QUASINORMAL SUBRELATIONS OF
ERGODIC EQUIVALENCE RELATIONS

ALEXANDRE I. DANILENKO

ABSTRACT. We introduce a notion of quasinormality for a nested pair S C R of
ergodic discrete hyperfinite equivalence relations of type II;. (This is a natural
extension of the normality concept due to Feldman-Sutherland-Zimmer [FSZ].) Such
pairs are characterized by an irreducible pair F' C @ of countable amenable groups
or rather (some special) their Polish closure F' C Q. We show that “most” of ergodic
subrelations of R are quasinormal and classify them. An example of non quasinormal
subrelation is given. We prove as an auxiliary statement that two cocycles of R with
dense ranges in a Polish group are weakly equivalent.

0. INTRODUCTION

It is well known that two ergodic finite measure preserving actions of countable
amenable groups are orbit equivalent [Dy], [CEFW]. This can be rephrased in equiv-
alent terms of measured equivalence relations [FM]: there exists the unique (up to
isomorphism) hyperfinite discrete ergodic equivalence relation, say R, of type I1;.
A natural subsequent problem that arises here is to study subrelations of R and
this is the main concern of the present paper.

It was shown in [FSZ] how to associate to any pair S C R of discrete ergodic
type II; equivalence relations, a countable index set J and a cocycle o : R — X(J),
where ¥(J) is the full permutation group of J. The cardinality of J is called the
index of S C R and related closely to the Jones index in the study of sub-von-
Neumann-algebras [Jo]. The cocycle o is called index cocycle of S C R. The weak
equivalence class of o depends only on the isomorphism class of the pair S C R.

J. Feldman, C. E. Sutherland and R. J. Zimmer provided an elegant classification
of ergodic hyperfinite pairs S C R in the following two cases: (a) S is normal, (b) S
is of finite index in R [FSZ]. Remark that the case (b) was considered earlier by
M. Gerber in a different context—she classified the finite extensions of ergodic prob-
ability preserving transformations up to the “factor orbit equivalence” [Ge]. The
purpose of this paper is to extend the above results to a wider class of subrelations,
namely quasinormal ones.

We call S quasinormal if o (or its restriction to S) is regular, i.e. o is cohomol-
ogous to a cocycle with dense range in a closed subgroup of 3(J). The concept of
quasinormality was introduced in a different way in a previous paper of the author
[Da, §4], where the problem of genericity for extensions of S-cocycles to R-cocycles
with values in amenable locally compact groups was discussed (see also [GLS]). We
show that the above definition is equivalent to [Da, Definition 4.1].

Before proceeding with the statements of our main results, we remind some
standard notions of the orbit theory. Let P be a discrete measured equivalence
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relation on a standard probability space (X, 9B, ). By the full group [P] we mean
the group of automorphisms of X whose orbits are contained in P-classes. The
normalizer N[R] of [P] is the group of automorphisms of X which preserve P (see
§2 for the rigorous definitions). Two R-subrelations S; and Sy are R-conjugate if
S = (T x T)S, for a transformation T € N[R].

We say that a pair F© C @ of Polish groups is irreducible if F' contains no
nontrivial closed normal subgroups of Q.

Theorem 0.1 (Canonical Form for Quasinormal Subrelations). Let S be an
ergodic quasinormal subrelation of R. There exist an ergodic subrelation P C S, a
countable amenable group @ C N[P], and a subgroup F of Q such that QN [P] =
{Id}, F C Q is irreducible, R is generated by P and Q and S is generated by P
and F. Moreover, the index cocycle may be realized as 0 = pof : R — Z(F\G),
where 8 : R — Q is given by 0(x, qy) = q for all (x,y) € P and q € Q, and p is the
Cayley representation of @ in L(F\Q) as right translations.

