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ABSTRACT. Given a nested pair of measured ergodic discrete hyperfinite equivalence
relations S C R of finite index, a classification of the inclusion up to orbit equivalence
is discussed. In case of type II1 relations, the orbit equivalence classes of inclusions
are completely classified in terms of a collection of a transitive permutation group G
on a finite set (whose cardinality = the index of S C R), an compactification ergodic
nonsingular R-flow V' and a homomorphism of G to the centralizer of V.

0. INTRODUCTION

We consider nonsingular discrete ergodic hyperfinite equivalence relations on a
standard measure space. Our concern is to classify pairs of ergodic equivalence
relation-subrelation & C R of finite index (which means that the R-equivaslence
class of a.e. point consists of finitely many S-classes) up to orbit equivalence. This
problem is closely related to the classification of subfactors in von Neumann alge-
bras theory. For a single equivalence relation R the problem was solved by H. Dye
[Dy] and W. Krieger [Kr] in terms of the associated flows. After that, in case where
R is of type I'T; J. Feldman, C. Sutherland, and R. Zimmer [FSZ] provided a simple
classification of ergodic R-subrelations of finite index and normal R-subrelations
of an arbitrary index. (Remark that in an earlier paper [Ge] M. Gerber classi-
fied R-subrelations of finite index in a different—but equivalent—context of finite
extensions of ergodic probability preserving transformations.) These results were
further extended in [Dal, §4] and [Da2], where quasinormal subrelations of type
11, were introduced and studied.

Recently, T. Hamachi considered finite index subrelations of a type I11y equiva-
lence relation R, introduced a system of invariants for orbit equivalence and claimed
that it is complete [Ha]. However, in the present paper we construct orbitally
non-equivalent subrelations of R which are non-distinguishable by these invariants.
Moreover, for an arbitrary type I11 equivalence relation R, we provide another sys-
tem of invariants for orbit equivalence of R-subrelations of finite index and show
that it is complete. It consists of a transitive subgroup G of permutations on a
finite set (whose cardinality equals to the index), an ergodic nonsingular R-flow V'
and a homomorphism [ of G to the centralizer of V such that the [(G)-quotient of V'
is conjugate to the associated flow of R. Roughly speaking, Hamachi’s invariants
“remember” only the range and the kernel of [ but not [ itself and that is why
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they are not complete. It should be noted that the argument of [Ha| uses common
discrete decomposition for § and R, a lacunary measure, etc., i.e. modified tech-
niques from [Kr] (see also [HO]). Our approach is different. We apply more recent
advances in orbit theory ([FSZ], [GS1], [GS2]) which result to a short argument.

The outline of the paper is as follows. Section 1 contains background on orbit
theory. Section 2 begins with the “measurable index theory” and contains our main
classification result—Theorem 6. In Section 3 we provide a counterexample to [Ha,
Theorem 6.1]. In the final Section 4, the case of type I1I) equivalence relations,
0 < A <1, is considered in more detail. It turns out that our classification invariants
have simpler (more explicit) form in this case.

1. BACKGROUND ON ORBIT THEORY

Let (X,B, 1) be a standard probability space. Denote by Aut (X, ) the group
of its automorphisms, i.e. Borel one-to-one, onto, p-nonsingular transformations.
We do not distinguish between maps which agree on a u-conull set. Given a Borel
discrete p-nonsingular equivalence relation R C X x X, we endow it with the
induced Borel structure and o-finite measure pr, dug(z,y) = du(z), (z,y) € R.
Write also

[R] = {y € Aut(X, p) | (yz,z) € R for p-a.ex € X},
N[R| ={0 € Aut(X, u) | (0z,0y) € R iff (x,y) € R pur-a.e. }

for the full group of R and the normalizer of [R] respectively. For a countable
subgroup I' of Aut(X, ), we denote by Rr the I'-orbital equivalence relation. It
is known that each « is of the form Rr [FM]. R is called hyperfinite if it can be
generated by a single automorphism. We assume from now on that R is ergodic,
i.e. every R-saturated Borel subset is either p-null or p-conull.

Let G be a locally compact second countable (l.c.s.c.) group, 1 the identity of
G and A\g the right Haar measure on G. A Borel map o : R — G is a (1-)cocycle
of R if

a(z,y)aly, z) = a(z, 2) for a.e. (z,v),(y,2) € R.

