ON SUBRELATIONS OF ERGODIC MEASURED TYPE III EQUIVALENCE RELATIONS

Alexandre I. Danilenko

(Dedicated to the memory of Anzelm Iwanik)

ABSTRACT. Given a nested pair of measured ergodic discrete hyperfinite equivalence relations $S \subset \mathcal{R}$ of finite index, a classification of the inclusion up to orbit equivalence is discussed. In case of type *III* relations, the orbit equivalence classes of inclusions are completely classified in terms of a collection of a transitive permutation group Gon a finite set (whose cardinality = the index of $S \subset \mathcal{R}$), an compactification ergodic nonsingular \mathbb{R} -flow V and a homomorphism of G to the centralizer of V.

0. INTRODUCTION

We consider nonsingular discrete ergodic hyperfinite equivalence relations on a standard measure space. Our concern is to classify pairs of ergodic equivalence relation-subrelation $S \subset \mathcal{R}$ of finite index (which means that the \mathcal{R} -equivalence class of a.e. point consists of finitely many S-classes) up to orbit equivalence. This problem is closely related to the classification of subfactors in von Neumann algebras theory. For a single equivalence relation \mathcal{R} the problem was solved by H. Dye [Dy] and W. Krieger [Kr] in terms of the associated flows. After that, in case where \mathcal{R} is of type II_1 J. Feldman, C. Sutherland, and R. Zimmer [FSZ] provided a simple classification of ergodic \mathcal{R} -subrelations of finite index and normal \mathcal{R} -subrelations of an arbitrary index. (Remark that in an earlier paper [Ge] M. Gerber classified \mathcal{R} -subrelations of finite index in a different—but equivalent—context of finite extensions of ergodic probability preserving transformations.) These results were further extended in [Da1, §4] and [Da2], where quasinormal subrelations of type II_1 were introduced and studied.

Recently, T. Hamachi considered finite index subrelations of a type III_0 equivalence relation \mathcal{R} , introduced a system of invariants for orbit equivalence and claimed that it is complete [Ha]. However, in the present paper we construct orbitally non-equivalent subrelations of \mathcal{R} which are non-distinguishable by these invariants. Moreover, for an arbitrary type III equivalence relation \mathcal{R} , we provide another system of invariants for orbit equivalence of \mathcal{R} -subrelations of finite index and show that it is complete. It consists of a transitive subgroup G of permutations on a finite set (whose cardinality equals to the index), an ergodic nonsingular \mathbb{R} -flow Vand a homomorphism l of G to the centralizer of V such that the l(G)-quotient of Vis conjugate to the associated flow of \mathcal{R} . Roughly speaking, Hamachi's invariants "remember" only the range and the kernel of l but not l itself and that is why

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

The research was supported in part by INTAS 97-1843.

they are not complete. It should be noted that the argument of [Ha] uses common discrete decomposition for S and \mathcal{R} , a lacunary measure, etc., i.e. modified techniques from [Kr] (see also [HO]). Our approach is different. We apply more recent advances in orbit theory ([FSZ], [GS1], [GS2]) which result to a short argument.

The outline of the paper is as follows. Section 1 contains background on orbit theory. Section 2 begins with the "measurable index theory" and contains our main classification result—Theorem 6. In Section 3 we provide a counterexample to [Ha, Theorem 6.1]. In the final Section 4, the case of type III_{λ} equivalence relations, $0 < \lambda \leq 1$, is considered in more detail. It turns out that our classification invariants have simpler (more explicit) form in this case.

