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Abstract. We introduce a notion of quasinormality for a nested pair S ⊂ R of
ergodic discrete hyperfinite equivalence relations of type II1. (This is a natural

extension of the normality concept due to Feldman-Sutherland-Zimmer [FSZ].) Such

pairs are characterized by an irreducible pair F ⊂ Q of countable amenable groups
or rather (some special) their Polish closure F ⊂ Q. We show that “most” of ergodic

subrelations of R are quasinormal and classify them. An example of non quasinormal

subrelation is given. We prove as an auxiliary statement that two cocycles of R with
dense ranges in a Polish group are weakly equivalent.

0. Introduction

It is well known that two ergodic finite measure preserving actions of countable
amenable groups are orbit equivalent [Dy], [CFW]. This can be rephrased in equiv-
alent terms of measured equivalence relations [FM]: there exists the unique (up to
isomorphism) hyperfinite discrete ergodic equivalence relation, say R, of type II1.
A natural subsequent problem that arises here is to study subrelations of R and
this is the main concern of the present paper.

It was shown in [FSZ] how to associate to any pair S ⊂ R of discrete ergodic
type II1 equivalence relations, a countable index set J and a cocycle σ : R → Σ(J),
where Σ(J) is the full permutation group of J . The cardinality of J is called the
index of S ⊂ R and related closely to the Jones index in the study of sub-von-
Neumann-algebras [Jo]. The cocycle σ is called index cocycle of S ⊂ R. The weak
equivalence class of σ depends only on the isomorphism class of the pair S ⊂ R.

J. Feldman, C. E. Sutherland and R. J. Zimmer provided an elegant classification
of ergodic hyperfinite pairs S ⊂ R in the following two cases: (a) S is normal, (b) S
is of finite index in R [FSZ]. Remark that the case (b) was considered earlier by
M. Gerber in a different context—she classified the finite extensions of ergodic prob-
ability preserving transformations up to the “factor orbit equivalence” [Ge]. The
purpose of this paper is to extend the above results to a wider class of subrelations,
namely quasinormal ones.

We call S quasinormal if σ (or its restriction to S) is regular, i.e. σ is cohomol-
ogous to a cocycle with dense range in a closed subgroup of Σ(J). The concept of
quasinormality was introduced in a different way in a previous paper of the author
[Da, §4], where the problem of genericity for extensions of S-cocycles to R-cocycles
with values in amenable locally compact groups was discussed (see also [GLS]). We
show that the above definition is equivalent to [Da, Definition 4.1].

Before proceeding with the statements of our main results, we remind some
standard notions of the orbit theory. Let P be a discrete measured equivalence
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relation on a standard probability space (X,B, µ). By the full group [P] we mean
the group of automorphisms of X whose orbits are contained in P-classes. The
normalizer N [R] of [P] is the group of automorphisms of X which preserve P (see
§2 for the rigorous definitions). Two R-subrelations S1 and S2 are R-conjugate if
S1 = (T × T )S2 for a transformation T ∈ N [R].

We say that a pair F ⊂ Q of Polish groups is irreducible if F contains no
nontrivial closed normal subgroups of Q.

Theorem 0.1 (Canonical Form for Quasinormal Subrelations). Let S be an
ergodic quasinormal subrelation of R. There exist an ergodic subrelation P ⊂ S, a
countable amenable group Q ⊂ N [P], and a subgroup F of Q such that Q ∩ [P] =
{Id}, F ⊂ Q is irreducible, R is generated by P and Q and S is generated by P
and F . Moreover, the index cocycle may be realized as σ = ρ ◦ θ : R → Σ(F\G),
where θ : R → Q is given by θ(x, qy) = q for all (x, y) ∈ P and q ∈ Q, and ρ is the
Cayley representation of Q in Σ(F\Q) as right translations.

Notice that the pair F ⊂ Q is not determined uniquely (up to isomorphism) by
S. That is why we need to introduce some special equivalence relation for these
objects as follows. Denote by Q (resp. F ) the closure of ρ(Q) (resp. the closure
of ρ(F )) in Σ(F\Q) endowed with the usual Polish topology. It is easy to see that
F = {q ∈ Q | q(F ) = F}. Hence F is an open subgroup of Q and F ⊂ Q is an
irreducible pair of Polish groups.

Definition 0.2. We say that two irreducible pairs of countable groups F1 ⊂ Q1

and F2 ⊂ Q2 are weakly isomorphic if there exists a continuous isomorphism of Q1

onto Q2 which takes F 1 onto F 2.

Theorem 0.3 (Classification of Quasinormal Subrelations). There is a bi-
jective correspondence between the ergodic quasinormal subrelations S of R (up to
R-conjugacy) and the weak isomorphism classes of irreducible pairs of countable
amenable groups F ⊂ Q. Furthermore, F ⊂ Q is related to S as it is described in
Theorem 0.1.