Two cocycles, a, 3 : R — G, are cohomologous (« = (3) if

Oé(l‘, y) = (b(l')_lﬁ(ﬂf, y)¢(y) for ur-a.e. (x’ y)v

where ¢ : X — G is a Borel function (we call it a transfer function). A cocycle is
a coboundary if it is cohomologous to a trivial one. The set of all R-cocycles with
values in G will be denoted by Z!(R,G). Let R = Rr. There is a cocycle p €
ZY(R,G) such that p(z,vyz) = log d‘é;“’ (z) for all v € T at a.e. x € X. It is called
the Radon-Nikodym cocycle of R. Notice that it is independent on the particular
choice of I'. R is of type I if p is a coboundary. Otherwise R is of type I11. Given
a € ZYR,G), we denote by ap the “double” cocycle a x p € ZH(R,G x R).
Remind that o and 3 are weakly equivalent if o =~ (3 o 6 for a transformation
6 € N[R]. Clearly, @ and § are weakly equivalent if and only if the double cocycles
ap and By so are. Given a € Z}(R,G), we define an equivalence relation R(a) on
(X X G, px Ag) by setting (x,g) ~ (y, h) if (z,y) € R and h = ga(x,y). It is called
the a-skew product extension of R. If the R(«)-partition is measurable (i.e. admits
a measurable cross-section) then « is called ¢ransient. Otherwise « is recurrent. By
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[Sc] « is recurrent if and only if g so is. We say that « has dense range in G if
R(a) is ergodic. It follows that « is recurrent.

Next, we define a Borel action V,, of G on (X x G, ux Ag) as follows V, (h)(z, g) =
(x,hg). Since V, € N[R(«)], it induces an automorphism, say W,(h), on the
measure space of R(«)-ergodic components. Moreover, G 3 h — W,/(h) is an
ergodic G-action on this space. W, is called the Mackey action of G associated to
a. If two cocycles o and (3 are weakly equivalent, then they are both either transient
or recurrent and the associated Mackey G-actions W, and Wy are conjugate. We
call R-actions flows.

Theorem 1 (Golodets-Sinel’shchikov, [GS1], [GS2]).

(i) Let R be an ergodic hyperfinite equivalence relation on (X, u) and o, 3 €
ZYR, Q) recurrent cocycles. If the Mackey G x R-actions Wo, and Wi,
are conjugate then o and 3 are weakly equivalent.

(ii) Given an ergodic G x R-action V', there exist a hyperfinite ergodic equiva-
lence relation R on (X, p) and a recurrent cocycle o € Z'(R,G) such that
V' is conjugate to W, .

2. SUBRELATIONS OF TYPE I/l EQUIVALENCE RELATIONS

Let S be an ergodic subrelation of R. Then there exist N € NU {oco} and Borel
functions {¢; : X — X | 0 < j < N} such that {S[¢;(z)] | 0 < j < N} is a
partition of R[x], where R[z] (resp. S[z]) stands for the R- (resp. S-) class of x
[FSZ]. N is called the index of S in R and {¢,}; choice functions for S. From now
on we shall assume that ind S := N is finite. Denote by X(J) the full permutation
group on the set J := {0,1,..., N — 1} and define a cocycle o € Z}(R,%(J)) by
setting o(x,y)(2) = j if S[¢i(y)] = S[¢;(x)]. Notice that although choice functions
are nonunique, the cohomology class of ¢ is independent of their particular choice
and is an invariant of S. According to [FSZ] o (or its cohomology class) is called
the index cocycle of S. Given a cocycle a € Z1(R,X(J)), we put

Rxod={(x,5,y,k) e X x I x X xJ|(z,y) € R and k = o(x,y)[j]}

Clearly, R X J is a (u x Aj)-nonsingular discrete equivalence relation on X x J,
where A\; is a “counting” measure on J. We set

Zly={a e Z"R,%(J)) | R x4 J is ergodic }.

Two subrelations S1,S82 of R are said to be R-conjugate if S; = (0 x 6)Ss for a
transformation § € N[R]. We remind some fundamental facts on subrelations from
[FSZ]:

Theorem 2. Let R be a discrete ergodic hyperfinite equivalence relation and S C R
an ergodic subrelation with indS = N. Then every index cocycle of S belongs
to ZL (R, X(J)). Conversely, for each o € Z} (R,%(J)), there is an ergodic
subrelation S C R with indS = N and such that o is an index cocycle of S.
Two ergodic subrelations 81,82 of finite index in R are R-conjugate if and only if
ind §1 = ind S and their index cocycles are weakly equivalent.

