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Abstract. Given a nested pair of measured ergodic discrete hyperfinite equivalence
relations S ⊂ R of finite index, a classification of the inclusion up to orbit equivalence
is discussed. In case of type III relations, the orbit equivalence classes of inclusions
are completely classified in terms of a collection of a transitive permutation group G
on a finite set (whose cardinality = the index of S ⊂ R), an compactification ergodic
nonsingular R-flow V and a homomorphism of G to the centralizer of V .

0. Introduction

We consider nonsingular discrete ergodic hyperfinite equivalence relations on a
standard measure space. Our concern is to classify pairs of ergodic equivalence
relation-subrelation S ⊂ R of finite index (which means that the R-equivaslence
class of a.e. point consists of finitely many S-classes) up to orbit equivalence. This
problem is closely related to the classification of subfactors in von Neumann alge-
bras theory. For a single equivalence relation R the problem was solved by H. Dye
[Dy] and W. Krieger [Kr] in terms of the associated flows. After that, in case where
R is of type II1 J. Feldman, C. Sutherland, and R. Zimmer [FSZ] provided a simple
classification of ergodic R-subrelations of finite index and normal R-subrelations
of an arbitrary index. (Remark that in an earlier paper [Ge] M. Gerber classi-
fied R-subrelations of finite index in a different—but equivalent—context of finite
extensions of ergodic probability preserving transformations.) These results were
further extended in [Da1, §4] and [Da2], where quasinormal subrelations of type
II1 were introduced and studied.

Recently, T. Hamachi considered finite index subrelations of a type III0 equiva-
lence relationR, introduced a system of invariants for orbit equivalence and claimed
that it is complete [Ha]. However, in the present paper we construct orbitally
non-equivalent subrelations of R which are non-distinguishable by these invariants.
Moreover, for an arbitrary type III equivalence relation R, we provide another sys-
tem of invariants for orbit equivalence of R-subrelations of finite index and show
that it is complete. It consists of a transitive subgroup G of permutations on a
finite set (whose cardinality equals to the index), an ergodic nonsingular R-flow V
and a homomorphism l of G to the centralizer of V such that the l(G)-quotient of V
is conjugate to the associated flow of R. Roughly speaking, Hamachi’s invariants
“remember” only the range and the kernel of l but not l itself and that is why
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they are not complete. It should be noted that the argument of [Ha] uses common
discrete decomposition for S and R, a lacunary measure, etc., i.e. modified tech-
niques from [Kr] (see also [HO]). Our approach is different. We apply more recent
advances in orbit theory ([FSZ], [GS1], [GS2]) which result to a short argument.

The outline of the paper is as follows. Section 1 contains background on orbit
theory. Section 2 begins with the “measurable index theory” and contains our main
classification result—Theorem 6. In Section 3 we provide a counterexample to [Ha,
Theorem 6.1]. In the final Section 4, the case of type IIIλ equivalence relations,
0 < λ ≤ 1, is considered in more detail. It turns out that our classification invariants
have simpler (more explicit) form in this case.

1. Background on orbit theory

Let (X, B, µ) be a standard probability space. Denote by Aut (X,µ) the group
of its automorphisms, i.e. Borel one-to-one, onto, µ-nonsingular transformations.
We do not distinguish between maps which agree on a µ-conull set. Given a Borel
discrete µ-nonsingular equivalence relation R ⊂ X × X, we endow it with the
induced Borel structure and σ-finite measure µR, dµR(x, y) = dµ(x), (x, y) ∈ R.
Write also

[R] = {γ ∈ Aut(X, µ) | (γx, x) ∈ R for µ-a.e.x ∈ X},
N [R] = {θ ∈ Aut(X,µ) | (θx, θy) ∈ R iff (x, y) ∈ R µR-a.e. }

for the full group of R and the normalizer of [R] respectively. For a countable
subgroup Γ of Aut(X,µ), we denote by RΓ the Γ-orbital equivalence relation. It
is known that each γ is of the form RΓ [FM]. R is called hyperfinite if it can be
generated by a single automorphism. We assume from now on that R is ergodic,
i.e. every R-saturated Borel subset is either µ-null or µ-conull.