1. BACKGROUND ON ORBIT THEORY

Let (X, \mathfrak{B}, μ) be a standard probability space. Denote by Aut (X, μ) the group of its automorphisms, i.e. Borel one-to-one, onto, μ -nonsingular transformations. We do not distinguish between maps which agree on a μ -conull set. Given a Borel discrete μ -nonsingular equivalence relation $\mathcal{R} \subset X \times X$, we endow it with the induced Borel structure and σ -finite measure $\mu_{\mathcal{R}}$, $d\mu_{\mathcal{R}}(x,y) = d\mu(x)$, $(x,y) \in \mathcal{R}$. Write also

$$[\mathcal{R}] = \{ \gamma \in \operatorname{Aut}(X, \mu) \mid (\gamma x, x) \in \mathcal{R} \text{ for } \mu\text{-a.e.} x \in X \},\$$

$$N[\mathcal{R}] = \{ \theta \in \operatorname{Aut}(X, \mu) \mid (\theta x, \theta y) \in \mathcal{R} \text{ iff } (x, y) \in \mathcal{R} \ \mu_{\mathcal{R}}\text{-a.e.} \}$$

for the full group of \mathcal{R} and the normalizer of $[\mathcal{R}]$ respectively. For a countable subgroup Γ of Aut (X, μ) , we denote by \mathcal{R}_{Γ} the Γ -orbital equivalence relation. It is known that each γ is of the form \mathcal{R}_{Γ} [FM]. \mathcal{R} is called *hyperfinite* if it can be generated by a single automorphism. We assume from now on that \mathcal{R} is ergodic, i.e. every \mathcal{R} -saturated Borel subset is either μ -null or μ -conull.

Let G be a locally compact second countable (l.c.s.c.) group, 1_G the identity of G and λ_G the right Haar measure on G. A Borel map $\alpha : \mathcal{R} \to G$ is a (1-)cocycle of \mathcal{R} if

$$\alpha(x,y)\alpha(y,z) = \alpha(x,z)$$
 for a.e. $(x,y), (y,z) \in \mathcal{R}$.

Two cocycles, $\alpha, \beta : \mathcal{R} \to G$, are *cohomologous* ($\alpha \approx \beta$) if

$$\alpha(x,y) = \phi(x)^{-1}\beta(x,y)\phi(y) \quad \text{for } \mu_{\mathcal{R}}\text{-a.e. } (x,y),$$

where $\phi: X \to G$ is a Borel function (we call it a *transfer* function). A cocycle is a *coboundary* if it is cohomologous to a trivial one. The set of all \mathcal{R} -cocycles with values in G will be denoted by $Z^1(\mathcal{R}, G)$. Let $\mathcal{R} = \mathcal{R}_{\Gamma}$. There is a cocycle $\rho \in$ $Z^1(\mathcal{R}, G)$ such that $\rho(x, \gamma x) = \log \frac{d\mu \circ \gamma}{d\mu}(x)$ for all $\gamma \in \Gamma$ at a.e. $x \in X$. It is called the *Radon-Nikodym cocycle* of \mathcal{R} . Notice that it is independent on the particular choice of Γ . \mathcal{R} is of type II if ρ is a coboundary. Otherwise \mathcal{R} is of type III. Given $\alpha \in Z^1(\mathcal{R}, G)$, we denote by α_0 the "double" cocycle $\alpha \times \rho \in Z^1(\mathcal{R}, G \times \mathbb{R})$.

Remind that α and β are weakly equivalent if $\alpha \approx \beta \circ \theta$ for a transformation $\theta \in N[\mathcal{R}]$. Clearly, α and β are weakly equivalent if and only if the double cocycles α_0 and β_0 so are. Given $\alpha \in Z^1(\mathcal{R}, G)$, we define an equivalence relation $\mathcal{R}(\alpha)$ on $(X \times G, \mu \times \lambda_G)$ by setting $(x, g) \sim (y, h)$ if $(x, y) \in \mathcal{R}$ and $h = g\alpha(x, y)$. It is called the α -skew product extension of \mathcal{R} . If the $\mathcal{R}(\alpha)$ -partition is measurable (i.e. admits a measurable cross-section) then α is called *transient*. Otherwise α is recurrent. By

[Sc] α is recurrent if and only if α_0 so is. We say that α has dense range in G if $\mathcal{R}(\alpha)$ is ergodic. It follows that α is recurrent.