Notice that the pair F' C @ is not determined uniquely (up to isomorphism) by
S. That is why we need to introduce some special equivalence relation for these
objects as follows. Denote by @ (resp. F) the closure of p(Q) (resp. the closure
of p(F)) in E(F\Q) endowed with the usual Polish topology. It is easy to see that
F={qeQ|qF)=F}. Hence F is an open subgroup of Q and F C Q is an
irreducible pair of Polish groups.

Definition 0.2. We say that two irreducible pairs of countable groups I1 C Q1
and Fy C Q9 are weakly isomorphic if there exists a continuous isomorphism of @),
onto ()5 which takes F'; onto Fs.

Theorem 0.3 (Classification of Quasinormal Subrelations). There is a bi-
jective correspondence between the ergodic quasinormal subrelations S of R (up to
R-conjugacy) and the weak isomorphism classes of irreducible pairs of countable
amenable groups F C Q. Furthermore, F' C Q is related to S as it is described in
Theorem 0.1.

Notice that the normal subrelations are quasinormal—they correspond exactly
to the case where F is trivial. Clearly, the subrelations of finite index are also
quasinormal, since the index cocycle as well as every cocycle with values in a finite
group is regular. In both cases Q@ = Q, F = F and Theorem 0.3 gives [FSZ,
Theorems 3.1, 3.2].

The outline of the paper is as follows. §1 is of a preliminary nature. We study
here cocycles of R with values in Polish groups and extend some results from [GS],
where the groups were assumed to be locally compact. In particular, we prove that
two cocycles with dense ranges in a Polish group are weakly equivalent. The second
section introduces an idea of quasinormal pair S C R (cf. with [Da, §4]). The proofs
of Theorems 0.1 and 0.3 and related problems are contained here. In the final §3,
we show that a “typical” (in the Baire category sense) ergodic subrelation of R
is quasinormal but non normal. We also provide an example of non quasinormal
subrelation.

Remark that throughout this paper equivalence relations are of type I1;. How-
ever, all the results are also valid for type Il equivalence relations with minor
modifications of the arguments. We hope to treat the type Il case in a later

paper.
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1. COCYCLES OF MEASURED EQUIVALENCE RELATIONS
WITH VALUES IN POLISH GROUPS

We begin this section with some background on orbit theory. Let (X,B,pu)
be a standard probability space. Denote by Aut(X,, u) the group of its auto-
morphisms, i.e. Borel, one-to-one, onto, u-preserving transformations; we do not
distinguish between two of them which agree on a p-conull subset. Let R C X x X
be a Borel discrete (i.e. each equivalence class is countable) equivalence relation.
We shall assume that R is u-preserving, i.e. there exists a countable subgroup
I' € Aut(X, i) such that R is the I'-orbital equivalence relation. We endow R
with the induced Borel structure and the o-finite measure ug, dug(x,y) = du(zx),
(z,y) € R. Write also

[R] ={q € Aut(X,u) | (gz,x) € R for p-a.a. x € X},
N[R] ={q € Aut(X, ) | (qz,qy) € R for ur-a.a. (z,y) € R}

for the full group of R and the normalizer of [R] respectively. R is called hyperfinite
if it can be generated by a single automorphism.

Let G be a Polish group and 14 the identity of G. A Borel map a: R — G is a
(1-)cocycle of R if

alz,y)aly, z) = alx, 2) for a.a. (x,y), (y,2) € R.

We do not distinguish between two cocycles if they agree pugr-a.e. Two cocycles,
a,B: R — G, are cohomologous (o = 3), if

a(z,y) = d(2)" ' Bz, y)ély)  for pr-aa. (z,y),

where ¢ : X — G is a Borel function (we call it a transfer function from « to 3).
A cocycle is a coboundary if it is cohomologous to the trivial one.

Two cocycles a, 3 : R — G are weakly equivalent if there is a transformation
T € N[R] such that a &~ o T, where the cocycle § : R — G is defined by
BoT(x,z)=p(Tx,Tz).

We assume from now on that R is ergodic, i.e. every R-saturated Borel subset
is p-null or p-conull.

