Λi for each i ≥ 1. Let Λi be
generated by k1,ie1, . . . , kn,ien and kn+1,i(e1 + · · ·+ en+1), where

(a) the positive integers k1,i, . . . , kn+1,i are pairwise coprime and
(b) kj,i−1 | kj,i and kj,i−1 6= kj,i for all j = 1, . . . , n + 1.

It follows from (b) that Λ1 ⊃ Λ2 ⊃ · · · and
⋂∞

i=1 Λi = {1G}. Since Λi ⊂ H and

ej
0 /∈ H for any 1 ≤ j < n, it remains to show that Λi + Zen+1 = H. Denote

by l the index of the lattice Λi + Zen+1 in H. Then l divides the index (in H)
of the sublattice generated by k2,ie2, . . . , kn,ien, kn+1,i(e1 + · · · + en+1) and en+1.

The latter index is k2,i · · ·kn+1,i. In a similar way, l | (k−1
s,i · k1,i · · ·kn+1,i) for each

s = 1, . . . , n + 1. Now it follows from (a) that l = 1. �

It is well known that Aut0(X, µ) is a Polish group when endowed with the
weak topology [Ha] defined by: Sm → S if µ(SmA4SA) → 0 for each A ∈ B.
Furnish the product space Aut0(X, ν)G with the product topology. Denote by
AG ⊂ Aut0(X, ν)G the subset of all measure preserving actions of G on (X, B, µ).
It is clear that AG is closed and hence Polish in the induced topology. There exists
a natural continuous action of Aut0(X, µ) on AG by conjugation:

(R • T )g := RTgR
−1 for R ∈ Aut0(X, µ) and T ∈ AG.

Proposition 1.2. The following two subsets are residual in AG:

S := {T ∈ AG | Te0
has a simple spectrum} and

W := {T ∈ AG | Tg is weakly mixing for each g ∈ G, g 6= 1G}.

Proof. In view of the following facts:

(i) the subsets of weakly mixing transformations and transformations with sim-
ple spectra are both Gδ in Aut0(X, µ) and invariant under conjugation;

(ii) the map AG 3 T 7→ Tg ∈ Aut0(X, µ) is continuous and Aut0(X, µ)-
equivariant for each g ∈ G;

(iii) the Aut0(X, µ)-orbit of any free G-action is dense in AG by [FW, Claim 18],

it remains to show that S and W contain at least one free G-action. Each Bernoul-
lian G-action is free and belongs to W. Since each ergodic transformation with
pure point spectrum has a simple spectrum, S contains a free G-action by Propo-
sition 1.1. �

3



According to an advice of the referee, we now briefly outline the proof of (iii)
in order to make our exposition self-contained. By [GlK], the set of free actions is
dense in AG. Next, we note that G is a monotilable group. This means that there
exist a Følner sequence (Fn)∞n=1 and a sequence (Cn)∞n=1 such that {Fnc | c ∈ Cn}
is a partition of G for each n. Take two free G-actions T and T ′. Fix ε > 0
and finite sequences g1, . . . , gk ∈ G and B1, . . . , Bk ∈ B. Find N large so that
#(giFN4Fn)/#FN < ε for all 1 ≤ i ≤ k. By Rokhlin’s lemma for monotilable
groups [OW], there is a subset A ∈ B such that the sets TgA, g ∈ FN , are pair-
wise disjoint and µ(

⊔
g∈FN

TgA) > 1 − ε. Denote by A′ a subset with the similar

properties corresponding to T ′. Without loss of generality we may assume that
µ(A) = µ(A′). Let R : A→ A′ be a µ-preserving bijection. Then we can extend it to
a µ-preserving one-to-one transformation R of X in such a way that RTgx = T ′

gRx

for all x ∈ A and g ∈ FN . It follows that µ(RTgi
R−1Bj4T ′

gi
Bj) < 3ε for all

1 ≤ i, j ≤ k. This implies that T ′ belongs to the closure of the Aut0(X, µ)-orbit of
T .

Lemma 1.3. Let H be a separable Hilbert space and let U : H 3 h 7→ Uh ∈ U(H)
be a unitary representation of H in H. If U is unitarily equivalent to U ◦A and for
each 1 ≤ l < n with l | n, the operator Uel+1−e1

has no non-trivial fixed vector then
M(Uen+1

) ⊂ {n, 2n, . . .} ∪ {∞}.

Proof. By the spectral theorem for U , there exist a probability measure σ on the

dual group Ĥ and a Borel map k : Ĥ → N ∪ {∞} such that the following decom-
position holds (up to unitary equivalence):

(1-1) L2
0(X, µ) =

∫

bH

Hw dσ(w) and Uh =

∫

bH

w(h)Iw dσ(w),

for each h ∈ H, where w 7→ Hw is a Borel field of Hilbert spaces, dimHw = k(w)
and Iw the identity operator on Hw. The inclusion Z 3 m 7→ men+1 ∈ H induces a

projection π : Ĥ → T. Let σ =
∫

T
σz dσ̂(z) denote the desintegration of σ relative

to this projection. Then we derive from (1-1) that

L2
0(X, µ) =

∫

T

H′
z dσ̂(z) and Uen+1

=

∫

T

zIz dσ̂(z),

where H′
z :=

∫
bH
Hw dσz(w). Let l(z) := dimH′

z, z ∈ T. Then

(1-2) l(z) =

{
∞, if σz is not purely atomic∑

σz(w)>0 k(w), otherwise.

Since U is unitarily equivalent to U ◦A and An = Id, we may assume without loss
of generality that k and σ are both invariant under the dual (to A) automorphism

A? of Ĥ. We claim that

(1-3) for σ-a.a. w ∈ Ĥ, the A?-orbit of w has length n.

Indeed, otherwise there exists 1 ≤ l < n such that σ({w ∈ Ĥ | (A?)lw = w}) > 0
and l | n. Then (1-1) implies that the unitary Ue1−Ale1

has a non-trivial fixed
vector. However this contradicts to a condition of the lemma.

Since Aen+1 = en+1, we have π◦A? = π. Therefore it follows from the invariance
of σ under A? that σz ◦ A? = σz for σ̂-a.a. z ∈ T. Hence (1-2), (1-3) and the fact
k ◦A? = k imply that n | l(z) for σ̂-a.a. z, i.e. M(Ten+1

) ⊂ {n, 2n, . . .} ∪ {∞}. �

Now we state and prove a modified version of the main result from [A2].
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Theorem 1.4. For each T ∈ S ∩ W, i.e. for a generic action from AG, the
transformation Ten+1

is weakly mixing and M(Ten+1
) = {n}.

Proof. Denote by U : G 3 g 7→ Ug ∈ U(L2
0(X, µ)) the unitary representation of

G associated with T . Since T ∈ W and Ue0
UhU−1

e0
= UAh for each h ∈ H, it

follows from Lemma 1.3 that M(Ten+1
) ⊂ {n, 2n, . . .} ∪ {∞}. On the other hand,

M(Te0
) = {1} since T ∈ S. Hence M(Ten+1

) is bounded by n from above (we
recall that en+1 = en

0 ). Therefore M(Ten+1
) = {n}. �

Remark 1.5. Indeed we established more: if U = (Ug)g∈G is a unitary representa-
tion of G such that the operator Ue0

has a simple spectrum and for each 1 ≤ l < n
with l | n, the operator Uel+1−e1

has no non-trivial fixed vectors then the operator
Uen+1

has a homogeneous spectrum of multiplicity n.

Remark 1.6. Define a group automorphism A′ of Zn−1 by setting A′e1 := e2,...,
A′en−2 := en−1 and A′en−1 := −e1−· · ·− en−1. Ageev in [A2] considers the group
G∗ := Zn−1 oA′ Z instead of G. Notice that the results of Section 1 (and their
proofs) hold as well for G∗ with obvious minor modifications. The advantage of
G will become apparent in Section 2, where we investigate the generic multiplicity
function for Te1

and in Sections 3 and 4, where we construct explicit actions of G.