Next, we define a Borel action V_{α} of G on $(X \times G, \mu \times \lambda_G)$ as follows $V_{\alpha}(h)(x,g) = (x, hg)$. Since $V_{\alpha} \in N[\mathcal{R}(\alpha)]$, it induces an automorphism, say $W_{\alpha}(h)$, on the measure space of $\mathcal{R}(\alpha)$ -ergodic components. Moreover, $G \ni h \mapsto W_{\alpha}(h)$ is an ergodic G-action on this space. W_{α} is called the *Mackey action* of G associated to α . If two cocycles α and β are weakly equivalent, then they are both either transient or recurrent and the associated Mackey G-actions W_{α} and W_{β} are conjugate. We call \mathbb{R} -actions flows.

Theorem 1 (Golodets-Sinel'shchikov, [GS1], [GS2]).

- (i) Let \mathcal{R} be an ergodic hyperfinite equivalence relation on (X, μ) and $\alpha, \beta \in Z^1(\mathcal{R}, G)$ recurrent cocycles. If the Mackey $G \times \mathbb{R}$ -actions W_{α_0} and W_{β_0} are conjugate then α and β are weakly equivalent.
- (ii) Given an ergodic G × ℝ-action V, there exist a hyperfinite ergodic equivalence relation R on (X, μ) and a recurrent cocycle α ∈ Z¹(R, G) such that V is conjugate to W_{α₀}.

2. Subrelations of type III equivalence relations

Let S be an ergodic subrelation of \mathcal{R} . Then there exist $N \in \mathbb{N} \cup \{\infty\}$ and Borel functions $\{\phi_j : X \to X \mid 0 \leq j < N\}$ such that $\{S[\phi_j(x)] \mid 0 \leq j < N\}$ is a partition of $\mathcal{R}[x]$, where $\mathcal{R}[x]$ (resp. S[x]) stands for the \mathcal{R} - (resp. S-) class of x[FSZ]. N is called the *index* of S in \mathcal{R} and $\{\phi_j\}_j$ choice functions for S. From now on we shall assume that $\operatorname{ind} S := N$ is finite. Denote by $\Sigma(J)$ the full permutation group on the set $J := \{0, 1, \ldots, N-1\}$ and define a cocycle $\sigma \in Z^1(\mathcal{R}, \Sigma(J))$ by setting $\sigma(x, y)(i) = j$ if $S[\phi_i(y)] = S[\phi_j(x)]$. Notice that although choice functions are nonunique, the cohomology class of σ is independent of their particular choice and is an invariant of S. According to [FSZ] σ (or its cohomology class) is called the *index cocycle* of S. Given a cocycle $\alpha \in Z^1(\mathcal{R}, \Sigma(J))$, we put

$$\mathcal{R} \times_{\alpha} J = \{ (x, j, y, k) \in X \times J \times X \times J \mid (x, y) \in \mathcal{R} \text{ and } k = \sigma(x, y)[j] \}.$$

Clearly, $\mathcal{R} \times_{\alpha} J$ is a $(\mu \times \lambda_J)$ -nonsingular discrete equivalence relation on $X \times J$, where λ_J is a "counting" measure on J. We set

$$Z_{\text{ind}}^1 = \{ \alpha \in Z^1(\mathcal{R}, \Sigma(J)) \mid \mathcal{R} \times_{\alpha} J \text{ is ergodic } \}.$$

Two subrelations S_1, S_2 of \mathcal{R} are said to be \mathcal{R} -conjugate if $S_1 = (\theta \times \theta)S_2$ for a transformation $\theta \in N[\mathcal{R}]$. We remind some fundamental facts on subrelations from [FSZ]:

Theorem 2. Let \mathcal{R} be a discrete ergodic hyperfinite equivalence relation and $\mathcal{S} \subset \mathcal{R}$ an ergodic subrelation with $\operatorname{ind} \mathcal{S} = N$. Then every index cocycle of \mathcal{S} belongs to $Z^1_{\operatorname{ind}}(\mathcal{R}, \Sigma(J))$. Conversely, for each $\sigma \in Z^1_{\operatorname{ind}}(\mathcal{R}, \Sigma(J))$, there is an ergodic subrelation $\mathcal{S} \subset \mathcal{R}$ with $\operatorname{ind} \mathcal{S} = N$ and such that σ is an index cocycle of \mathcal{S} . Two ergodic subrelations $\mathcal{S}_1, \mathcal{S}_2$ of finite index in \mathcal{R} are \mathcal{R} -conjugate if and only if $\operatorname{ind} \mathcal{S}_1 = \operatorname{ind} \mathcal{S}_2$ and their index cocycles are weakly equivalent.