We say that « has dense range in G if for every A € B, u(A) > 0, and an open
subset O C G there exists B € B and a transformation ¢ € [R] with u(B) > 0,
BUgB C A, and a(z,qz) € O for all z € B.

Proposition 1.1. Let F, H be closed subgroups of G and two cocycles o, 3 : R — G
take values and have dense ranges in F' and H respectively. If a =~ (3 then F and
H are conjugate in G.

Proof. Let a(z,y) = ¢(z)"1B(z,y)d(y) at ur-a.e. (z,y) € R for a Borel function
¢ : X — G. Take any proper value go € G of ¢, which means that u(¢=1(0)) > 0
for every neighborhood O of go. We shall prove that F' = g, 'Hgo. Given any
g € H and a neighborhood V of g, 1990, we choose neighborhoods U of gy and
W of g with U7'WU C V. Since 8 has dense range in H, there exists a Borel
subset A C X and a transformation ¢ € [R] such that u(A4) >0, AUgA C ¢~ 1(U)
and f(z,qz) € W for all + € A. Remind that a(R) C F and hence VN F # (.
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Since V' is an arbitrary neighborhood of g, 1990, we deduce that 9o lggo € F. Thus
9o 'Hgy C F. The converse inclusion is established in a similar way. [

Remark 1.2. Tt is easy to deduce from the above proof that the transfer function
¢ is of the form ¢(z) = ¥(z)g’ a.e. for some ¢’ € G and a Borel function ¢ : X —
Ng(H), where Ng(H) :={g € G| gHg™! = H} is the normalizer of H in G.

Definition 1.3. A cocycle a : R — G is called regular if it is cohomologous to a
cocycle which takes values and has dense range in a closed subgroup H of G.

We denote by (a) the conjugacy class of H , i.e. {a) = {gHg ' | g € G}. It
is well defined by Proposition 1.1. It is obvious that given a cocycle a with dense
range in G, then aoT also has dense range in G for every transformation T € N[R].
We deduce from this fact and Proposition 1.1

Corollary 1.4. Let o and B be weakly equivalent cocycles. If o is regular then so
is B and (o) = (0).

Remind that an equivalence relation P is of type I if there is a Borel subset
A C X, n(A) > 0, such that for a.e. z € X there is a unique y € A with (z,y) € R.

We call such A a P-fundamental domain. It is well known that every cocycle of an
equivalence relation of type I is a coboundary [FM].

Lemma 1.5 (cf. with [GS, Proposition 1.1]). Let R = J,—, Ry, for an increasing
sequence of type I equivalence relations Ry C Re C .... Given two cocycles o, 3 :
R — G, consider two sequences of Borel maps ay,b, : X — G such that o(z,y) =

an(2)an(y)~t, B(z,y) = bu(x)b,(y)~t for a.e. (x,y) € R,. Define a sequence of
maps fn: X — G by setting fn(x) = an(x)by(x)~L. If f, converges a.e. to a map
¢:X — G asn — oo then a(x,y) = ¢(z)B(x,y)p(y) "t for a.e. (z,y) € R.

Proof. For a.e. (z,y) € R, and every m > n we have

Fn (@)B(2,Y) fin ()™ = @ ()b (€)™ b ()b (4) ™ i (y) i (y)

= am(g:)am(yfl = Oé($, y)7

since R,, C R,,. Pass to the limit to obtain ¢(x)8(z,y)é(y)~! = a(z,y) for a.e.
(z,y) € Rp,neN. O

Proposition 1.6. Let R be hyperfinite and G’ a countable dense subgroup of G.
Given a cocycle a: R — G, there exists a cocycle 8 =~ « with 3(R) C G'.