2. Te1
has a simple spectrum for a generic T ∈ AG

Recall that G is generated by e0 and e1. We studied the spectral multiplicity of
the transformation Te0

for a generic G-action T in Section 1. Now we are going to
investigate the spectral multiplicity of Te1

(as Ageev did in [A2] for the group G∗,
see Remark 1.5). We let

E := {T ∈ AG | M(Te1
) = {1}}.

The following statement is the main result of this section.

Proposition 2.1. E is a dense Gδ in AG.

Arguing in the same way as in the proof of Proposition 1.1 we see that E is
a dense Gδ whenever E contains a free G-action. Thus to prove Proposition 2.1
it is enough to construct such an action. For this, we will exploit the concept of
co-induced action introduced by Dooley, Golodets, Rudolph and Sinelshchikov.

Definition 2.2 ([D–S], [GS]). Let Γ be a countable group and Λ a subgroup of

Γ. Let T̂ = (T̂h)h∈Λ be a measure preserving action of Λ on a standard probability
space (Y, C, ν). Select a cross-section σ : Λ\Γ → Γ of the quotient map Γ →
Λ\Γ with σ(Λ) = 1Γ. Define an action T = (Tg)g∈Γ of Γ on the product space

(X, B, µ) := (Y, C, ν)Λ\Γ by setting

(Tgx)(Λg′) := T̂σ(Λg′)gσ(Λg′g)−1x(Λg′g)

for all maps x : Λ\Γ→ Y and g ∈ Γ. Then T is said to be co-induced from T̂ .

It is easy to see that T does not depend (up to conjugacy) on the choice of σ.

Moreover, if T̂ is free or ergodic then so is T .
Now we are going to apply the co-inducing procedure to the pair H ⊂ G. Take a

family z1, . . . , zn+1 of ‘rationally independent’ elements of the circle T. This means
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that if zt1
1 · · · z

tn+1

n+1 = 1 for some t1, . . . , tn+1 ∈ Z then t1 = · · · = tn+1 = 0. Define

an action T̂ of H on the circle T equipped with Haar measure λT by setting

T̂
e

t1
1

···e
tn+1

n+1

z := zt1
1 · · · z

tn+1

n+1 z, t1, . . . , tn+1 ∈ Z.

It is obvious that T̂ is free and ergodic. Let σ(Hej
0) := ej

0 for all j = 0, . . . , n− 1.

Then the G-action T co-induced from T̂ via the cross-section σ is defined on the
n-torus (Tn, λTn). The generators of G act as follows

Te1
(z1, . . . , zn) = (T̂e1

z1, T̂e2
z2 . . . , T̂en

zn)

Te0
(z1, . . . , zn) = (z2, . . . , zn, T̂en+1

z1).

We see that the transformation Te1
is ergodic and has a pure point spectrum. Hence

M(Te1
) = {1}, i.e. T ∈ E . It remains to note that T is free (and ergodic) since so

is T̂ .

3. (C, F )-actions, rank and homogeneous spectrum

We start this section by reminding the (C, F )-construction (see [Da1]–[Da3],
[DS1] and [DS2] for details). Let (Cm)∞m=1 and (Fm)∞m=0 be two sequences of finite
G-subsets such that for each m ≥ 0 the following properties are satisfied:

(3-1)
FmCm+1 ⊂ Fm+1, #Cm+1 > 1 and

the sets Fmc, c ∈ Cm+1, are pairwise disjoint.

We put Xm := Fm × Cm+1 × Cm+2 × · · · , endow Xm with the (compact) product
topology and define a continuous embedding Xm → Xm+1 by setting

(fm, cm+1, cm+2, . . . ) 7→ (fmcm+1, cm+2, . . . ).

Then we have X1 ⊂ X2 ⊂ · · · . Let X :=
⋃

m Xm stand for the topological induc-
tive limit of the sequence Xm. Clearly, X is a locally compact totally disconnected
metrizable space without isolated points and Xm is clopen in X. Hence the corre-
sponding Borel σ-algebra B is standard. Assume in addition that

(3-2)

∞∏

m=1

#Fm+1

#Fm#Cm+1
<∞.

Then it is easy to see that there exists a unique probability measure µ on (X, B)
such that the restriction of µ onto each Xm is the infinite product measure

τm × λm+1 × λm+2 × · · · ,

where λj is the equidistribution on Cj and τm is a finite measure on Fm with
τm(f) = τm(f ′) for all f, f ′ ∈ Fm. Thus (X, B, µ) is a standard probability space.
Given g ∈ G and m > 0, we set

D(m)
g := (Fm ∩ g−1Fm)× Cm+1 × Cm+2 · · · and R(m)

g := D
(m)
g−1 .
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Clearly, D
(m)
g and R

(m)
g are clopen subsets of Xn. Moreover, D

(m)
g ⊂ D

(m+1)
g and

R
(m)
g ⊂ R

(m+1)
g . Define a map T

(m)
g : D

(m)
g → R

(m)
g by setting

T (m)
g (fm, cm+1, . . . ) := (gfm, cm+1, . . . ).

Clearly, it is a homeomorphism. Put

Dg :=

∞⋃

m=1

D(m)
g and Rg :=

∞⋃

m=1

R(m)
g = Dg−1 .

Then Dg and Rg are open subsets of X. Moreover, a homeomorphism Tg: Dg → Rg

is well defined by Tg � D
(m)
g = T

(m)
g for all m. Suppose now that

(3-3) (Fm)m≥0 is a left Følner sequence in G.

This implies µ(D
(m)
g )→ 1 as m→∞. Hence µ(Dg) = µ(Rg) = 1. Since µ(O) > 0

for each open subset O ⊂ X, it follows that the subset D :=
⋂

g∈G Dg =
⋂

g∈G Rg

is a dense Gδ of full µ-measure. It is easy to see that Tg2g1
= Tg2

Tg1
on D for

all g1, g2 ∈ G. Thus T := (Tg)g∈G is a continuous G-action on the Polish (in the
induced topology) space D. This action is minimal. (To see this, just notice that
the T -orbit equivalence relation restricted to any Xm is just the tail equivalence
relation on Xm.) Moreover, T preserves µ and T is free and ergodic.

Definition 3.1. We call T the (C, F )-action of G associated to (Cm+1, Fm)∞m=0.

In the sequel we will not distinguish between sets, maps, transformations which
agree a.e. For each subset A ⊂ Fm, we let

[A]m := {x = (fm, cm+1, . . . ) ∈ Xm | fm ∈ A}

and call it an m-cylinder. The following holds

[A ∩B]m = [A]m ∩ [B]m and [A ∪ B]m = [A]m ∪ [B]m,

[A]m = [ACm+1]m+1 =
⊔

c∈Cm+1

[Ac]m+1,

Tg[A]m = [gA]m if gA ⊂ Fm,

µ([A]m) = #Cm+1 · µ([Ac]m+1) for every c ∈ Cm+1,

µ([A]m) = µ(Xm)
#A

#Fm
,

where the sign t means the union of mutually disjoint sets. Moreover, given Y ∈ B,

(3-4) minA⊂Fm
µ(Y4[A]m)→ 0 as m→∞.

Now we remind the definition of rank. Let S be an ergodic transformation of a
standard probability space (Y, F, ν).
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Definition 3.2. The rank of S—we will denote it by rk(S)—is the smallest r ∈ N

(or infinity) such that there exist measurable subsets B
(m)
j and positive integers

h
(m)
j such that the subsets SiB

(m)
j , j = 1, . . . , r, i = 1, . . . , h

(m)
j , are pairwise

disjoint and approximate the entire σ-algebra F as m→∞. The latter means that
given B ∈ F, there are subsets A(m) such that ν(B4A(m)) → 0 and every A(m) is

a union of several subsets SiB
(m)
j with 0 ≤ j ≤ r and 1 ≤ i ≤ h

(m)
j . If, moreover,

h
(m)
1 = · · · = h

(m)
r for each m, we say that S has uniform rank r.