Thus the classification of ergodic \mathcal{R} -subrelations of index N up to the \mathcal{R} -conjugacy is equivalent to the classification of cocycles from $Z^1_{ind}(\mathcal{R}, \Sigma(J))$ up to the weak equivalence.

Theorem 3. Let $\sigma \in Z^1_{ind}(\mathcal{R}, \Sigma(J))$. Then there exists a transitive subgroup $G \subset \Sigma(J)$ and a cocycle $\sigma' : \mathcal{R} \to G$ with dense range in G such that $\sigma' \approx \sigma$. Two cocycles $\sigma_1 : \mathcal{R} \to G_1$ and $\sigma_2 : \mathcal{R} \to G_2$ with dense ranges in transitive subgroups G_1 and G_2 of $\Sigma(J)$ are weakly equivalent as elements of $Z^1(\mathcal{R}, \Sigma(J))$ if and only if there is $g \in \Sigma(J)$ such that $G_1 = gG_2g^{-1}$ and the cocycles σ_1 and $\mathrm{Ad}_g \circ \sigma_2$ are weakly equivalent as elements of $Z^1(\mathcal{R}, G_1)$, where Ad_g is the inner automorphism of $\Sigma(J)$ generated by g.

Proof. The existence of G and σ' with the required properties follows from [Zi, Corollary 3.8]. Remark that G acts transitively on J because of $\mathcal{R} \times_{\sigma} J$ (and hence $\mathcal{R} \times_{\sigma'} J$) is ergodic. The last statement of the theorem can be easily deduced from [Zi, the argument of Theorem 6.1], where it was proved in a slightly weaker form: with "cohomologous" instead of "weakly equivalent". Observe also that although the theorems from [Zi] to which we refer were stated there only in type II, i.e. measure preserving, case they hold also in type III case with the same argument. \Box

Remark that every cocycle of \mathcal{R} with values in a finite (or compact) group is recurrent. From Theorems 1 and 3 we deduce

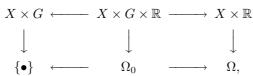
Corollary 4. Let $\sigma_1 : \mathcal{R} \to G_1$ and $\sigma_2 : \mathcal{R} \to G_2$ be two cocycles with dense ranges in transitive subgroups G_1 and G_2 of $\Sigma(J)$ respectively. Denote by $W_{(\sigma_1)_0}$ and $W_{(\sigma_2)_0}$ the Mackey $G_1 \times \mathbb{R}$ - and $G_2 \times \mathbb{R}$ -actions associated to the double cocycles $(\sigma_1)_0$ and $(\sigma_2)_0$ respectively. Then σ_1 and σ_2 are weakly equivalent as elements of $Z^1(\mathcal{R}, \Sigma(J))$ if and only if there is $g \in \Sigma(J)$ such that $G_1 = gG_2g^{-1}$ and the $G_2 \times \mathbb{R}$ -actions $W_{(\sigma_2)_0}$ and $W_{(\sigma_1)_0} \circ (\operatorname{Ad}_g \times \operatorname{Id})$ are conjugate.

Every measured $G \times \mathbb{R}$ -action W on a space (Ω, ν) determines a measured flow V acting on the same measure space and a group homomorphism l from G to the centralizer C(W) of W as follows: $V(t) = W(1_G, t), \ l(g) = W(g, 0)$ for all $t \in \mathbb{R}$ and $g \in G$. Remind that

$$C(W) = \{ R \in \operatorname{Aut}(\Omega, \nu) \mid RW(g, t) = W(g, t)R \text{ for all } t \in \mathbb{R} \text{ and } g \in G \}.$$

We call (V, l) the constituents of W.