Proof. Since R is hyperfinite, there exists an increasing sequence of type I equiv-
alence relations Ry € Ry C ... with R = U:ozl R,. Let F, stand for a R,-
fundamental domain. We also put Fy = X. Define a Borel map T, : X — F,, by
setting T,x = y if (x,y) € R,. Notice that T), is R,,-invariant—i.e. T,,x = T,y for
a.e. (x,y) € R,—and

(2-1) a(z,y) = alz, Tyx)o(The, Tny)a(Thy, y) = oz, Tpx)o(y, Tny) "

for a.e. (z,y) € R,,. Consider the family of Borel maps a,, : F,—1 — G given by
an(z) = a(z, Tyx). Then

(2-2) a(z,Thx) = alz, he)a(Tiz, Tex) ... a(Ty_12, Thx)
=ay(x)ax(Thz)...an(Th-12)
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for a.e. x € X. Conversely, it is easy to see that an arbitrary family of Borel
functions a, : F,—1 — G, n € N, determines a cocycle « : R — G by (2-1)
and (2-2).

Let {W,}5; be a fundamental system of neighborhoods of 14 with the following
properties: I/Vn*1 = W, and W, 1W,41Wy41 C W,, n € N. Enumerate the
elements of G': G' = {g;}32,. For each n € N, we have G = |J;2, W, g;. Hence
there is m,, € N such that pu(4,) > 1—2"", where

A, ={z e X |alz,Tyz) € U Whi2gi}-

i=1

Let Vi, be a neighborhood of 15 with gi‘/'ngi_1 CWyioralli=1,...,my_o, n>2.
Take a family of Borel maps b, : F,,_; — G’ such that a,(2)b,(z)~! € V,,1; for all
x € F,_1. This family determines a cocycle 8 : R — G. We have for k € N and
= ﬂ?_l-&-k:—l A

Srtr = (@, Toiww) B, Tog) ™"

= (@, Tnk—17) ik (Tngh—12)bn i (Tngo—12) " B, Togn12) ™"
€ (@, Tnyr—12)Vatr1 B, Tngp—12) ™"

=a(x, Thir—12)Vatrria(z, Tn+k,1x)*1a(x, Thik—12)8(x, Tn+k,1x)*1
C WaikirWaik 1t Wagk 1@, Ty i12) B(x, Ty 1)~

C Whgra(z, Tpyp—12)B(x, Tpyp_1z) L C ...

CWostWaiko1 ... Wppalz, Tpx)B(x, Tpx) ™' € W, fr(z).

Since u(ﬂ?::fl A) >1—2m -2l ... 9mn=hktl > 1 _9o-ntl 1 the

sequence f,, converges in measure as n — 0o. Hence a subsequence of f,, converges
a.e. and a =~ § by Lemma 1.4. O

Remark 1.7. If G’ is normal in G then the conclusion of Proposition 1.5 follows from
the Connes-Krieger cohomology lemma (see [Su], [JT]). For G locally compact (and
any G') the conclusion of the proposition was proved in [GS, Proposition 1.2]. We
modified the argument of V. Ya. Golodets and S. D. Sinelshchikov in such a way
to avoid the use of the local compactness.

Proposition 1.8. Let R be hyperfinite. Given a cocycle o : R — G with dense
range in G, there exists a cocycle 8 ~ « such that {(z,y) € R | B(z,y) = 1g} is an
ergodic subrelation of R.

Proof. By virtue of Dye theorem [Dy] we may assume that (X, 9, ) and R are of
the following special form:

(a) (X, u) = ({0,1}, M), where X is the equidistribution on {0, 1}, i.e. A(0) =

A(1) = 0.5,

(b) R=U,— Rn, where R,, = {(2,y) € X x X | x; =y, for all i > n}.
Let {W,}°2; be a fundamental system of neighborhoods of 1 with the properties
as above. We construct inductively an increasing sequence §; C Sy C ... of type [
subrelations of R. Describe in general the n-th step.