Thus the classification of ergodic R-subrelations of index N up to the R-con-
jugacy is equivalent to the classification of cocycles from Z. (R, %(J)) up to the
weak equivalence.
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Theorem 3. Let 0 € Z} (R, (J). Then there ezists a transitive subgroup G C
Y(J) and a cocycle o' : R — G with dense range in G such that o' ~ o. Two
cocycles 01 : R — Gy and 09 : R — G4 with dense ranges in transitive subgroups
G1 and Go of X(J) are weakly equivalent as elements of Z'(R,%(J)) if and only
if there is g € X(J) such that G1 = gG2g~" and the cocycles o1 and Ad, o o are
weakly equivalent as elements of Z*(R,G1), where Ad, is the inner automorphism
of 3(J) generated by g.

Proof. The existence of G and ¢’ with the required properties follows from [Zi,
Corollary 3.8]. Remark that G acts transitively on J because of R x,, J (and hence
R X, J) is ergodic. The last statement of the theorem can be easily deduced
from [Zi, the argument of Theorem 6.1], where it was proved in a slightly weaker
form: with “cohomologous” instead of “weakly equivalent”. Observe also that
although the theorems from [Zi] to which we refer were stated there only in type
I, i.e. measure preserving, case they hold also in type I1I case with the same
argument. [

Remark that every cocycle of R with values in a finite (or compact) group is
recurrent. From Theorems 1 and 3 we deduce

Corollary 4. Let o1 : R — G1 and o3 : R — G be two cocycles with dense ranges
in transitive subgroups G1 and Gy of X(J) respectively. Denote by W), and
Wisy), the Mackey G1 x R- and G2 x R-actions associated to the double cocycles
(01)o and (o2)o respectively. Then o1 and o9 are weakly equivalent as elements
of ZY(R,%(J)) if and only if there is g € X(J) such that G1 = gGag™' and the
G2 x R-actions W(4,), and W, o (Ady x Id) are conjugate.

Every measured G x R-action W on a space (2, v) determines a measured flow
V' acting on the same measure space and a group homomorphism [ from G to the
centralizer C(W) of W as follows: V(t) = W(lg,t), I(g) = W(g,0) for all t € R
and g € G. Remind that

CW)={R e Awt(Q,v) | RW(g,t) = W(g,t)R for all t € R and g € G}.

We call (V1) the constituents of W.

Let an R-cocycle o take values and have dense range in a transitive subgroup
G C X(J). Denote by (V,,l,) the constituents of the Mackey G x R-action W,
associated to the double cocycle 0. It is easy to verify (and well known) that the
lo(G)-quotient of V,, i.e. the restriction of V, to the subalgebra of I(G)-invariant
measured subsets, is conjugate to W,,. On the other hand, the V, (R)-quotient of I,
is a singleton, since ¢ has dense range in G and hence the associated Mackey action
is trivial. It follows that V, is ergodic. We illustrate these with the commutative

diagram
XxG ——— X xGxR —— X xR

l l l

{o} — Qo —

where {o}, 2, and Q stand for the spaces of the Mackey actions associated to o,
09, and the Radon-Nikodym cocycle of R respectively; the vertical arrows represent
the corresponding ergodic decompositions (see §1); the upper horizontal arrows are
natural projections, and the lower arrows are determined by the universality of the
“middle” ergodic decomposition.
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Definition 5. Let V; be an ergodic nonsingular flow on a measure space (£2;,v;),
G; a transitive subgroup of X(J), and I; : G; — C(V;) a group homomorphism,
1 =1,2. We say that the triplets (V1,G1,11) and (Va, Ga,l3) are conjugate if there
is a nonsingular isomorphism ¢ : Qy — € and g € X(J) such that G; = gGog~ !,
Vi(t) = Vo ()¢ and 11 (Ady(g2)) = Ela(g2)¢ ! for all t € R and g2 € Go.

Now we are ready to record our main classification result.

Theorem 6. Let R be an ergodic type II1I hyperfinite equivalence relation on
(X,B, 1), and W, its associated flow (p stands for the Radon-Nikodym cocycle).