Let an \mathcal{R} -cocycle σ take values and have dense range in a transitive subgroup $G \subset \Sigma(J)$. Denote by (V_{σ}, l_{σ}) the constituents of the Mackey $G \times \mathbb{R}$ -action W_{σ_0} associated to the double cocycle σ_0 . It is easy to verify (and well known) that the $l_{\sigma}(G)$ -quotient of V_{σ} , i.e. the restriction of V_{σ} to the subalgebra of l(G)-invariant measured subsets, is conjugate to W_{σ} . On the other hand, the $V_{\sigma}(\mathbb{R})$ -quotient of l_{σ} is a singleton, since σ has dense range in G and hence the associated Mackey action is trivial. It follows that V_{σ} is ergodic. We illustrate these with the commutative diagram



where $\{\bullet\}$, Ω_0 , and Ω stand for the spaces of the Mackey actions associated to σ , σ_0 , and the Radon-Nikodym cocycle of \mathcal{R} respectively; the vertical arrows represent the corresponding ergodic decompositions (see §1); the upper horizontal arrows are natural projections, and the lower arrows are determined by the universality of the "middle" ergodic decomposition.

Definition 5. Let V_i be an ergodic nonsingular flow on a measure space (Ω_i, ν_i) , G_i a transitive subgroup of $\Sigma(J)$, and $l_i : G_i \to C(V_i)$ a group homomorphism, i = 1, 2. We say that the triplets (V_1, G_1, l_1) and (V_2, G_2, l_2) are conjugate if there is a nonsingular isomorphism $\xi : \Omega_2 \to \Omega_1$ and $g \in \Sigma(J)$ such that $G_1 = gG_2g^{-1}$, $V_1(t) = \xi V_2(t)\xi^{-1}$ and $l_1(\operatorname{Ad}_g(g_2)) = \xi l_2(g_2)\xi^{-1}$ for all $t \in \mathbb{R}$ and $g_2 \in G_2$.

Now we are ready to record our main classification result.

Theorem 6. Let \mathcal{R} be an ergodic type III hyperfinite equivalence relation on (X, \mathfrak{B}, μ) , and W_{ρ} its associated flow (ρ stands for the Radon-Nikodym cocycle).

- (i) Given an ergodic subrelation of index N, we associate a triplet (V,G,l) consisting of an ergodic flow V, a transitive subgroup G ⊂ Σ(J) and a homomorphism l : G → C(V) such that the l(G)-quotient flow of V is conjugate to W_ρ.
- (ii) Conversely, given such a triplet, there exists an ergodic subrelation $S \subset \mathcal{R}$, ind S = N, whose associated triplet is as given.
- (iii) two ergodic *R*-subrelations of index N are *R*-conjugate if and only if their associated triplets are conjugate.

Proof. (i) follows from Theorems 2, 3 and the remark before Definition 5.

(ii) Given a triplet (V, G, l), we consider a $G \times \mathbb{R}$ -action W whose constituents are (V, l). By Theorem 1 there are an ergodic hyperfinite equivalence relation \mathcal{R}' on (X, \mathfrak{B}, μ) and a cocycle $\sigma' : \mathcal{R}' \to G$ such that W is conjugate to the Mackey $G \times \mathbb{R}$ -action associated to the double cocycle σ'_0 . It is clear that the associated flow of \mathcal{R}' is conjugate to the l(G)-quotient flow of V. By the assumptions on (V, G, l), this flow is conjugate to W_{ρ} . It follows from the Krieger theorem [Kr], [FM] that \mathcal{R} and \mathcal{R}' are orbit equivalent and hence we may identify them. Next, since V is ergodic, σ' has dense range in G. But G is a transitive subgroup of J-permutations and this implies $\sigma' \in Z^1_{ind}(\mathcal{R}, \Sigma(J))$. It remains to apply Theorem 2.