Notice that the normal subrelations are quasinormal—they correspond exactly
to the case where F is trivial. Clearly, the subrelations of finite index are also
quasinormal, since the index cocycle as well as every cocycle with values in a finite
group is regular. In both cases Q = Q, F = F and Theorem 0.3 gives [FSZ,
Theorems 3.1, 3.2].

The outline of the paper is as follows. §1 is of a preliminary nature. We study
here cocycles of R with values in Polish groups and extend some results from [GS],
where the groups were assumed to be locally compact. In particular, we prove that
two cocycles with dense ranges in a Polish group are weakly equivalent. The second
section introduces an idea of quasinormal pair S ⊂ R (cf. with [Da, §4]). The proofs
of Theorems 0.1 and 0.3 and related problems are contained here. In the final §3,
we show that a “typical” (in the Baire category sense) ergodic subrelation of R
is quasinormal but non normal. We also provide an example of non quasinormal
subrelation.

Remark that throughout this paper equivalence relations are of type II1. How-
ever, all the results are also valid for type II∞ equivalence relations with minor
modifications of the arguments. We hope to treat the type III case in a later
paper.
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1. Cocycles of measured equivalence relations
with values in Polish groups

We begin this section with some background on orbit theory. Let (X,B, µ)
be a standard probability space. Denote by Aut(X,B, µ) the group of its auto-
morphisms, i.e. Borel, one-to-one, onto, µ-preserving transformations; we do not
distinguish between two of them which agree on a µ-conull subset. Let R ⊂ X×X
be a Borel discrete (i.e. each equivalence class is countable) equivalence relation.
We shall assume that R is µ-preserving, i.e. there exists a countable subgroup
Γ ⊂ Aut(X,µ) such that R is the Γ-orbital equivalence relation. We endow R
with the induced Borel structure and the σ-finite measure µR, dµR(x, y) = dµ(x),
(x, y) ∈ R. Write also

[R] = {q ∈ Aut(X,µ) | (qx, x) ∈ R for µ-a.a. x ∈ X},
N [R] = {q ∈ Aut(X,µ) | (qx, qy) ∈ R for µR-a.a. (x, y) ∈ R}

for the full group of R and the normalizer of [R] respectively. R is called hyperfinite
if it can be generated by a single automorphism.

Let G be a Polish group and 1G the identity of G. A Borel map α : R → G is a
(1-)cocycle of R if

α(x, y)α(y, z) = α(x, z) for a.a. (x, y), (y, z) ∈ R.

We do not distinguish between two cocycles if they agree µR-a.e. Two cocycles,
α, β : R → G, are cohomologous (α ≈ β), if

α(x, y) = φ(x)−1β(x, y)φ(y) for µR-a.a. (x, y),

where φ : X → G is a Borel function (we call it a transfer function from α to β).
A cocycle is a coboundary if it is cohomologous to the trivial one.

Two cocycles α, β : R → G are weakly equivalent if there is a transformation
T ∈ N [R] such that α ≈ β ◦ T , where the cocycle β : R → G is defined by
β ◦ T (x, z) = β(Tx, Tz).

We assume from now on that R is ergodic, i.e. every R-saturated Borel subset
is µ-null or µ-conull.

We say that α has dense range in G if for every A ∈ B, µ(A) > 0, and an open
subset O ⊂ G there exists B ∈ B and a transformation q ∈ [R] with µ(B) > 0,
B ∪ qB ⊂ A, and α(x, qx) ∈ O for all x ∈ B.

Proposition 1.1. Let F,H be closed subgroups of G and two cocycles α, β : R → G
take values and have dense ranges in F and H respectively. If α ≈ β then F and
H are conjugate in G.

Proof. Let α(x, y) = φ(x)−1β(x, y)φ(y) at µR-a.e. (x, y) ∈ R for a Borel function
φ : X → G. Take any proper value g0 ∈ G of φ, which means that µ(φ−1(O)) > 0
for every neighborhood O of g0. We shall prove that F = g−1

0 Hg0. Given any
g ∈ H and a neighborhood V of g−1

0 gg0, we choose neighborhoods U of g0 and
W of g with U−1WU ⊂ V . Since β has dense range in H, there exists a Borel
subset A ⊂ X and a transformation q ∈ [R] such that µ(A) > 0, A ∪ qA ⊂ φ−1(U)
and β(x, qx) ∈ W for all x ∈ A. Remind that α(R) ⊂ F and hence V ∩ F 6= ∅.
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Since V is an arbitrary neighborhood of g−1
0 gg0, we deduce that g−1

0 gg0 ∈ F . Thus
g−1
0 Hg0 ⊂ F . The converse inclusion is established in a similar way. �

Remark 1.2. It is easy to deduce from the above proof that the transfer function
φ is of the form φ(x) = ψ(x)g′ a.e. for some g′ ∈ G and a Borel function φ : X →
NG(H), where NG(H) := {g ∈ G | gHg−1 = H} is the normalizer of H in G.