We now reproduce a simple but useful statement from [A4].

Lemma 3.3.

(i) If rk(S) = 1 and supM(Sn) = n then Sn has uniform rank n.
(ii) If rk(S) = 1 and M(Sn) = {n} then Sn is weakly mixing.

Proof. (i) Of course, rk(Sn) ≤ n · rk(S). By [Ch], supM(S) ≤ rk(S). This im-
plies that if rk(S) = 1 and supM(Sn) = n then rk(Sn) = n. Moreover, it is
straightforward that in this case the rank of Sn is uniform.

(ii) Since S has rank one, S is ergodic. Hence the dimension of the subspace
H := {f ∈ L2

0(X, µ) | f ◦ Sn = f} is at most n − 1. However M(Sn) = {n} and
therefore H is trivial, i.e. Sn is ergodic. Then the multiplicity of each eigenvalue of
Sn is 1. Hence if Sn were not weakly mixing thenM(Sn) 3 1, a contradiction. �

Our purpose now is to construct a (C, F )-action T ∈ AG satisfying the conditions
of Remark 1.4. To this end we will determine the sequence (Cm+1, Fm)∞m=0 via an
inductive process. We need some notation. Given a > 0 and l1, . . . , ln+1 > 0, define
a cube and a parallelepiped in H by setting

I(a) :=

{ n+1∑

i=1

tiei | ti ∈ Z, 0 ≤ ti < a for all i

}
and

J(l1, . . . , ln+1) :=

{ n∑

i=1

tiei + tn+1(e1 + · · ·+ en+1) | ti ∈ Z, 0 ≤ ti < li for all i

}
.

Fix an increasing sequence of integers rm → ∞. Notice that G =
⊔

0≤j<n ej
0H.

Suppose that for some k > 0, there exists ak > 0 such that

(3-5) F5k =
⊔

0≤j<n

ej
0I(ak).

We are going to construct C5k+1, F5k+1, C5k+2, . . . , F5k+5 in five consecutive steps.

Step 1. We define first three maps φ5k : H → H, σ5k : H → {0, . . . , n− 1} and
c5k+1 : H → G by setting

φ5k(t) := (ak + 1)t,

σ5k(t) ≡ t1 + 2t2 + · · ·+ ntn (mod n) and

c5k+1(t) := e
σ5k(t)
0 φ5k(t),

where t = t1e1 + · · ·+ tn+1en+1 ∈ H with t1, . . . , tn+1 ∈ Z. Then φ5k is a group
homomorphism with the following tiling property:

(3-6) H :=
⊔

t∈H

(φ5k(t) + I(ak + 1)).
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The ‘perturbation’ σ5k satisfies

(3-7) σ5k(t)− σ5k(t + Aj(e1 − e2)) ∈ {1, 1− n}

for all t ∈ H and j ∈ Z. Since e0I(ak) = I(ak)e0 and en
0 I(ak) ⊂ I(ak + 1), we

obtain

F5kc5k+1(t) =
⊔

0≤j<n

e
j+σ5k(t)
0 (φ5k(t) + I(ak)) ⊂

⊔

0≤j<n

ej
0(φ5k(t) + I(ak + 1)).

This and (3-6) yield F5kc5k+1(t) ∩ F5kc5k+1(t
′) = ∅ whenever t 6= t′. We now set

C5k+1 := c5k+1(I(rk)) and F5k+1 :=
⊔

0≤j<n

ej
0I(rk(ak + 1)).

It is straightforward that

(3-8)
#F5k+1

#F5k#C5k+1
=

(
1 +

1

ak

)n+1

.

Consider a map α : H 3 t 7→ α(t) := t + A−σ5k(t)(e1 − e2) ∈ H. It is easy to derive
from (3-7) that

(3-9) α is one-to-one and hence
#(α(I(rk))4I(rk))

#I(rk)
≤

(
4

rk

)n

.

Next, we have

φ5k(e1 − e2)I(ak)C5k+1 =
⊔

t∈I(rk)

I(ak)e
σ5k(t)
0 φ5k(A−σ5k(t)(e1 − e2))φ5k(t)

=
⊔

t∈I(rk)

I(ak)e
σ5k(t)−σ5k(α(t))
0 c5k+1(α(t)).

It follows from this, (3-7) and (3-9) that

#(φ5k(e1 − e2)I(ak)C5k+14e0I(ak)C5k+1)

#I(ak)#C5k+1
≤

2

ak
+

(
4

rk

)n

.

This inequality holds also—with the same proof—if we replace e1 − e2 in the left-
hand side with Aj(e1 − e2) for each j = 1, . . . , n− 1. This, in turn, yields

(3-10)
#(φ5k(e1 − e2)

jI(ak)C5k+14ej
0I(ak)C5k+1)

#I(ak)#C5k+1
≤ n

(
2

ak
+

(
4

rk

)n)
.

Step 2. We now let bk := (ak + 1)rk + r2
k. Define three maps φ5k+1, s5k+1, c5k :

H → H by setting

φ5k+1(t) := bkt,

s5k+1(t) :=
t21 + t1

2
e1 + t1

n+1∑

i=2

tiei and

c5k+2(t) := s5k+1(t) + φ5k+1(t).
9



Then φ5k+1 is a group homomorphism with the following tiling property:

(3-11) H :=
⊔

t∈H

(φ5k+1(t) + I(bk)).

The ‘perturbation’ s5k+1 satisfies

(3-12) s5k+1(t + ej − e1)− s5k+1(t) = (t1 − 1)ej −
n+1∑

i=1

tiei, j 6= 1

for all t ∈ H. Since

F5k+1c5k+2(t) =
⊔

0≤j<n

ej
0(s5k+1(t) + φ5k+1(t) + I((ak + 1)rk))

⊂
⊔

0≤j<n

ej
0(φ5k+1(t) + I(bk)),

it follows from (3-11) that F5k+1c5k+2(t) ∩ F5k+1c5k+2(t
′) = ∅ if t 6= t′. We now

set
C5k+2 := c5k+2(I(rk)) and F5k+2 :=

⊔

0≤j<n

ej
0I(rkbk).

It is straightforward that

(3-13)
#F5k+2

#F5k+1#C5k+2
=

(
1 +

rk

ak + 1

)n+1

.

Step 3. We now define a map φ5k+2 : H → H by setting

φ5k+2(t) := bkrk

n+1∑

i=1

tiei.

Then φ5k+2 is a group homomorphism with the following tiling property:

H :=
⊔

t∈H

(φ5k+2(t) + I(rkbk)).

This implies that F5k+2φ5k+2(t) ∩ F5k+2φ5k+2(t
′) = ∅ whenever t 6= t′. Select

pairwise coprime integers l
(k)
1 , . . . , l

(k)
n+1 and a finite subset Lk ⊂ H in such a way

(3-14)

φ5k+2(Lk) + I(rkbk) ⊂ J(l
(k)
1 , . . . , l

(k)
n+1) and

#J(l
(k)
1 , . . . , l

(k)
n+1) \ (φ5k+2(Lk) + I(rkbk))

#J(l
(k)
1 , . . . , l

(k)
n+1)

<
1

ak
.

We now set

C5k+3 := φ5k+2(Lk) and F5k+3 :=
⊔

0≤j<n

ej
0J(l

(k)
1 , . . . , l

(k)
n+1).

It follows from (3-14) that

(3-15)
#F5k+3

#F5k+2#C5k+3
< 1 +

1

ak
.
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Step 4. We now define a group homomorphism φ5k+3 : H → H by setting

φ5k+3(t) :=
n∑

i=1

til
(k)
i ei + tn+1l

(k)
n+1(e1 + · · ·+ en+1).