Let G be a locally compact second countable (l.c.s.c.) group, 1G the identity of
G and λG the right Haar measure on G. A Borel map α : R → G is a (1-)cocycle
of R if

α(x, y)α(y, z) = α(x, z) for a.e. (x, y), (y, z) ∈ R.

Two cocycles, α, β : R→ G, are cohomologous (α ≈ β) if

α(x, y) = φ(x)−1β(x, y)φ(y) for µR-a.e. (x, y),

where φ : X → G is a Borel function (we call it a transfer function). A cocycle is
a coboundary if it is cohomologous to a trivial one. The set of all R-cocycles with
values in G will be denoted by Z1(R, G). Let R = RΓ. There is a cocycle ρ ∈
Z1(R, G) such that ρ(x, γx) = log dµ◦γ

dµ (x) for all γ ∈ Γ at a.e. x ∈ X. It is called
the Radon-Nikodym cocycle of R. Notice that it is independent on the particular
choice of Γ. R is of type II if ρ is a coboundary. Otherwise R is of type III. Given
α ∈ Z1(R, G), we denote by α0 the “double” cocycle α× ρ ∈ Z1(R, G× R).

Remind that α and β are weakly equivalent if α ≈ β ◦ θ for a transformation
θ ∈ N [R]. Clearly, α and β are weakly equivalent if and only if the double cocycles
α0 and β0 so are. Given α ∈ Z1(R, G), we define an equivalence relation R(α) on
(X×G, µ×λG) by setting (x, g) ∼ (y, h) if (x, y) ∈ R and h = gα(x, y). It is called
the α-skew product extension of R. If the R(α)-partition is measurable (i.e. admits
a measurable cross-section) then α is called transient. Otherwise α is recurrent. By
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[Sc] α is recurrent if and only if α0 so is. We say that α has dense range in G if
R(α) is ergodic. It follows that α is recurrent.

Next, we define a Borel action Vα of G on (X×G,µ×λG) as follows Vα(h)(x, g) =
(x, hg). Since Vα ∈ N [R(α)], it induces an automorphism, say Wα(h), on the
measure space of R(α)-ergodic components. Moreover, G 3 h 7→ Wα(h) is an
ergodic G-action on this space. Wα is called the Mackey action of G associated to
α. If two cocycles α and β are weakly equivalent, then they are both either transient
or recurrent and the associated Mackey G-actions Wα and Wβ are conjugate. We
call R-actions flows.

Theorem 1 (Golodets-Sinel’shchikov, [GS1], [GS2]).
(i) Let R be an ergodic hyperfinite equivalence relation on (X, µ) and α, β ∈

Z1(R, G) recurrent cocycles. If the Mackey G × R-actions Wα0 and Wβ0

are conjugate then α and β are weakly equivalent.
(ii) Given an ergodic G × R-action V , there exist a hyperfinite ergodic equiva-

lence relation R on (X, µ) and a recurrent cocycle α ∈ Z1(R, G) such that
V is conjugate to Wα0 .

2. Subrelations of type III equivalence relations

Let S be an ergodic subrelation of R. Then there exist N ∈ N∪ {∞} and Borel
functions {φj : X → X | 0 ≤ j < N} such that {S[φj(x)] | 0 ≤ j < N} is a
partition of R[x], where R[x] (resp. S[x]) stands for the R- (resp. S-) class of x
[FSZ]. N is called the index of S in R and {φj}j choice functions for S. From now
on we shall assume that indS := N is finite. Denote by Σ(J) the full permutation
group on the set J := {0, 1, . . . , N − 1} and define a cocycle σ ∈ Z1(R,Σ(J)) by
setting σ(x, y)(i) = j if S[φi(y)] = S[φj(x)]. Notice that although choice functions
are nonunique, the cohomology class of σ is independent of their particular choice
and is an invariant of S. According to [FSZ] σ (or its cohomology class) is called
the index cocycle of S. Given a cocycle α ∈ Z1(R, Σ(J)), we put