(i) Given an ergodic subrelation of index N, we associate a triplet (V,G,I)
consisting of an ergodic flow V', a transitive subgroup G C X(J) and a
homomorphism | : G — C(V) such that the [(G)-quotient flow of V is
conjugate to W,,.

(ii) Conversely, given such a triplet, there exists an ergodic subrelation S C R,
indS = N, whose associated triplet is as given.

(iii) two ergodic R-subrelations of index N are R-conjugate if and only if their
associated triplets are conjugate.

Proof. (i) follows from Theorems 2, 3 and the remark before Definition 5.

(ii) Given a triplet (V, G, 1), we consider a G x R-action W whose constituents
are (V,1). By Theorem 1 there are an ergodic hyperfinite equivalence relation R’
on (X,%B, 1) and a cocycle ¢/ : R’ — G such that W is conjugate to the Mackey
G x R-action associated to the double cocycle oy,. It is clear that the associated flow
of R’ is conjugate to the I(G)-quotient flow of V. By the assumptions on (V, G, 1),
this flow is conjugate to W,. It follows from the Krieger theorem [Kr], [FM] that
R and R’ are orbit equivalent and hence we may identify them. Next, since V is
ergodic, o’ has dense range in G. But G is a transitive subgroup of J-permutations
and this implies ¢’ € Z! ,(R,%(J)). It remains to apply Theorem 2.

(iil) follows from Theorem 2 and Corollary 4. O

3. ON HAMACHI'S INVARIANTS

Let an R-cocycle o take values and have dense range in a transitive subgroup
G of ¥(J). Denote by H the G-stability group of 0, i.e. H = {g € G | g[0] = 0}.
Then H C G is irreducible, i.e. H contains no nontrivial G-normal subgroups.
If a subgroup G; C X(J) is conjugate to G, then there exists k € 3(J) such
that G; = kGk~! and k[0] = 0 (remind that G is transitive). It follows that
H, = kHEk™', where H; is the G;-stability group of 0. Thus the conjugacy classes of
transitive subgroups of 3(J) are in one-to-one correspondence with the isomorphism
classes of irreducible pairs of finite groups H C G such that the cardinality of G/H
is N. (We say that two pairs H C G and H' C G’ are isomorphic if there is an
isomorphism of G onto G’ taking H onto H'.)

Let (V,G,l) be a triplet as in Theorem 6. Denote by Gy the kernel of [ and
by (€,v) the measure space of W,. Then V is a G/Gy-extension of W, i.e. we
may assume without loss in generality that V' is defined on the space (Qo,19) :=
Q2 x G/Go,v x Ag/q,) as follows

* V(t)(w, h) = (W,(t)w, ha(w,t)),
where A/, is Haar measure on G//Go and o : Q x R a measurable W-cocycle, i.e.

a(w,t; +t2) = aw, t1)a(W,(t1)w, t2)
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at a.e. w € Q for all ¢1,t5 € R. (Do not confuse cocycles of group actions with
cocycles of equivalence relations.) Denote by 7 : Qg 3 (w, h) — w € Q the canonical

projection. Then 7V (t) = W, (t)r for all t € R. It is convenient to use the notation
.V G1G, W,,.

Remind that two group extensions 7 : V/ CoWwoand ' V! S W are conjugate
if there are nonsingular isomorphisms ¢ : (Qg,v9) — (Q,14) and ¢ : (Q,v) —
(¥, v') such that oW (t)p=t = W'(t), YV ()=t = V'(t), and ymp~1 = 7. This
implies that G and G’ are isomorphic.

Thus given a triplet (V, G, 1), we associate a system (G, H,Go,7:V C1Go, W,)

consisting of an irreducible pair of finite groups H C G, a normal subgroup Gy C G
and a G/Go-extension of W,. We shall call it an H-system (see [Hal).

Definition 7 (see [Ha, Definition 6.1]). Two H-systems (G, H,Go, 7 : V GG,
W,) and (G',H',Gy, " : V' GG, W,) are equivalent if there is an isomorphism

p: G — G such that p(H) = H', p(Goy) = G|, and the extensions 7w and 7’ are
conjugate.

It is easy to see that if two triplets are conjugate then the associated H-invariants
are equivalent. It is claimed in [Ha] that the converse also holds which implies
that R-non-conjugate ergodic R-subrelations of finite index have nonequivalent H-
invariants. Our purpose in this section is to construct a counterexample to this
statement.