(iii) follows from Theorem 2 and Corollary 4. $\hfill\square$

3. On Hamachi's invariants

Let an \mathcal{R} -cocycle σ take values and have dense range in a transitive subgroup G of $\Sigma(J)$. Denote by H the G-stability group of 0, i.e. $H = \{g \in G \mid g[0] = 0\}$. Then $H \subset G$ is irreducible, i.e. H contains no nontrivial G-normal subgroups. If a subgroup $G_1 \subset \Sigma(J)$ is conjugate to G, then there exists $k \in \Sigma(J)$ such that $G_1 = kGk^{-1}$ and k[0] = 0 (remind that G is transitive). It follows that $H_1 = kHk^{-1}$, where H_1 is the G_1 -stability group of 0. Thus the conjugacy classes of transitive subgroups of $\Sigma(J)$ are in one-to-one correspondence with the isomorphism classes of irreducible pairs of finite groups $H \subset G$ such that the cardinality of G/H is N. (We say that two pairs $H \subset G$ and $H' \subset G'$ are *isomorphic* if there is an isomorphism of G onto G' taking H onto H'.)

Let (V, G, l) be a triplet as in Theorem 6. Denote by G_0 the kernel of l and by (Ω, ν) the measure space of W_{ρ} . Then V is a G/G_0 -extension of W_{ρ} , i.e. we may assume without loss in generality that V is defined on the space $(\Omega_0, \nu_0) :=$ $(\Omega \times G/G_0, \nu \times \lambda_{G/G_0})$ as follows

(*)
$$V(t)(\omega, h) = (W_{\rho}(t)\omega, h\alpha(\omega, t)),$$

where λ_{G/G_0} is Haar measure on G/G_0 and $\alpha : \Omega \times \mathbb{R}$ a measurable W-cocycle, i.e.

$$\alpha(\omega, t_1 + t_2) = \alpha(\omega, t_1)\alpha(W_{\rho}(t_1)\omega, t_2)$$

at a.e. $\omega \in \Omega$ for all $t_1, t_2 \in \mathbb{R}$. (Do not confuse cocycles of group actions with cocycles of equivalence relations.) Denote by $\pi : \Omega_0 \ni (\omega, h) \mapsto \omega \in \Omega$ the canonical projection. Then $\pi V(t) = W_{\rho}(t)\pi$ for all $t \in \mathbb{R}$. It is convenient to use the notation $\pi : V \xrightarrow{G/G_0} W_{\rho}$.

Remind that two group extensions $\pi: V \xrightarrow{G} W$ and $\pi': V' \xrightarrow{G'} W'$ are *conjugate* if there are nonsingular isomorphisms $\psi: (\Omega_0, \nu_0) \to (\Omega'_0, \nu'_0)$ and $\phi: (\Omega, \nu) \to (\Omega', \nu')$ such that $\phi W(t)\phi^{-1} = W'(t), \ \psi V(t)\psi^{-1} = V'(t)$, and $\psi \pi \psi^{-1} = \pi'$. This implies that G and G' are isomorphic.

Thus given a triplet (V, G, l), we associate a system $(G, H, G_0, \pi : V \xrightarrow{G/G_0} W_{\rho})$ consisting of an irreducible pair of finite groups $H \subset G$, a normal subgroup $G_0 \subset G$ and a G/G_0 -extension of W_{ρ} . We shall call it an \mathcal{H} -system (see [Ha]).

Definition 7 (see [Ha, Definition 6.1]). Two \mathcal{H} -systems $(G, H, G_0, \pi : V \xrightarrow{G/G_0} W_{\rho})$ and $(G', H', G'_0, \pi' : V' \xrightarrow{G'/G'_0} W_{\rho})$ are *equivalent* if there is an isomorphism $\rho : G \to G'$ such that $\rho(H) = H', \ \rho(G_0) = G'_0$ and the extensions π and π' are conjugate.

It is easy to see that if two triplets are conjugate then the associated \mathcal{H} -invariants are equivalent. It is claimed in [Ha] that the converse also holds which implies that \mathcal{R} -non-conjugate ergodic \mathcal{R} -subrelations of finite index have nonequivalent \mathcal{H} -invariants. Our purpose in this section is to construct a counterexample to this statement.