Let F,, := {x | ; = 0 for all i < n}. Clearly, pu(F,—1\ Fn) = p(Fy,). Since o
has dense range in G, we apply the standard exhaustion argument to construct a
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Borel isomorphism ¢, : F,_1\ F,, — F,, such that (z,t,2) € R and a(z, t,z) € W,.
Define a Borel map T;, : X — F,, by setting

{ x, for x € F,
Thx = .
tnTn_1Tn_o...Ty, otherwise.

Now we put S, = {(z,y) | Tnx = T,y}. Since the S,-class of a.e. © € X is finite,
Sy is of type I. Moreover, F), is a S,-fundamental domain. Clearly, S C --- C
S, CR.

Now we put § = |J,;—; S,. Then S is an ergodic subrelation of R. Actually, if
a Borel function f : X — R is S,-invariant then it does not depend on the first
n-coordinates of x. Since n is arbitrary, f equals a.e. to a constant, as desired.

We claim that « [ § is a coboundary. Notice that o(z,y) = a(z, Thx)a(y, Thy)~
for a.e. (z,y) € S, and

1

frvr = oz, Thyr) = oz, Tnyr—12)a(Thyr—12, tnp T n—12)
S Q(I,Tn+k_1l')wn+k c---C Oé(lZE,Tn.T)Wn+1Wn+2 . Wn+k C fn(Z)Wn

for a.e. x € X. Hence f, converges a.e. to a map ¢ : X — G. By Lemma 1.5
a(z,y) = ¢(x)d(y)~t for a.e. (x,y) € S. This implies that the cocycle B(z,y) :=
d(z) oz, y)é(y), (z,y) € R, satisfies the conclusion of the proposition. [J

We conclude this section with an extension of the remarkable Uniqueness Theo-
rem for Cocycles (due to V. Ya. Golodets and S. D. Sinelshchikov) to cocycles with
dense ranges in Polish groups.

Theorem 1.9. Let o, 3 : R — G be two cocycles with dense ranges in G. If R is
hyperfinite then o and B are weakly conjugate.

Proof. This is almost the same as that of [GS, Lemma 1.12], where G was as-
sumed to be locally compact, but one should use Proposition 1.5 instead of [GS,
Proposition 1.2]. O

2. QUASINORMAL SUBRELATIONS

We begin this section with a brief exposition of the basic notions of measurable
index theory [FSZ].

Let R be an ergodic p-preserving equivalence relation on (X,%,u) and S an
ergodic subrelation of R. Then there exist N € N U {oco} and Borel functions
¢; + X — X so that {S[¢;(z)] | 0 < j < N} is a partition of R[z], where R[x]
(resp. S[z]) stands for the R- (resp. S-) class of x. N is called the indez of S in R
and {¢;}; are called choice functions for the pair S C R. We may assume without

loss in generality that ¢; € Aut(X,u), j € J, and ¢o(x) = « for all x € X. Denote

by 3(J) the full permutation group of the set J def {0,1,...,N =1} for N < oo or

g {0,1,2,...} for N = co. We define the index cocycle o : R — (J) by setting

o(z,y)(i) = j if Slgi(y)] = S[¢;(x)]. Notice that although choice functions are
non-unique, the cohomological class of ¢ is independent of their particular choice
and is an invariant of & C R. Moreover, any cocycle cohomologous to an index
cocycle arises from a suitable selection of choice functions.

Two subrelations S1,S2 of R are said to be R-conjugate if there is a transfor-
mation T' € N[R] such that (T' x T)S; = Sz. In view of [FSZ, Theorem 1.6] S is
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isomorphic to Sy if and only if their indices are equal and their index cocycles are
weakly equivalent.

Let o stand for the index cocycle of S C R. Then S is said to be normal in R
if the restriction o [ S of 0 to S is a coboundary. Equivalently, there are choice
functions {¢;};ecs with ¢; € N[S], j € J. If, in addition, R is hyperfinite, then by
[FSZ, §2] there is a countable amenable group @ C N[S] with @ N [S] = 1o and
such that R is generated by S and Q.

Definition 2.1. S is called quasinormal if o is regular.
From now on R is an ergodic hyperfinite equivalence relation on (X, 9B, ).