Ezample 8. Let X3 be the permutation group of {0, 1,2} and A5 the group of even
permutations of {0,1,...,5}. We put H := (X3)° x A5 and G := H?. It is easy
to verify that Z(H), the center of H, is trivial but Out H, the group of outer
automorphisms of H, is nontrivial. Denote by X(H) the permutation group of H
and consider a homomorphism b : G — X(H) as follows b(hi, ha)[h] = hihhy?,
h € H. Since the kernel of b is isomorphic to Z(H), b is an embedding. It is
obvious that G (or, more precisely, b(G)) acts transitively on H. Denote by G the
G-stability group of 1. Clearly, Go = {(h,h) | h € H}. Define an automorphism &
of G by setting k(h1, ha) = (h1,7(ha)), where T is a non-innner automorphism of H.
We claim that & can non be extended to an automorphism of X(H). Suppose the
contrary: there exists k € ¥(H) such that x(g) = kgk™! for all g € G. (Remind that
every automorphism of X(H) is inner.) Put hg := k[l1y] € H. Then (g)[ho] = ho
for all g € Gy. Since G acts transitively on H, we deduce that x(Gp) = gOGogo_l
for an element gy € G with go[0] = ho. Thus U,cp(h, 7(h)) = Upep (h, hihhi!)
for some hy; € H. It follows that 7 is an inner automorphism of H, a contradiction.

Let W be an ergodic properly non-transitive R-flow on (2, v) with trivial central-
izer, i.e. C(W) = W(R). Take a cocycle a of W with values in G such that the flow
V determined by (*) with Gy trivial is ergodic. Define a one-to-one homomorphism
l:G— C(V) by setting

(g )(w,9) = (w,9'9), for all (w,g) € 2 x G,

and put Iy = l o k. We claim that the triplets (V,G,l) and (V,G,l;) are non-
conjugate. Suppose the contrary: there exist £ € C(V) and s € X(H) such that

(**) 1o Ady(g) = &l(k(g))E T, for all g € G.
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Since & passes through the natural projection Q x G — €, it is well known (see, for
example [Dal, Theorem 5.3 and §6]) that £ is of the form &(w, g) = (Cw, d(g) f(z))
for a transformation ¢ € C(W), a G-automorphism d, and a measurable map
f:X — G. Hence ¢ € W(R). It follows from [Dal, Lemma 5.2 and §6] that d is
inner. On the other hand, it is easy to verify that &l(g)¢é~! = I(d(g)) for all g € G.
We deduce from (**) that [ o Ads(g) =l o do k(g) and hence Ad, = d o k. This
contradicts to the fact that x can not be extended to a X(H )-automorphism.
Since W is nontransitive, it is the associated flow of a type 111, ergodic hyperfi-
nite equivalence relation R. By Theorem 6 there are ergodic R-subrelations S and
S of finite index whose associated triplets are (V, G,1) and (V, G, ;) respectively.
It follows that S and S; are R-nonconjugate. On the other hand, H-invariants
associated to (V,G,1) and (V, G, 1) are obviously identical and we are done.

4. CASE OF III), EQUIVALENCE RELATIONS, 0 < A <1

If R is of type II1,, 0 < A < 1, our invariants (see Theorem 6) can be described
in a more apparent way.

We first consider the case where R is of type I11;. Then the associated flow W,
and any ergodic finite group extension V' of W, are trivial. Thus we deduce from
Theorem 6

Corollary 9. The set of R-conjugacy classes of ergodic R-subrelations of index
N are in one-to-one correspondence with the (finite) family of conjugacy classes of
transitive subgroup of X(J), J ={0,1,...,N — 1}.

Now let R be of type III), 0 < A < 1. Then W, is a transitive periodic flow
with period —log A. If V' is an ergodic finite group extension of W,, then there is a
non-negative integer n such that V is a periodic flow with the period —nlog A and
V is a Z/nZ-extension of W.

Definition 10. A collection (n,G,1) consisting of a positive integer n, a transitive
subgroup G C X(J) and an onto homomorphism [ : G — Z/nZ will be called a
A-triplet. Two A-triplets (n,G,l) and (n’,G',l") are conjugate if n = n’ and there
is s € X(J) with G = sG’'s™! and l o Ads =1'.

It is easy to deduce from Theorem 6

Corollary 11. The set of R-conjugacy classes of ergodic R-subrelations of index
N are in one-to-one correspondence with the (finite) family of conjugacy classes of
A-triplets.
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