Example 8. Let Σ_3 be the permutation group of $\{0, 1, 2\}$ and A_5 the group of even permutations of $\{0, 1, \ldots, 5\}$. We put $H := (\Sigma_3)^5 \rtimes A_5$ and $G := H^2$. It is easy to verify that Z(H), the center of H, is trivial but Out H, the group of outer automorphisms of H, is nontrivial. Denote by $\Sigma(H)$ the permutation group of Hand consider a homomorphism $b : G \to \Sigma(H)$ as follows $b(h_1, h_2)[h] = h_1 h h_2^{-1}$, $h \in H$. Since the kernel of b is isomorphic to Z(H), b is an embedding. It is obvious that G (or, more precisely, b(G)) acts transitively on H. Denote by G_0 the G-stability group of 1_H . Clearly, $G_0 = \{(h, h) \mid h \in H\}$. Define an automorphism κ of G by setting $\kappa(h_1, h_2) = (h_1, \tau(h_2))$, where τ is a non-innner automorphism of H. We claim that κ can non be extended to an automorphism of $\Sigma(H)$. Suppose the contrary: there exists $k \in \Sigma(H)$ such that $\kappa(g) = kgk^{-1}$ for all $g \in G$. (Remind that every automorphism of $\Sigma(H)$ is inner.) Put $h_0 := k[1_H] \in H$. Then $\kappa(g)[h_0] = h_0$ for all $g \in G_0$. Since G acts transitively on H, we deduce that $\kappa(G_0) = g_0 G_0 g_0^{-1}$ for an element $g_0 \in G$ with $g_0[0] = h_0$. Thus $\bigcup_{h \in H}(h, \tau(h)) = \bigcup_{h \in H}(h, h_1hh_1^{-1})$ for some $h_1 \in H$. It follows that τ is an inner automorphism of H, a contradiction.

Let W be an ergodic properly non-transitive \mathbb{R} -flow on (Ω, ν) with trivial centralizer, i.e. $C(W) = W(\mathbb{R})$. Take a cocycle α of W with values in G such that the flow V determined by (*) with G_0 trivial is ergodic. Define a one-to-one homomorphism $l: G \to C(V)$ by setting

$$l(g')(\omega, g) = (\omega, g'g),$$
 for all $(\omega, g) \in \Omega \times G$.

and put $l_1 = l \circ \kappa$. We claim that the triplets (V, G, l) and (V, G, l_1) are nonconjugate. Suppose the contrary: there exist $\xi \in C(V)$ and $s \in \Sigma(H)$ such that

(**)
$$l \circ \operatorname{Ad}_{s}(g) = \xi l(\kappa(g))\xi^{-1}, \quad \text{for all } g \in G.$$

Since ξ passes through the natural projection $\Omega \times G \to \Omega$, it is well known (see, for example [Da1, Theorem 5.3 and §6]) that ξ is of the form $\xi(\omega, g) = (\zeta \omega, d(g)f(x))$ for a transformation $\zeta \in C(W)$, a *G*-automorphism *d*, and a measurable map $f: X \to G$. Hence $\zeta \in W(\mathbb{R})$. It follows from [Da1, Lemma 5.2 and §6] that *d* is inner. On the other hand, it is easy to verify that $\xi l(g)\xi^{-1} = l(d(g))$ for all $g \in G$. We deduce from (**) that $l \circ \mathrm{Ad}_s(g) = l \circ d \circ \kappa(g)$ and hence $\mathrm{Ad}_s = d \circ \kappa$. This contradicts to the fact that κ can not be extended to a $\Sigma(H)$ -automorphism.

Since W is nontransitive, it is the associated flow of a type III_0 ergodic hyperfinite equivalence relation \mathcal{R} . By Theorem 6 there are ergodic \mathcal{R} -subrelations \mathcal{S} and \mathcal{S}_1 of finite index whose associated triplets are (V, G, l) and (V, G, l_1) respectively. It follows that \mathcal{S} and \mathcal{S}_1 are \mathcal{R} -nonconjugate. On the other hand, \mathcal{H} -invariants associated to (V, G, l) and (V, G, l_1) are obviously identical and we are done.