R×α J = {(x, j, y, k) ∈ X × J ×X × J | (x, y) ∈ R and k = σ(x, y)[j]}.
Clearly, R×α J is a (µ × λJ)-nonsingular discrete equivalence relation on X × J ,
where λJ is a “counting” measure on J . We set

Z1
ind = {α ∈ Z1(R,Σ(J)) | R ×α J is ergodic }.

Two subrelations S1,S2 of R are said to be R-conjugate if S1 = (θ × θ)S2 for a
transformation θ ∈ N [R]. We remind some fundamental facts on subrelations from
[FSZ]:

Theorem 2. Let R be a discrete ergodic hyperfinite equivalence relation and S ⊂ R
an ergodic subrelation with indS = N . Then every index cocycle of S belongs
to Z1

ind(R, Σ(J)). Conversely, for each σ ∈ Z1
ind(R, Σ(J)), there is an ergodic

subrelation S ⊂ R with indS = N and such that σ is an index cocycle of S.
Two ergodic subrelations S1,S2 of finite index in R are R-conjugate if and only if
indS1 = indS2 and their index cocycles are weakly equivalent.

Thus the classification of ergodic R-subrelations of index N up to the R-con-
jugacy is equivalent to the classification of cocycles from Z1

ind(R, Σ(J)) up to the
weak equivalence.
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Theorem 3. Let σ ∈ Z1
ind(R, Σ(J). Then there exists a transitive subgroup G ⊂

Σ(J) and a cocycle σ′ : R → G with dense range in G such that σ′ ≈ σ. Two
cocycles σ1 : R → G1 and σ2 : R → G2 with dense ranges in transitive subgroups
G1 and G2 of Σ(J) are weakly equivalent as elements of Z1(R, Σ(J)) if and only
if there is g ∈ Σ(J) such that G1 = gG2g

−1 and the cocycles σ1 and Adg ◦ σ2 are
weakly equivalent as elements of Z1(R, G1), where Adg is the inner automorphism
of Σ(J) generated by g.

Proof. The existence of G and σ′ with the required properties follows from [Zi,
Corollary 3.8]. Remark that G acts transitively on J because of R×σ J (and hence
R ×σ′ J) is ergodic. The last statement of the theorem can be easily deduced
from [Zi, the argument of Theorem 6.1], where it was proved in a slightly weaker
form: with “cohomologous” instead of “weakly equivalent”. Observe also that
although the theorems from [Zi] to which we refer were stated there only in type
II, i.e. measure preserving, case they hold also in type III case with the same
argument. ¤

Remark that every cocycle of R with values in a finite (or compact) group is
recurrent. From Theorems 1 and 3 we deduce

Corollary 4. Let σ1 : R→ G1 and σ2 : R → G2 be two cocycles with dense ranges
in transitive subgroups G1 and G2 of Σ(J) respectively. Denote by W(σ1)0 and
W(σ2)0 the Mackey G1 × R- and G2 × R-actions associated to the double cocycles
(σ1)0 and (σ2)0 respectively. Then σ1 and σ2 are weakly equivalent as elements
of Z1(R,Σ(J)) if and only if there is g ∈ Σ(J) such that G1 = gG2g

−1 and the
G2 × R-actions W(σ2)0 and W(σ1)0 ◦ (Adg × Id) are conjugate.

Every measured G× R-action W on a space (Ω, ν) determines a measured flow
V acting on the same measure space and a group homomorphism l from G to the
centralizer C(W ) of W as follows: V (t) = W (1G, t), l(g) = W (g, 0) for all t ∈ R
and g ∈ G. Remind that

C(W ) = {R ∈ Aut(Ω, ν) | RW (g, t) = W (g, t)R for all t ∈ R and g ∈ G}.
We call (V, l) the constituents of W .