Proof of Theorem 0.1. By Proposition 1.7 there exists an index cocycle o : R —
%(J) such that the subrelation P := {(z,y) € R | o(z,y) = Id} is ergodic. Replac-
ing, if necessary, S by a R-conjugated subrelation we may assume that o is deter-
mined by a family of choice functions {¢, };e.; with the properties: o(x, ¢;(z))(0) =
jforallz € X, j € Jand S = {(z,y) € R | o(z,y)(0) = 0} (see [FSZ, Theo-
rem 1.6]). Clearly, P C S and ¢; € N[P], j € J. Let {¢;}icsr be choice functions
for the pair P C §. We claim that 1; € N[P]. Actually, given (x,y) € P, we have

(Vi(x),vi(y) € P <= o(¥i(x),vi(y))(j) = j for all j € J.

Since o (¢i(2), ¥i(y)) = o(¥i(x), ¢j01i(x))o (@01 (x), @501 (y)) o (d00:(y)), ¥i(y) M
and o(¢;oy;(x), ¢;01i(y))(0) = 0, we deduce that o(y;(z),v;(y)) =0forall j € J
and hence 9, € N[P], as claimed. Notice that {1; 0 ¢;}icr jcs are choice functions
for P C R. As in [FSZ], we define a multiplication law on I x J by setting

(i1, 1) * (i2,j2) = (i3,73) <= (i, 0 ¢}, © Vi, 0 ¢j, (), 23, 0 @j,(x)) € P ace.

Then (I x J, %) is a countable amenable group, say @, and (I x {0}, *) is a subgroup
of @, say F [FSZ]. Moreover, the map v : Q > ¢ = (4,§) — ;0 ¢; € N[P] is an
outer near homomorphism, i.e. (a) v(g) € [P] if and only if ¢ = 1¢, (b) v(q1 *¢q2) €
v(q1)v(g2)[P]. Since Q is amenable, there exists a map w : @ — [P] such that the
map Q 3 ¢ — v(q)w(q) € N[P] is an outer homomorphism [FSZ]. Thus @ can be
viewed as a subgroup of N[P]. Clearly, {¢;w((0,7))};jes are choice functions for S C
R (they determine the very same index cocycle o) and {¢;w((¢,0))}ier are choice
functions for P C S. Hence the following properties are satisfied: (a) @ N [P] = Id,
(b) R is generated by P and @, (c) S is generated by P and F. For (i,j) € @ and
a.e. (x,y) € P we have

oz, 0 ¢5(y)(J1) = ja = (95, o Yio ¢j(x),d),(y) €S
<= Jiy € I with (Y;, 00, 09;00;(x), ¢4,(y)) € P <= (i1, j1)*(i,7) = (0, j2).

It is clear that the map 7 : @ 2 (4,j) — j € J = F\G is the F-quotient map
taking F' to {0}. Hence p((i,1))(j1) — 7((i1, 1) * (i,9)) = 7((0,42)) = ja. To put
it in another way, o(z,qy)(j1) = p(q)(j1) for a.e. (xz,y) € P, q € Q, j1 € F\G,
i.e. 0 = pod, as desired. To complete the proof, we observe that the kernel of p is
trivial, since 3(J) acts freely on J. This implies that F' C @ is irreducible. O

Remark 2.2. We observe that o takes values in p(Q) and p(Q) € (o). In a similar

way, the restriction of o to S takes values in p(F') and p(F) € (¢ | S).
The proof of Theorem 0.3 is divided into several lemmas.
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Lemma 2.3. Let 81,8 be two ergodic quasinormal subrelations of R. They are
R-conjugate if and only if their indices are equal and (o1) = (o2), where o1 and o9
denote the index cocycles of S1 and Sa respectively.