Then we have H =
⊔

t∈H(φ5k+3(t) + J(l
(k)
1 , . . . , l

(k)
n+1)). This implies

F5k+3φ5k+3(t) ∩ F5k+3φ5k+3(t) = ∅ if t 6= t′.

It follows from the proof of Proposition 1.1 that if we write ei
0 as ei

0 = fiφ5k+3(t
(i))

with fi ∈ F5k+3 and t(i) ∈ H then {fi | i = 0, . . . , #F5k+3 − 1} = F5k+3 (we make

use of the fact that l
(k)
1 , . . . , l

(k)
n+1 are pairwise coprime). Put

Zk := {t(i) | i = 0, . . . , #F5k+3 − 1}

and take mk large so that

(3-16)
#((Zk + I(mk)) ∩ I(mk))

#I(mk)
> 1−

1

ak
.

Now we set

C5k+4 := φ5k+3(I(mk)) and F5k+4 :=
⊔

0≤j<n

ej
0J(mkl

(k)
1 , . . . , mkl

(k)
n+1).

Notice that

(3-17) F5k+4 = F5k+3C5k+4.

Step 5. Now we define a group homomorphism φ5k+4 : H → H by setting

φ5k+4(t) := mkφ5k+3(t).

Then we have H =
⊔

t∈H(φ5k+4(t) + J(mkl
(k)
1 , . . . , mkl

(k)
n+1)). This implies

F5k+4φ5k+4(t) ∩ F5k+4φ5k+4(t) = ∅ if t 6= t′.

Select now a positive integer ak+1 and a finite subset Mk ⊂ H in such a way that

(3-18)

φ5k+4(Mk) + J(mkl
(k)
1 , . . . , mkl

(k)
n+1) ⊂ I(ak+1)) and

#I(ak+1)) \ (φ5k+4(Mk) + J(mkl
(k)
1 , . . . , mkl

(k)
n+1))

#I(ak+1)
<

1

ak
.

Now we set

C5k+5 := φ5k+4(Mk) and F5k+5 :=
⊔

0≤j<n

ej
0I(ak+1).

It follows from (3-18) that

(3-19)
#F5k+5

#F5k+4#C5k+5
< 1 +

1

ak
.

Now starting with arbitrary (Cm+1, Fm)4m=0 and iterating the above 5-steps-
procedure infinitely many times we obtain two sequences (Cm)∞m=1 and (Fm)∞m=0.
Notice that (3-1) is satisfied automatically by the construction. Moreover, it is easy
to see the sequence (am)∞m=1 appearing as a byproduct of the construction grows
fast so that

∑∞
m=1 rm/am < ∞. Therefore (3-8), (3-13), (3-15), (3-17), (3-19)

imply (3-2). Of course, (3-3) holds. Hence the (C, F )-action T of G associated with
(Cm+1, Fm)∞m=1 is well defined on a standard probability space (X, B, µ). Now we
state one of the main results of this paper.
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Theorem 3.4. The transformation Ten+1
is weakly mixing and rigid. It has uni-

form rank n and M(Ten+1
) = {n}.

We preface the proof of this theorem with several auxiliary lemmata.

Lemma 3.5. The subaction (Th)h∈H is ergodic.

Proof. We will use the notation introduced on Step 1. Suppose that (Th)h∈H is not
ergodic, i.e. there exists a subset B ∈ B such that 0 < µ(B) < 1 and ThB = B for
all h ∈ H. Since (Tg)g∈G is ergodic, we can find l > 0 such that l | n and

(3-20) T j
e0

B ∩B = ∅ if 0 < j < l, T l
e0

B = B and µ

( l−1⊔

j=0

T j
0 B

)
= 1.

In what follows we will assume that l = n. (The general case is considered in a
similar way.) Let ε := 10−6n−4. In view of (3-4) and (3-5) there exist k > 0 and
subsets B0, . . . , Bn−1 ⊂ I(ak − 1) such that ε > n(2/ak + (4/rk)n) and

(3-21) ε > µ

(
B4

[ ⊔

0≤j<n

ej
0Bj

]

5k

)
= µ

(
B4

⊔

0≤j<n

T j
e0

[Bj]5k

)

Since B = T n
e0

B and en
0 Bj = en+1 + Bj ⊂ I(ak), it follows from (3-21) that

∑

0≤j<n

µ([Bj]5k4Tn
e0

[Bj]5k) < 2ε.

This inequality plus (3-20) and (3-21) imply that

(3-22)

µ([Bj]5k ∩ [Bj′ ]5k) < 6ε for all 0 ≤ j 6= j ′ < n and

µ

( n−1⋃

j=0

[Bj]5k

)
>

1

n
− 2ε.

On the other hand, it follows from (3-10) that

µ(Tφ5k(e1−e2)j [I(ak)]5k4[ej
0I(ak)]5k) < ε.

Since Tφ5k(e1−e2)B = B, we obtain

µ(Tφ5k(e1−e2)j (B ∩ [I(ak)]5k)4(B ∩ [ej
0I(ak)]5k)) < ε.

Hence µ(Tφ5k(e1−e2)j [B0]5k4[ej
0Bj ]5k) < 3ε and therefore

|µ([B0]5k)− µ([Bj]5k)| < 3ε for all j.

Comparing this with (3-22) we deduce that

(3-23) µ([Bj]5k) =
1

n2
± 15nε for j = 0, . . . , n− 1.

Now, given a permutation τ of I(ak), we define a transformation Rτ ∈ Aut0(X, µ)
by setting

Rτx :=

{
Tτ(b)−bx, if x ∈ [b]5k for some b ∈ I(ak)

x, otherwise.

Since τ(b)−b ∈ H for all b ∈ I(ak), it follows that B is invariant under Rτ . Then we
deduce from (3-21) that µ([B0]5k4[τ(B0)]5k) < 2ε. Since τ is arbitrary, it follows
that either µ([B0]5k) < ε or µ([B0]5k) > n−1 − ε. However neither is compatible
with (3-23). �
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Lemma 3.6. For each l = 2, . . . , n + 1, the transformation Te1−el
is ergodic.

Proof. We will use the notation introduced on Steps 1 and 2. Since the proof of
the ergodicity is similar for all of these transformations, we consider only the case
l = 2. Let B, D be two measurable subsets of X with µ(B) = µ(D) > 0. Let
ε := µ(B)2n−n10−6. By (3-4) we can approximate D with a cylinder D′ such that
µ(D4D′) < ε. For k > 0 and t ∈ H, we let

βk(t) := s5k+1(t + e2 − e1)− s5k+1(t).

Then φ5k+1(e1 − e2) + c5k+2(t) = βk(t + e1 − e2) + c5k+2(t + e1 − e2) for all t ∈ H.
Denote by Ak the following bounded linear operator in L2(X, µ):

Akf :=
1

#I(rk)

∑

h∈βk(I(rk))

f ◦ Th.

Since rk ↗ +∞, it follows from (3-12) that βk(I(rk)) is an increasing Følner se-
quence in H. Since (Th)h∈H is ergodic by Lemma 3.5, we derive from the mean
ergodic theorem that Mkf →

∫
f dµ strongly for each f ∈ L2(X, µ). Select k so

large that the following are satisfied:

(i) ‖AkχD′ − µ(D′)‖2 < ε,
(ii) r−2

k < ε,
(iii) D′ is a (5k + 1)-cylinder, i.e. D′ = [D∗]5k+1 for a finite subset D∗ ⊂ F5k+1,
(iv) there exists a finite subset B∗ ⊂ F5k+1 ∩ H such that µ([B∗]5k+1 \ B) < ε

and µ([B∗]5k+1) > µ(B)
2nn .