Let an R-cocycle σ take values and have dense range in a transitive subgroup
G ⊂ Σ(J). Denote by (Vσ, lσ) the constituents of the Mackey G × R-action Wσ0

associated to the double cocycle σ0. It is easy to verify (and well known) that the
lσ(G)-quotient of Vσ, i.e. the restriction of Vσ to the subalgebra of l(G)-invariant
measured subsets, is conjugate to Wσ. On the other hand, the Vσ(R)-quotient of lσ
is a singleton, since σ has dense range in G and hence the associated Mackey action
is trivial. It follows that Vσ is ergodic. We illustrate these with the commutative
diagram

X ×G ←−−−− X ×G× R −−−−→ X × R
y

y
y

{•} ←−−−− Ω0 −−−−→ Ω,

where {•}, Ω0, and Ω stand for the spaces of the Mackey actions associated to σ,
σ0, and the Radon-Nikodym cocycle of R respectively; the vertical arrows represent
the corresponding ergodic decompositions (see §1); the upper horizontal arrows are
natural projections, and the lower arrows are determined by the universality of the
“middle” ergodic decomposition.
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Definition 5. Let Vi be an ergodic nonsingular flow on a measure space (Ωi, νi),
Gi a transitive subgroup of Σ(J), and li : Gi → C(Vi) a group homomorphism,
i = 1, 2. We say that the triplets (V1, G1, l1) and (V2, G2, l2) are conjugate if there
is a nonsingular isomorphism ξ : Ω2 → Ω1 and g ∈ Σ(J) such that G1 = gG2g

−1,
V1(t) = ξV2(t)ξ−1 and l1(Adg(g2)) = ξl2(g2)ξ−1 for all t ∈ R and g2 ∈ G2.

Now we are ready to record our main classification result.

Theorem 6. Let R be an ergodic type III hyperfinite equivalence relation on
(X, B, µ), and Wρ its associated flow (ρ stands for the Radon-Nikodym cocycle).

(i) Given an ergodic subrelation of index N , we associate a triplet (V,G, l)
consisting of an ergodic flow V , a transitive subgroup G ⊂ Σ(J) and a
homomorphism l : G → C(V ) such that the l(G)-quotient flow of V is
conjugate to Wρ.

(ii) Conversely, given such a triplet, there exists an ergodic subrelation S ⊂ R,
indS = N , whose associated triplet is as given.

(iii) two ergodic R-subrelations of index N are R-conjugate if and only if their
associated triplets are conjugate.

Proof. (i) follows from Theorems 2, 3 and the remark before Definition 5.
(ii) Given a triplet (V, G, l), we consider a G × R-action W whose constituents

are (V, l). By Theorem 1 there are an ergodic hyperfinite equivalence relation R′
on (X, B, µ) and a cocycle σ′ : R′ → G such that W is conjugate to the Mackey
G×R-action associated to the double cocycle σ′0. It is clear that the associated flow
of R′ is conjugate to the l(G)-quotient flow of V . By the assumptions on (V, G, l),
this flow is conjugate to Wρ. It follows from the Krieger theorem [Kr], [FM] that
R and R′ are orbit equivalent and hence we may identify them. Next, since V is
ergodic, σ′ has dense range in G. But G is a transitive subgroup of J-permutations
and this implies σ′ ∈ Z1

ind(R,Σ(J)). It remains to apply Theorem 2.
(iii) follows from Theorem 2 and Corollary 4. ¤

3. On Hamachi’s invariants

Let an R-cocycle σ take values and have dense range in a transitive subgroup
G of Σ(J). Denote by H the G-stability group of 0, i.e. H = {g ∈ G | g[0] = 0}.
Then H ⊂ G is irreducible, i.e. H contains no nontrivial G-normal subgroups.
If a subgroup G1 ⊂ Σ(J) is conjugate to G, then there exists k ∈ Σ(J) such
that G1 = kGk−1 and k[0] = 0 (remind that G is transitive). It follows that
H1 = kHk−1, where H1 is the G1-stability group of 0. Thus the conjugacy classes of
transitive subgroups of Σ(J) are in one-to-one correspondence with the isomorphism
classes of irreducible pairs of finite groups H ⊂ G such that the cardinality of G/H
is N . (We say that two pairs H ⊂ G and H ′ ⊂ G′ are isomorphic if there is an
isomorphism of G onto G′ taking H onto H ′.)