Proof follows from Theorem 1.9 and [FSZ, Theorem 1.6]. O

Lemma 2.4. Let F1 C Q1 and Fy C Q2 be two irreducible pairs of countable
amenable groups corresponding to a quasinormal subrelation S of R as in Theo-
rem 0.1. Then they are weakly isomorphic.

Proof. Without loss of generality we may assume that @); is a transitive subgroup
of £(J), F; = {q € Qi | ¢(0) = 0}, the index cocycle o; takes values in Q; C X(J)
and has dense range in @;, and the restriction o; | S; takes values in F; and has
dense range in F;, i = 1,2. Since 01 =~ 09, there is a Borel function ¢ : X — X(J)
with o1(z,y) = ¢(z) " Loa(z,y)¢(y) for ae. (z,y) € R. Let 7 € B(J) be a proper
value of ¢. By Proposition 1.1 Q1 = 77 'Qa7, Fi = 7~ 'For and hence the pairs
Fy C Q1 and Fy C Q4 are weakly isomorphic. [

Lemma 2.5. Let F C Q correspond to S as in Theorem 0.1 and T be any auto-
morphism from N[R]. Then F' C Q corresponds also to the R-subrelation (T xT)S.

Lemma 2.6. For each irreducible pair of countable amenable groups F C Q there
exists a quasinormal ergodic subrelation S C R such that F' C Q corresponds to S.

Proof. Tt is well known that @ can be embedded into N[R] in such a way that
Q N [R] = Id. Denote by R’ (resp. S’) the equivalence relation generated by R
and @ (resp. by P and F). Since R’ is hyperfinite, there is a transformation
T € Aut(X, p) with (T x T)R' = R. Clearly, the subrelation S := (T' x T)S’ is as
desired. O

Proof of Theorem 0.3. In view of Theorem 0.1 and Lemmas 2.4-2.6 the map {R-
conjugacy class of §} — {the weak isomorphism class of F' C ) as in Theorem 0.1}
is well defined and onto. It remains to verify the injectivity. Let &; and S be
two quasinormal subrelations of R such that the corresponding pairs F; C ()1 and
F5 C Q2 are weakly isomorphic. Since Card(F1\Q1) = Card(F>\Q2), the R-indices
of §; and Ss are equal. Let 01,02 : R — 3(J) stand for the index cocycles of Sy
and S, respectively. It is clear that @; and Qo viewed as closed subgroups of ¥(J)
are conjugate. Since Q1 € (01) and Q2 € (02), it follows from Lemma 2.3 that S;
and Sy are R-conjugate. [

Remind that S is normal if o [ S is a coboundary. Hence it is natural to state
Proposition 2.7. S is quasinormal if and only if o [ S is reqular.

Proof. (=) Without loss of generality we may assume that o takes values and
has dense range in a closed transitive subgroup G C %(J) and S = {(z,y) € R |
o(z,y)(0) = 0}. Since H := {7 € G | 7(0) = 0} is an open subgroup of G and
S = o~ !(H), it follows that o | S has dense range in H.

(«<=) Let o | S take values and has dense range in a closed subgroup H C X(J).
By Proposition 1.8 we may assume that P := {(z,y) € S | o(z,y) = Id} is an
ergodic subrelation. It remains to repeat the argument of Theorem 0.1 almost
literally to deduce that S C R has the structure described in Theorem 0.1. O
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3. GENERIC PROPERTIES OF SUBRELATIONS

Denote by Z* the set of R-cocycles with values in X(J). Let A be a ug-equivalent
probability measure on R. It is well known that Z! endowed with the topology of
convergence in A is a Polish space [FM]. This topology is unaffected if we replace
A with an equivalent probability measure. Let ¢ stand for Haar (o-finite) measure
on J. The group Aut(X x J,u x §) of p x d-preserving automorphisms of X x J
is Polish when endowed with the weak topology. Remind that R,, — R weakly in
Aut(X x J,pu x §) if (u x §) (R, AARA) + (u x 6) (R, AARTTA) — 0 asn — oo
for each Borel subset A C X x J with (u x §)(A) < co. By [CK] the ergodics,
say &, form a dense Gy in Aut(X x J,u x §). Since R is hyperfinite, there exists
an ergodic transformation 7' € Aut(X, p) such that R is the T-orbital equivalence
relation. Consider the map ® : Z! 5 a — T, € Aut(X x J,u x §), where T, is
given by T, (z,j) = (Tx,a(z)(j)). It is a routine to verify that ® is continuous.
Let Z! ; stand for the set of index cocycles, i.e.