4. Case of III_{λ} equivalence relations, $0 < \lambda \leq 1$

If \mathcal{R} is of type III_{λ} , $0 < \lambda \leq 1$, our invariants (see Theorem 6) can be described in a more apparent way.

We first consider the case where \mathcal{R} is of type III_1 . Then the associated flow W_{ρ} and any ergodic finite group extension V of W_{ρ} are trivial. Thus we deduce from Theorem 6

Corollary 9. The set of \mathcal{R} -conjugacy classes of ergodic \mathcal{R} -subrelations of index N are in one-to-one correspondence with the (finite) family of conjugacy classes of transitive subgroup of $\Sigma(J)$, $J = \{0, 1, \ldots, N-1\}$.

Now let \mathcal{R} be of type III_{λ} , $0 < \lambda < 1$. Then W_{ρ} is a transitive periodic flow with period $-\log \lambda$. If V is an ergodic finite group extension of W_{ρ} , then there is a non-negative integer n such that V is a periodic flow with the period $-n\log \lambda$ and V is a $\mathbb{Z}/n\mathbb{Z}$ -extension of W.

Definition 10. A collection (n, G, l) consisting of a positive integer n, a transitive subgroup $G \subset \Sigma(J)$ and an onto homomorphism $l : G \to \mathbb{Z}/n\mathbb{Z}$ will be called a λ -triplet. Two λ -triplets (n, G, l) and (n', G', l') are conjugate if n = n' and there is $s \in \Sigma(J)$ with $G = sG's^{-1}$ and $l \circ \mathrm{Ad}_s = l'$.

It is easy to deduce from Theorem 6

Corollary 11. The set of \mathcal{R} -conjugacy classes of ergodic \mathcal{R} -subrelations of index N are in one-to-one correspondence with the (finite) family of conjugacy classes of λ -triplets.

References

- [Da1] A. I. Danilenko, Comparison of cocycles of measured equivalence relation and lifting problems, Ergod. Th. and Dynam. Sys. 18 (1998), 125–151.
- [Da2] _____, Quasinormal subrelations of ergodic equivalence relations, Proc. Amer. Math. Soc. 126 (1998), 3361–3370.
- [Dy] H. Dye, On groups of measure preserving transformations. I, Amer. J. Math. 81 (1959), 119–159.
- [Ge] M. Gerber, Factor orbit equivalence and classification of finite extensions of ergodic transformations, Isr. J. Math. 57 (1987), 28–48.
- [GS1] V. Ya. Golodets and S. D. Sinelshchikov, Amenable ergodic action of groups and images of cocycles, Soviet. Math. Dokl. 41 (1990), 523–525.
- [GS2] _____, Classification and structure of cocycles of amenable ergodic equivalence relation, J. Funct. Anal. 121 (1994), 455-485.

- [Ha] T. Hamachi, Suborbits and group extensions of flows, Isr. J. Math. 100 (1997), 249–283.
- [HO] T. Hamachi and M. Osikawa, Ergodic groups of automorphisms and Krieger's theorems, Sem. Math. Sci., Keio University, Vol. 3, 1981.
- [Kr] W. Krieger, On ergodic flows and isomorphism of factors, Math. Ann. 223 (1976), 19–70.
- [FM] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras I, Trans. Amer. Math. Soc. 234 (1977), 289–324.
- [FSZ] J. Feldman, C. Sutherland and R. Zimmer, Subrelations of ergodic equivalence relations, Ergod. Th. and Dynam. Sys. 9 (1989), 239–269.
- [Sc] K. Schmidt, On recurrence, Z. Wahrshcheinlichkeitstheorie Verw. Geb. 68 (1984), 75–95.
- [Zi] R.Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), 373–409.

DEPARTMENT OF MECHANICS AND MATHEMATICS, KHARKOV STATE UNIVERSITY, FREEDOM SQUARE 4, KHARKOV, 310077, UKRAINE

E-mail address: danilenko@ilt.kharkov.ua