Let (V,G, l) be a triplet as in Theorem 6. Denote by G0 the kernel of l and
by (Ω, ν) the measure space of Wρ. Then V is a G/G0-extension of Wρ, i.e. we
may assume without loss in generality that V is defined on the space (Ω0, ν0) :=
(Ω×G/G0, ν × λG/G0) as follows

(*) V (t)(ω, h) = (Wρ(t)ω, hα(ω, t)),

where λG/G0 is Haar measure on G/G0 and α : Ω×R a measurable W -cocycle, i.e.

α(ω, t1 + t2) = α(ω, t1)α(Wρ(t1)ω, t2)
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at a.e. ω ∈ Ω for all t1, t2 ∈ R. (Do not confuse cocycles of group actions with
cocycles of equivalence relations.) Denote by π : Ω0 3 (ω, h) 7→ ω ∈ Ω the canonical
projection. Then πV (t) = Wρ(t)π for all t ∈ R. It is convenient to use the notation

π : V
G/G0−−−→ Wρ.

Remind that two group extensions π : V
G−→ W and π′ : V ′ G′−→ W ′ are conjugate

if there are nonsingular isomorphisms ψ : (Ω0, ν0) → (Ω′0, ν
′
0) and φ : (Ω, ν) →

(Ω′, ν′) such that φW (t)φ−1 = W ′(t), ψV (t)ψ−1 = V ′(t), and ψπψ−1 = π′. This
implies that G and G′ are isomorphic.

Thus given a triplet (V, G, l), we associate a system (G,H,G0, π : V
G/G0−−−→ Wρ)

consisting of an irreducible pair of finite groups H ⊂ G, a normal subgroup G0 ⊂ G
and a G/G0-extension of Wρ. We shall call it an H-system (see [Ha]).

Definition 7 (see [Ha, Definition 6.1]). Two H-systems (G, H, G0, π : V
G/G0−−−→

Wρ) and (G′,H ′, G′0, π
′ : V ′ G′/G′0−−−−→ Wρ) are equivalent if there is an isomorphism

ρ : G → G′ such that ρ(H) = H ′, ρ(G0) = G′0 and the extensions π and π′ are
conjugate.

It is easy to see that if two triplets are conjugate then the associatedH-invariants
are equivalent. It is claimed in [Ha] that the converse also holds which implies
that R-non-conjugate ergodic R-subrelations of finite index have nonequivalent H-
invariants. Our purpose in this section is to construct a counterexample to this
statement.

Example 8. Let Σ3 be the permutation group of {0, 1, 2} and A5 the group of even
permutations of {0, 1, . . . , 5}. We put H := (Σ3)5 o A5 and G := H2. It is easy
to verify that Z(H), the center of H, is trivial but OutH, the group of outer
automorphisms of H, is nontrivial. Denote by Σ(H) the permutation group of H
and consider a homomorphism b : G → Σ(H) as follows b(h1, h2)[h] = h1hh−1