Zt 4 ={a € Z" | a is the index cocycle of some ergodic subrelation S C R}

Clearly, Z! , # 0. Since by [FSZ, Proposition 1.5 and Theorem 1.6(a)] Z., =

P=1(&), it follows that Z} ; is a G5 in Z! and hence a Polish space when endowed
with the induced topology. We set
Zl

max

:={a € Z' | a is quasinormal and (a) = {¥(J)}}.

Let @ be the group of finite permutations of J, F := {r € Q | 7(0) =0} , and S
the quasinormal subrelation of R corresponding to F C @ by Theorem 0.3. Since
Q is dense in X(J), the index cocycle of S belongs to Z. .. and hence Z} _ # 0.
Only a slight modification of the routine argument from [PS] or [CHP, Theorem 3]
is needed to prove that Z. . is a dense G5 in Z'. Since Z},, C Z! ,, we obtain

1

is a dense Gs in Z,, 4.

Proposition 3.1. Z1

X

In view of this statement it is of interest to give an example of non quasinormal
ergodic subrelation.

Example 3.2. Let (X, ) = ({0,1},\)?, where X is the equidistribution on {0, 1}.
Let H := Q x Z with multiplication as follows

(g;n)(p,m) = (¢ +2"p,n +m).

We define an action of H on X by setting (hx), = 3-n(,—gq) for all p € Q, where
h = (¢,n) and © = (x,)peq. Clearly, (X,u) is an ergodic H-space. Hence the
Cartesian square (Z,v) = (X,p) x (X, u) is an ergodic H2-space. Denote by R
the H2-orbit equivalence relation. Since H is amenable, R is hyperfinite. Consider
the homomorphism 7 : H? — X(H) given by m(h1,ho)(h) = hihhy . Tt is easy
to verify that the kernel of 7 is isomorphic to the center of H. Since the center is
trivial, 7 is one-to-one. We put

W ={reX(H)|r(ly) =1y, 7(k") =1, and 7(h") = h"},

where ' = (1,0) and h” = (0,1). Clearly, W is an open neighborhood of the
identity in X(H). It is a routine to verify that 7(s)W NW = () for every nontrivial
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s € H?. Now we define a cocycle o : R — X(H) by setting 0(z,s2) =n(s)" 1,2 € Z
and s € H2. Let S := {(2,y) € R | o(2,y)(1g) = 1x}. Notice that S is ergodic,
since it contains an ergodic subrelation generated by the diagonal (Bernoulli) Q-
action on Z = X x X. For each h € H, we define a map ¢, : Z — Z by setting
én(z) = sz, where s = (1y,h) € H?. Then o(z,¢n(2))(0) = h, i.e. {dn}nhen are
choice functions for § € R and o is the corresponding cocycle. We claim that
S is not quasinormal in R. Suppose the contrary: there exists a closed subgroup
G C X(H) and a Borel map ¢ : Z — X(H) such that the cocycle §: R 3 (z,y) —
#(2)"to(z,y)p(y) € L(H) takes values and has dense range in G. Choose an open
set U C X(H) and a neighborhood O C X(H) of Idy such that UOU~! ¢ W
and v(¢~1(U)) > 0. By assumption, there are a subset A C Z and a nontrivial
s € H? with v(A) > 0, ANsA C ¢~}(U), and B(sz,2) € O for all z € A. Then
W #m(s) =o0(sz,2) e UOU~L C W for all z € A, a contradiction.
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