Only (iv) needs to be explained. Let t− t′ =
∑n+1

i=1 tiei for some t1, . . . , tn+1 ∈ Z.
If t1, . . . , tn are multiples of n then σ5k(t) = σ5k(t′). Since rk ↗ +∞, we obtain

#{t ∈ I(rk) | σ5k(t) = j}

#I(rk)
>

2

3nn

for every j ∈ {0, . . . , n− 1} whenever k is large enough. This implies, in turn, that

#(fC5k+1 ∩H)

#C5k+1
>

2

3nn
for every f ∈ F5k.

Hence if B̃ is any subsets of F5k then µ([B̃C5k+1 ∩ H]5k+1) ≥
1

2nn µ([B̃]5k). It

remains to put B∗ := B̃C5k+1 ∩ H for a subset B̃ ⊂ F5k such that the cylinder

[B̃]5k approximates B up to ε in µ.

In view of (iv) we may assume without loss of generality that B∗+I(rk)−I(rk) ⊂
13



F5k+1. Let I ′ := I(rk) ∩ (I(rk) + e2 − e1). Then we have

µ(Tφ5k+1(e1−e2)B ∩D) > µ(Tφ5k+1(e1−e2)[B
∗]5k+1 ∩D′)− 2ε

=
∑

t∈I(rk)

µ(Tφ5k+1(e1−e2)[B
∗ + c5k+2(t)]5k+2 ∩D′)− 2ε

>
∑

t∈I′

µ([φ5k+1(e1 − e2) + B∗ + c5k+2(t)]5k+2 ∩D′)− 3ε

=
∑

t∈I′

µ([βk(t + e1 − e2) + B∗ + c5k+2(t + e1 − e2)]5k+2 ∩D′)− 3ε

=
∑

t∈I′+e1−e2

µ([((βk(t) + B∗) ∩D∗) + c5k+2(t)]5k+2)− 3ε

=
1

#I(rk)

∑

t∈I′+e1−e2

µ([(βk(t) + B∗) ∩D∗)]5k+1)− 3ε

>
1

#I(rk)

∑

t∈I(rk)

µ(Tβk(t)[B
∗]5k+1 ∩D′)− 4ε

= 〈χ[B∗]5k+1
,AkχD′〉 − 4ε,

where 〈., .〉 denotes the inner product in L2(X, µ). Applying (i) and (iv) we obtain

µ(Tφ5k+1(e1−e2)B ∩D) > µ([B∗]5k+1)µ(D′)− 5ε >
µ(B)2

2nn
− 6ε > 0.

It remains to notice that φ5k+1(e1 − e2) is a multiple of e1 − e2. �

Lemma 3.7. The transformation Te0
has rank one.

Proof. We will use the notation introduced on Step 4. Let

Bk := (Zk + I(mk)) ∩ I(mk) and Sk := [φ5k+3(Bk)]5k+4 ⊂ [0]5k+3.

Then we have
T i

e0
Sk = [fiφ5k+3(t

(i) + Bk)]5k+4 ⊂ [fi]5k+3.

Hence T i
e0

Sk ∩ T i′

e0
Sk = ∅ if 0 ≤ i 6= i′ < #F5k+3. We claim that the sequence of

Te0
-towers {T i

e0
Sk | i = 0, . . . , #F5k+3− 1} approximates the whole σ-algebra B as

k →∞. Indeed (3-16) implies that

µ([fi]5k+3 \ T i
e0

Sk) ≤
[fi]5k+3

ak

for all i = 0, . . . , #F5k+3 − 1. It remains to make use of (3-4). �

Remark 3.8. Also, it is easy to see that T
#F5k+3

e0
Sk ⊂ [0]5k+3. This implies that

T
#F5k+3

e0
→ Id as k →∞.

Proof of Theorem 3.4. It follows from Remark 1.5, Lemmata 3.6 and 3.7 and the
fact that each rank-one transformation has a simple spectrum ([Ba], [Ch]) that
M(Ten+1

) = {n}. Then Lemma 3.3 yields that Ten+1
is weakly mixing and has

uniform rank n. Since #F5k+3 is divisible by n and en+1 = en
0 , we derive from

Remark 3.8 that Ten+1
is rigid. �
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4. (C, F )-cocycles and the spectral multiplicity for

compact group extensions of (C, F )-transformations

Our purpose in this section is to prove the following assertion.

Theorem 4.1. Given a subset M ⊂ N with 1 ∈ M , there exists a weakly mixing
transformation S such that M(S) = n ·M .

To prove this theorem we incorporate the main ideas from [G–S] and [KL] into
the construction outlined in Section 3.

Let T = (Tg)g∈G be a free measure preserving action of G on a standard proba-
bility space (X, B, µ). Denote by R the T -orbit equivalence relation on X.

Definition 4.2 [FM]. Let K be a compact metric Abelian group.

(i) A Borel map α : R → K is called a cocycle of R if there exists a µ-conull
subset X∗ ⊂ X such that

α(x, y)α(y, z) = α(x, z) whenever x ∼R y ∼R z and x, y, z ∈ X∗.

(ii) Two cocycles α, β : R → K are cohomologous if there exist a Borel map
φ : X → K and a conull subset X∗ ⊂ X such that

α(x, y) = φ(x)β(x, y)φ(y)−1 for all (x, y) ∈ R ∩ (X∗ ×X∗).

Denote by λK Haar measure on K. Then for each cocycle α : R → K, we can
define a G-action T α = (T α

g )g∈G on the product space (X ×K, µ× λK) by setting

Tα
g (x, k) := (Tgx, α(Tgx, x)k).

This action is called a compact group extension of T . Denote by Û : G 3 g 7→ Ûg the
associated (with T α) unitary representation of G on the space L2(X ×K, µ× λK).

Then we have a natural decomposition of this space into a countable sum of Û -
invariant subspaces:

L2(X ×K, µ× λK) =
⊕

η∈ bK

L2(X, µ)⊗ η.

Notice that the restriction of Û to L2(X, µ)⊗η is unitarily equivalent to the unitary
representation Uη : G 3 g 7→ Uη(g) on L2(X, µ) given by

(Uη(g)f)(x) := η(α(T−1
g x, x))f(T−1

g x), x ∈ X.

We will denote by U the restriction of U1
bK

to L2
0(X, µ). If K0 is a closed subgroup of

K then it determines a factor G-action T α,K0 = (T α,K0
g )g∈G of T α on the quotient

space (X ×K/K0, µ× λK/K0
) by

Tα,K0

g (x, kK0) = (Tgx, α(Tgx, x)kK0).

Let K := {η ∈ K̂ | η(h) = 1 for all h ∈ K0}. Then (up to a natural identification)

L2(X ×K/K0, µ× λK/K0
) =

⊕

η∈K

L2(X, µ)⊗ η

and L2(X, µ)⊗ η is now invariant under the unitary representation of G associated
with T α,K0 . Given a continuous group automorphism v of K, we set

O(v, K0) := {#({η, η ◦ v, η ◦ v2, . . .} ∩ K) | η ∈ K}.

The following algebraic lemma was proved in [KL].
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Lemma 4.3. Given a finite subset M ⊂ N with 1 ∈ M , there exist a compact
metric Abelian group K, a subgroup K0 ⊂ K and a continuous group automorphism
v : G→ G such that O(v, K0) = M .

Theorem 4.4. Let α : R → K be a cocycle, K0 a closed subgroup of K and v a
continuous group automorphism of K. If the following are satisfied:

(i) the unitary operators Uη(en+1) and Uη◦v(en+1) are unitarily equivalent for

each η ∈ K̂;
(ii) the measures of maximal spectral type of Uη(en+1) and Uη′(en+1) are disjoint

whenever η′ 6= η ◦ vi for any i ∈ Z;

(iii) the unitary operator Uη(e0) has a simple spectrum for each η ∈ K̂;
(iv) the unitary operators U(el+1 − e1) and Uη(el+1 − e1) have no non-trivial

fixed vectors for any 1 ≤ l < n with l | n and non-trivial η ∈ K̂

then M(T α,K0
en+1

) = n · O(v, K0).