2 ,
h ∈ H. Since the kernel of b is isomorphic to Z(H), b is an embedding. It is
obvious that G (or, more precisely, b(G)) acts transitively on H. Denote by G0 the
G-stability group of 1H . Clearly, G0 = {(h, h) | h ∈ H}. Define an automorphism κ
of G by setting κ(h1, h2) = (h1, τ(h2)), where τ is a non-innner automorphism of H.
We claim that κ can non be extended to an automorphism of Σ(H). Suppose the
contrary: there exists k ∈ Σ(H) such that κ(g) = kgk−1 for all g ∈ G. (Remind that
every automorphism of Σ(H) is inner.) Put h0 := k[1H ] ∈ H. Then κ(g)[h0] = h0

for all g ∈ G0. Since G acts transitively on H, we deduce that κ(G0) = g0G0g
−1
0

for an element g0 ∈ G with g0[0] = h0. Thus
⋃

h∈H(h, τ(h)) =
⋃

h∈H(h, h1hh−1
1 )

for some h1 ∈ H. It follows that τ is an inner automorphism of H, a contradiction.
Let W be an ergodic properly non-transitive R-flow on (Ω, ν) with trivial central-

izer, i.e. C(W ) = W (R). Take a cocycle α of W with values in G such that the flow
V determined by (*) with G0 trivial is ergodic. Define a one-to-one homomorphism
l : G → C(V ) by setting

l(g′)(ω, g) = (ω, g′g), for all (ω, g) ∈ Ω×G,

and put l1 = l ◦ κ. We claim that the triplets (V, G, l) and (V,G, l1) are non-
conjugate. Suppose the contrary: there exist ξ ∈ C(V ) and s ∈ Σ(H) such that

(**) l ◦Ads(g) = ξl(κ(g))ξ−1, for all g ∈ G.
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Since ξ passes through the natural projection Ω×G → Ω, it is well known (see, for
example [Da1, Theorem 5.3 and §6]) that ξ is of the form ξ(ω, g) = (ζω, d(g)f(x))
for a transformation ζ ∈ C(W ), a G-automorphism d, and a measurable map
f : X → G. Hence ζ ∈ W (R). It follows from [Da1, Lemma 5.2 and §6] that d is
inner. On the other hand, it is easy to verify that ξl(g)ξ−1 = l(d(g)) for all g ∈ G.
We deduce from (**) that l ◦ Ads(g) = l ◦ d ◦ κ(g) and hence Ads = d ◦ κ. This
contradicts to the fact that κ can not be extended to a Σ(H)-automorphism.

Since W is nontransitive, it is the associated flow of a type III0 ergodic hyperfi-
nite equivalence relation R. By Theorem 6 there are ergodic R-subrelations S and
S1 of finite index whose associated triplets are (V, G, l) and (V, G, l1) respectively.
It follows that S and S1 are R-nonconjugate. On the other hand, H-invariants
associated to (V,G, l) and (V,G, l1) are obviously identical and we are done.

4. Case of IIIλ equivalence relations, 0 < λ ≤ 1

If R is of type IIIλ, 0 < λ ≤ 1, our invariants (see Theorem 6) can be described
in a more apparent way.

We first consider the case where R is of type III1. Then the associated flow Wρ

and any ergodic finite group extension V of Wρ are trivial. Thus we deduce from
Theorem 6

Corollary 9. The set of R-conjugacy classes of ergodic R-subrelations of index
N are in one-to-one correspondence with the (finite) family of conjugacy classes of
transitive subgroup of Σ(J), J = {0, 1, . . . , N − 1}.

Now let R be of type IIIλ, 0 < λ < 1. Then Wρ is a transitive periodic flow
with period − log λ. If V is an ergodic finite group extension of Wρ, then there is a
non-negative integer n such that V is a periodic flow with the period −n log λ and
V is a Z/nZ-extension of W .

Definition 10. A collection (n,G, l) consisting of a positive integer n, a transitive
subgroup G ⊂ Σ(J) and an onto homomorphism l : G → Z/nZ will be called a
λ-triplet. Two λ-triplets (n,G, l) and (n′, G′, l′) are conjugate if n = n′ and there
is s ∈ Σ(J) with G = sG′s−1 and l ◦Ads = l′.

It is easy to deduce from Theorem 6

Corollary 11. The set of R-conjugacy classes of ergodic R-subrelations of index
N are in one-to-one correspondence with the (finite) family of conjugacy classes of
λ-triplets.
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