Proof. It follows from (iii), (iv) and Remark 1.5 that the operator U(en+1) and the

operators Uη(en+1), η ∈ K̂ \ {1 bK}, have homogeneous spectra of multiplicity n. It
remains to apply (i) and (ii). �

Fix an arbitrary K and an automorphism v : K → K with #{η◦vi | i ∈ Z} <∞

for each η ∈ K̂. To derive Theorem 4.1 from Theorem 4.4 and Lemma 4.3 it remains
to construct a dynamical system (X, B, µ, T ) and a cocycle α : R → K satisfying
(i)–(iv) and such that the transformation T α

en+1
is weakly mixing.

Let C(G) stand for the center of G and let C(T ) denote the centralizer of T , i.e.

C(T ) := {S ∈ Aut0(X, µ) | STg = TgS for all g ∈ G}.

If S ∈ C(T ) then (S×S)R = R. Hence the map α◦S : R 3 (x, y) 7→ α(Sx, Sy) ∈ K
is a well defined cocycle of R.

To satisfy Theorem 4.4(i) we will use the following simple statement whose proof
we leave to the reader (cf. [G–M, Proposition 1]).

Lemma 4.5. Let S ∈ C(T ). If the cocycles v ◦ α and α ◦ S are cohomologous

then for each η ∈ K̂, the unitary representations Uη and Uη◦v of G are unitarily
equivalent.

To satisfy Theorem 4.4(ii) we—following [G–L]—will exploit the concept of θ-
weak mixing.

Definition 4.6. Let θ be a complex number, |θ| ≤ 1. A unitary operator W on a
Hilbert space H is called θ-weakly mixing if there exists a sequence m1 < m2 < · · ·
such that 〈W mih, h〉 → θ‖h‖2 as i→∞ for every h ∈ H.

If θ 6= 1 then W has no non-trivial fixed vectors. If |θ| 6= 1 then W has no
non-trivial eigenvectors (e.g. [G–L]).

Lemma 4.7 [G–L]. If two unitary operators Wi, i = 1, 2, are θi-weakly mixing
(along the same sequence) and θ1 6= θ2 then the measures of maximal spectral types
of W1 and W2 are disjoint.

Next, we recall that a sequence m1 < m2 < · · · is called rigid for a transformation
R ∈ Aut0(X, µ) if Rmi → Id in Aut0(X, µ). We will use the following criterion for
θ-weak mixing.
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Lemma 4.8 ([G–L, Proposition 5] and [KL, Proposition 1]). Let g ∈ G and let
m1 < m2 < · · · be a rigid sequence for Tg. If

∫
X

η(α(T−mi
g x, x)) dµ(x) → θ as

i→∞ then the unitary operator Vη(g) is θ-weakly mixing along (mi)
∞
i=1.

From now on (X, B, µ, T ) is the dynamical system constructed in Section 3. This
means that T is the (C, F )-action of G associated with the sequence (Cm+1, Fm)∞m=0

that was explicitly determined there. Below we will use extensively the notation
introduced in Section 3. As we already noted the T -orbit equivalence relation R
coincides with the tail equivalence relation on (a µ-conull subset of) X. We say
that two points x, x′ ∈ X are tail equivalent if there exists m > 0 such that

(4-1) x = (fm, cm+1, cm+2, . . . ) ∈ Xm and x′ = (f ′
m, cm+1, cm+2, . . . ) ∈ Xm.

Now we distinguish a special class of cocycles. Suppose that there are maps βm :
Fm → K and αm : Cm → K such that

(4-2) βm+1(fc) = βm(f)αm+1(c) for all f ∈ Fm, c ∈ Cm+1.

Take a point (x, x′) ∈ R. Then we can find m > 0 such that (4-1) holds. Now we
put

α(x, x′) := βm(fm)βm(f ′
m)−1.

It is easy to derive from (3-1) and (4-2) that α is a well defined cocycle of R with
values in K.

Definition 4.9. We call α the (C, F )-cocycle associated with (αm+1, βm)∞m=0.

It is an easy exercise for the reader to verify that the cohomology class of α is
determined completely by the sequence (αm)m≥0 alone. Hint: consider the restric-
tion of α to R∩ (X0 ×X0). Moreover, given any sequence of maps αm : Cm → K,
we can define the second sequence βm : Fm → K recurrently by setting

βm(d) :=

{
βm−1(f)αm(c), if d = fc with f ∈ Fm−1 and c ∈ Cm

1K , if d ∈ Fm \ (Fm−1Cm).

Then (4-2) is obviously satisfied. In this case we say that the corresponding (C, F )-
cocycle is associated with (αm)∞m=1.

From now on α is the (C, F )-cocycle associated with a sequence (αm)∞m=1. Our
purpose is to select this sequence in such a way to satisfy the conditions (i)–(iv)
from the statement of Theorem 4.4. We will do this step by step. The following
lemma shows how to satisfy (iii).

Lemma 4.10. If α5k+4(c) = 1K for all c ∈ C5k+4 and k ∈ N then the operator

Uη(e0) has a simple spectrum for each η ∈ K̂.

Proof. We first refer the reader to the proof of Lemma 3.7, where the subset Sk

was defined. Recall also that for any k, there exists an enumeration {fi | i =
0, . . . , #F5k+3 − 1} of F5k+3 such that if y ∈ Sk and y = (1G, c5k+4, c5k+5, . . . ) ∈
X5k+3 then

Te−i
0

y = (fi, c
′
5k+4, c5k+5, . . . )
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for some c′5k+4 ∈ C5k+4 depending on y and i. This and the condition of the lemma
imply that

α(Te−i
0

y, y) = β5k+5(fi)α5k+4(c
′
5k+4)α5k+4(c5k+4)

−1β5k+3(1G)−1

= β5k+5(fi)β5k+3(1G)−1.

Hence for each i = 0, . . . , #F5k+3 − 1 and η ∈ K̂, there exists a complex number
di ∈ T such that Uη(ei

0)χSk
= diχT

ei
0

Sk
. Therefore the linear span of the family

of vectors {Uη(ei
0)χSk

| 0 ≤ i < #F5k+3} in L2(X, µ) equals to the linear span of
{χT i

e0
Sk
| 0 ≤ i < #F5k+3− 1}. It remains to note that the Te0

-towers {T i
e0

Sk | 0 ≤

i < #F5k+3} approximate B as k →∞ by Lemma 3.7. �

Now we pass to (i) from the statement of Theorem 4.4. Without loss of generality
we may assume that the sequence (Fm)∞m=0 satisfies the following condition

(4-3)
#(FmF−1

m Fm+1 ∩ Fm+1)

#Fm+1
→ 1.

Now let z̄ = (zm)∞m=1 be a sequence of elements from C(G) such that

(4-4)

∞∑

m=1

#(Cm4zmCm)

#Cm
<∞.

For a positive integer m, we let

X z̄
m := (Fm ∩ z−1

1 · · · z
−1
m Fm)× (Cm+1 ∩ z−1

m+1Cm+1)× · · · ⊂ Xm.

It follows from (4-3) and (4-4) that #(z−1
1 · · · z

−1
m Fm ∩ Fm)/#Fm → 1 and hence

(4-5) X z̄
1 ⊂ X z̄

2 ⊂ · · · and µ(X z̄
m)→ 1 as m→∞.

For each x = (fm, cm+1, cm+2, . . . ) ∈ X z̄
m, we let

(4-6) Sz̄x := (z1 · · · zmfm, zm+1cm+1, zm+2cm+2, . . . ).

Then it is easy to verify that (4-6) defines a measure preserving transformation of
(X, B, µ). Moreover, Sz̄ ∈ C(T ).

Lemma 4.11. Suppose that (4-3) holds. Let

(4-7) C◦
m := {c ∈ Cm ∩ z−1

m Cm | αm(czm) = v(αm(c))}

If
∑∞

m=1 (1−#C◦
m/#Cm) <∞ then the cocycle α ◦ Sz̄ is cohomologous to v ◦ α.

Proof. By Borel-Cantelli lemma and (4-5) for µ-a.e. x ∈ X, there exists m > 0
such that x = (fm, cm+1, . . . ) ∈ Xm with fmz1 · · · zm ∈ Fm and ci ∈ C◦

i for all
i > m. We now set

φ(x) := βm(fmz1 · · · zm)v(βm(fm))−1.
18



The following calculation exploiting (4-2) and (4-7) shows that φ(x) is well defined:

βm+1(fmcm+1z1 · · · zm+1)v(βm+1(fm+1cm+1))
−1

= βm(fmz1 · · · zm)αm+1(cm+1zm+1)v(αm+1(cm+1))
−1v(βm(fm))−1

= βm(fmz1 · · · zm)v(βm(fm))−1.

Of course, φ is a Borel map from X to K. It remains to notice that if x, x′ ∈ Xm

and (4-1) is satisfied for the pair (x, x′) and moreover fmz1 · · · zm, f ′
mz1 · · · zm ∈ Fm

then

α ◦ Sz̄(x, x′) = α(Sz̄x, Sz̄x
′)

= βm(fmz1 · · · zm)βm(f ′
mz1 · · · zm)−1

= φ(x)v(βm(fm))v(βm(f ′
m))−1φ(x′)−1

= φ(x)v ◦ α(x, x′)φ(x′)−1.

�

Now (i) follows from Lemmata 4.11 and 4.5.
Our next step is to find a sufficient condition for (ii). We first state without

proof a simple sufficient condition for a sequence of integers to be rigid for Ten+1

(use the fact that en+1 ∈ C(G)).

Lemma 4.12. Let m1 < m2 < · · · and

#(emi

n+1Ci4Ci)

#Ci
→ 0 as i→∞.

Then the sequence (mi)i≥1 is rigid for Ten+1
.

For each η ∈ K̂, we denote by p(η) the smallest positive integer p such that
η ◦ vp = η. We also define a function τη ∈ L2(K, λK) by setting

τη :=
1

p(η)

p(η)−1∑

j=0

η ◦ vj .

Of course, ‖τη‖2 = 1. Denote by K̂2 the set of pairs (η, η′) ∈ K̂ × K̂ such that

η′ 6= η ◦ vj for any j ∈ Z. If (η, η′) ∈ K̂2 then τη ⊥ τη′ in L2(K, λK) and hence
there exists zη,η′ ∈ K with τη(zη,η′) 6= τη′(zη,η′). In particular, for each non-trivial

η ∈ K̂, there exists zη ∈ K such that τη(zη) 6= 1. This condition is enough to show
the ergodicity of T α

en+1
. We however want T α

en+1
to be weakly mixing. For this, we

claim that for each non-trivial η ∈ K̂, there are two points zη, z′η ∈ K such that

1

2
|τη(zη) + τη(z′η)| < 1.

Indeed this claim is obvious if p(η) = 1. If p(η) > 1 then there exists zη ∈ K
with |τη(zη)| < 1 and we put z′η := zη. Partition N into infinite subsets indexed as
follows

N = N t
⊔

1
bK
6=η∈ bK

Nη t
⊔

(η,η′)∈ bK2

Nη,η′.
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Now we refer the reader to Step 3 from Section 3, where the sets Lk were defined.

Recall that we tiled there a ‘large’ parallelepiped J(l
(k)
1 , . . . , l

(k)
n+1) with mutually

disjoint translations of a cube I(rkbk) up to 1
ak

. Then φ5k−2(Lk) was defined as

the corresponding set of ‘tiling centers’. Enlarging, if necessary, l
(k)
1 , . . . , l

(k)
n+1 we

may assume without loss of generality that Lk is rather regular, i.e. it has a shape
of ‘almost parallelepiped’. Therefore for each k ∈ N \ N , there exist a finite subset
Dk ⊂ H and positive integers pk, qk such that

#Dk is even;

ej
n+1Dk ∩ ej′

n+1Dk = ∅ whenever 0 ≤ j 6= j ′ < pkqk;

the set L′
k :=

qkpk−1⊔

j=0

ej
n+1Dk is contained in Lk;(4-8)

#(Lk \ L′
k)

#Lk
→ 0, pk →∞ as k →∞ along N \ N ;(4-9)

∑

k∈N\N

1

qk
<∞;(4-10)

if k ∈ Nη for a non-trivial η ∈ K̂ then p(η) | qk;(4-11)

if k ∈ Nη,η′ for a (η, η′) ∈ K̂2 then lcm(p(η), p(η′)) | qk.

Recall that C5k+3 := φ5k+2(Lk).

Lemma 4.13. For each k ∈ N \ N , we partition Dk into two subsets D′
k and D′′

k

of equal cardinality. If for each 0 ≤ j < qk and 0 ≤ i < pk, we have

α5k+3(φ5k+2(e
jpk+i
n+1 d)) =





vj(z−i
η ), if k ∈ Nη and d ∈ D′

k

vj(z′η
−i

), if k ∈ Nη and d ∈ D′′
k

vj(z−i
η,η′), if k ∈ Nη,η′

then

(a) for each non-trivial η ∈ K̂, the operator Uη(en+1) is 1
2
(τη(zη) + τη(z′η))-

weakly mixing.

(b) for each pair (η, η′) ∈ K̂2, the operators Uη(en1
) and Uη′(en1

) are τη(zη,η′)-
and τη′(zη,η′)-weakly mixing respectively along the same sequence.

Proof. Since Tφ5k+2(en+1) = T bkrk
en+1

, it follows from (4-8), (4-9) and Lemma 4.12 that

the sequence (bkrk)k∈N\N is rigid for Ten+1
. Now we set

C ′
5k+3 := {φ5k+2(e

jpk+i
n+1 d) | 0 ≤ j < qk, 0 < i < pk and d ∈ Dk} and

X ′
5k+2 := F5k+2 × C ′

5k+3 × C5k+4 × C5k+5 × · · · .

Then we have
µ(X ′

5k+2)

µ(X5k+2)
≥

#L′
k

#Lk
−

1

pk
.
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Moreover, if x ∈ X ′
5k+2 and x = (f5k+2, φ5k+2(e

jpk+i
n+1 d), . . . ) then T−1

φ5k+2(en+1)
x ∈

X5k+2. If k ∈ Nη then

(4-12) α(T−1
φ5k+2(en+1)

x, x) = vj(z−i+1)(vj(z−i))−1 = vj(z),

where z = zη if d ∈ D′
k or z = z′η if d ∈ D′′

k . Using (4-9), (4-12) and the fact
#D′

k = #D′′
k = 0.5#Dk we obtain

∫

X

η(α(T−1
φ5k+2(en+1)

x, x)) dµ(x) =

∫

X′

5k+2

η(α(T−1
φ5k+2(en+1)

x, x)) dµ(x) + o(1)

=
1

qk

qk−1∑

j=0

1

pk

pk−1∑

i=1

1

#Dk

( ∑

d∈D′

k

η(vj(zη)) +
∑

d∈D′′

k

η(vj(z′η))

)
+ o(1)

=
1

2qk

( qk−1∑

j=0

η(vj(zη)) +

qk−1∑

j=0

η(vj(z′η))

)
+ o(1),

where o(1) denotes a sequence that tends to 0 as k → ∞. Using (4-11) and then
passing to the limit along Nη we obtain

∫

X

η(α(T−1
φ5k+2(en+1)

x, x)) dµ(x)→
1

2
(τη(zη) + τη(z′η)).

Since any subsequence of a rigid sequence is rigid itself, (a) follows now from
Lemma 4.8.

The claim (b) is demonstrated in a similar way. �

Now we show how to satisfy (iv) of the statement of Theorem 4.4. For this, we
are going to adapt the ideas used in the proof of Lemma 4.13. First, we need a
sufficient condition for a sequence of integers to be rigid for Tel+1e−1

1

. Notice that

Lemma 4.12 stated for Ten+1
does not work for Tel+1e−1

1

since el+1e
−1
1 6∈ C(G).

However it is not difficult to modify the lemma as follows.

Lemma 4.14. Let g ∈ H, g 6= 1H . Let m1 < m2 < · · · and

max
0≤σ<n

#(e−σ
0 gmieσ

0Ci4Ci)

#Ci
→ 0 as i→∞.

Then the sequence (mi)i≥1 is rigid for Tg.

Proof. For each f ∈ Fi−1, there are h ∈ H and 0 ≤ σ < n such that f = heσ
0 . It

remains to notice that gmifc = fe−σ
0 gmieσ

0 c for each c ∈ Ci. �

It is easy to see that the elements Aκ(el+1e
−1
1 ), κ = 0, . . . , n− 2, are rationally

independent in H and An−1(el+1e
−1
1 ) =

∏n−2
κ=0 Aκ(el+1e

−1
1 )−1. Recall that the

group automorphism A : H → H was defined in Section 1. Partition N into
infinite subsets indexed as follows

N =
n−1⊔

l=1

⊔

1
bK
6=η∈ bK

N (l)
η .
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Without loss of generality we may assume that for each k ∈ N
(l)
η , there exist a finite

subset Dk ⊂ H and positive integers pk, qk such that the following are satisfied:

— the sets ej
n+1Dk

∏n−2
κ=0 Aκ(el+1e

−1
1 )iκ , 0 ≤ j < qk, 0 ≤ i0, . . . , in−2 < pk, are

pairwise disjoint;
— their union L′

k :=
⊔qk−1

j=0

⊔pk−1
i0,...,in−2=0 ej

n+1Dk

∏n−2
κ=0 Aκ(ei

l+1e
−1
1 )iκ is con-

tained in Lk;
— #(Lk \ L′

k)/#Lk → 0 and pk →∞ as k →∞ along N ;
— p(η) | qk and

(4-13)
∑

k∈N

1

qk
<∞.

Lemma 4.15. If for each k ∈ N
(l)
η , we have

α5k+3(φ5k+2(e
j
n+1d

n−2∏

κ=0

Aκ(el+1e
−1
1 )iκ)) = vj(z−i0−···−in−2

η )

for all 0 ≤ j < qk, 0 ≤ i0, . . . , in−2 < pk and d ∈ Dk then the operator Uη(el+1e
−1
1 )

is (n−1
n τη(zη) + 1

nτη(z−n+1
η ))-weakly mixing.

Proof. We consider only the case l = 1 (the other cases are similar).

Since Tφ5k+2(e2e−1

1
) = T bkrk

e2e−1

1

, it is easy to deduce from the definition of L′
k and

Lemma 4.14 that the sequence (bkrk)k∈N\N is rigid for Te2e−1

1

. Recall that F5k+2 =⊔
0≤σ<n eσ

0 I(rkbk). If x ∈ [eσ
0 I(rkbk)]5k+2 and

x = (f5k+2, φ5k+2(e
j
n+1d

n∏

κ=2

(eκe−1
κ−1)

ik), c5k+4, . . . )

with 0 < i2, . . . , in < pk−1 then T−1

φ5k+2(e2e−1

1
)
x = (f5k+2, c

′
5k+3, c5k+4, . . . ) ∈ X5k+2,

where

c′5k+3 =





φ5k+2(e
j
n+1de−1

2 e1

∏n
κ=2(eκe−1

κ−1)
ik), if σ = 0

φ5k+2(e
j
n+1de−1

2−σ+ne1−σ+n

∏n
κ=2(eκe−1

κ−1)
ik), if 2 ≤ σ < n

φ5k+2(e
j
n+1d

∏n
κ=2(eκe−1

κ−1)
ik+1), if σ = 1.

Hence

α(T−1

φ5k+2(e2e−1

1
)
x, x) =

{
vj(zη), if σ 6= 1

vj(z−n+1
η ), if σ = 1.

This yields

∫

X

η(α(T−1

φ5k+2(e2e−1

1
)
x, x)) dµ(x) =

∑

σ 6=1

∫

[eσ
0

I(rkbk)]5k+2

+

∫

[e0I(rkbk)]5k+2

+o(1)

=
n− 1

nqk

qk−1∑

j=0

η(vj(zη)) +
1

nqk

qk−1∑

j=0

η(vj(z−n+1
η )) + o(1)

=
n− 1

n
τη(zη) +

1

n
τη(z−n+1

η ) + o(1).
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It remains to pass to the limit when k →∞ along N
(2)
η and apply Lemma 4.8. �

Proof of Theorem 4.1. By Lemma 4.3, there exists a compact Polish Abelian group
K0 ⊂ K and a continuous group automorphism v : K → K such that O(v, K0) =
M . Let (X, B, µ, T ) be the dynamical system constructed in Section 3. To define
a sequence of maps αm : Cm → K we consider two cases. If m 6≡ 3 (mod 5) then
we set αm ≡ 1K . In the case m = 5k + 3 for some k ∈ N, we first define αm

on φ5k+2(L
′
k) ⊂ Cm via the formulae from the statements of Lemmata 4.13 and

4.15 and then extend αm in an arbitrary way to the rest of Cm. Let α denote the
(C, F )-cocycle associated with (αm)∞m=1. Now let

zm :=





1G, if m 6≡ 3 (mod 5)

φ5k+2(e
pk

n+1), if m = 5k + 3 for some k ∈ N \ N

φ5k+2(en+1), if m = 5k + 3 for some k ∈ N

and let z̄ := (zm)∞m=1. Since
∑∞

k=1
1
qk

< ∞ by (4-10) and (4-13), it follows from

the definition of α and Lemma 4.11 that the cocycle α ◦ Sz̄ is cohomologous to
v ◦ α. Hence Lemma 4.5 implies Theorem 4.4(i). Since τη(zη,η′) 6= τη′(zη,η′)

whenever (η, η′) ∈ K̂2, Lemmata 4.13(b) and 4.7 imply Theorem 4.4(ii). We
deduce Theorem 4.4(iii) from Lemma 4.10. Notice that the fact τη(zη) 6= 1 en-
tails n−1

n τη(zη) + 1
nτη(z−n+1

η ) 6= 1. Therefore Theorem 4.4(iv) follows from Lem-
mata 4.15 and 3.6. Thus all the conditions of Theorem 4.4 hold and we deduce
from it that M(T α,K0

en+1
) = n · O(v, K0) = n ·M . Since | 12(τη(zη) + τη(z′η))| 6= 1

for any non-trivial η ∈ K̂, it follows from Lemma 4.13(a) that the transformation
Tα

en+1
is weakly mixing. Hence T α,K0

en+1
is weakly mixing too. �
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Probab. Statist. (to appear).
[D–S] A. N. Dooley, V. Ya. Golodets, D. J. Rudolph and S. D. Sinel’shchikov, Non-Bernoulli

systems with completely positive entropy, preprint.
[FM] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neu-

mann algebras. I, Trans. Amer. Math. Soc. 234 (1977), 289–324.

23



[FW] M. Foreman and B. Weiss, An anti-classification theorem for ergodic measure preserving

transformations, J. Eur. Math. Soc. (JEMS) 6 (2004), 277–292.

[GlK] E. Glasner and J. L. King, A zero-one law for dynamical properties, Topological dynamics

and applications (Minneapolis, MN, 1995), 231–242, Contemp. Math., 215, Amer. Math.
Soc., Providence, RI, 1998.

[GS] V. Ya. Golodets and S. D. Sinel’shchikov, Complete positivity of entropy and non-

Bernoullicity for transformation groups, Colloq. Math. 84/85 (2000), 421–429.

[Go] G. R. Goodson, A survey of recent results in the spectral theory of ergodic dynamical

systems, J. Dynam. Control Systems 5 (1999), 173–226.
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