Definition 1.3. A cocycle α : R → G is called regular if it is cohomologous to a
cocycle which takes values and has dense range in a closed subgroup H of G.

We denote by 〈α〉 the conjugacy class of H , i.e. 〈α〉 = {gHg−1 | g ∈ G}. It
is well defined by Proposition 1.1. It is obvious that given a cocycle α with dense
range in G, then α◦T also has dense range in G for every transformation T ∈ N [R].
We deduce from this fact and Proposition 1.1

Corollary 1.4. Let α and β be weakly equivalent cocycles. If α is regular then so
is β and 〈α〉 = 〈β〉.

Remind that an equivalence relation P is of type I if there is a Borel subset
A ⊂ X, µ(A) > 0, such that for a.e. x ∈ X there is a unique y ∈ A with (x, y) ∈ R.
We call such A a P-fundamental domain. It is well known that every cocycle of an
equivalence relation of type I is a coboundary [FM].

Lemma 1.5 (cf. with [GS, Proposition 1.1]). Let R =
⋃∞

n=1Rn for an increasing
sequence of type I equivalence relations R1 ⊂ R2 ⊂ . . . . Given two cocycles α, β :
R → G, consider two sequences of Borel maps an, bn : X → G such that α(x, y) =
an(x)an(y)−1, β(x, y) = bn(x)bn(y)−1 for a.e. (x, y) ∈ Rn. Define a sequence of
maps fn : X → G by setting fn(x) = an(x)bn(x)−1. If fn converges a.e. to a map
φ : X → G as n→∞ then α(x, y) = φ(x)β(x, y)φ(y)−1 for a.e. (x, y) ∈ R.

Proof. For a.e. (x, y) ∈ Rn and every m > n we have

fm(x)β(x, y)fm(y)−1 = am(x)bm(x)−1bm(x)bm(y)−1bm(y)am(y)−1

= am(x)am(y)−1 = α(x, y),

since Rn ⊂ Rm. Pass to the limit to obtain φ(x)β(x, y)φ(y)−1 = α(x, y) for a.e.
(x, y) ∈ Rn, n ∈ N. �

Proposition 1.6. Let R be hyperfinite and G′ a countable dense subgroup of G.
Given a cocycle α : R → G, there exists a cocycle β ≈ α with β(R) ⊂ G′.

Proof. Since R is hyperfinite, there exists an increasing sequence of type I equiv-
alence relations R1 ⊂ R2 ⊂ . . . with R =

⋃∞
n=1Rn. Let Fn stand for a Rn-

fundamental domain. We also put F0 = X. Define a Borel map Tn : X → Fn by
setting Tnx = y if (x, y) ∈ Rn. Notice that Tn is Rn-invariant—i.e. Tnx = Tny for
a.e. (x, y) ∈ Rn—and

(2-1) α(x, y) = α(x, Tnx)α(Tnx, Tny)α(Tny, y) = α(x, Tnx)α(y, Tny)−1

for a.e. (x, y) ∈ Rn. Consider the family of Borel maps an : Fn−1 → G given by
an(x) = α(x, Tnx). Then

(2-2) α(x, Tnx) = α(x, T1x)α(T1x, T2x) . . . α(Tn−1x, Tnx)

= a1(x)a2(T1x) . . . an(Tn−1x)
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for a.e. x ∈ X. Conversely, it is easy to see that an arbitrary family of Borel
functions an : Fn−1 → G, n ∈ N, determines a cocycle α : R → G by (2-1)
and (2-2).

Let {Wn}∞n=1 be a fundamental system of neighborhoods of 1G with the following
properties: W−1

n = Wn and Wn+1Wn+1Wn+1 ⊂ Wn, n ∈ N. Enumerate the
elements of G′: G′ = {gi}∞i=1. For each n ∈ N, we have G =

⋃∞
i=1Wngi. Hence

there is mn ∈ N such that µ(An) > 1− 2−n, where

An := {x ∈ X | α(x, Tnx) ∈
mn⋃
i=1

Wn+2gi}.

Let Vn be a neighborhood of 1G with giVng
−1
i ⊂Wn for all i = 1, . . . ,mn−2, n > 2.

Take a family of Borel maps bn : Fn−1 → G′ such that an(x)bn(x)−1 ∈ Vn+1 for all
x ∈ Fn−1. This family determines a cocycle β : R → G. We have for k ∈ N and
x ∈

⋂n+k−1
i=n Ai

fn+k := α(x, Tn+kx)β(x, Tn+kx)−1

= α(x, Tn+k−1x)an+k(Tn+k−1x)bn+k(Tn+k−1x)−1β(x, Tn+k−1x)−1

∈ α(x, Tn+k−1x)Vn+k+1β(x, Tn+k−1x)−1

= α(x, Tn+k−1x)Vn+k+1α(x, Tn+k−1x)−1α(x, Tn+k−1x)β(x, Tn+k−1x)−1

⊂Wn+k+1Wn+k+1Wn+k+1α(x, Tn+k−1x)β(x, Tn+k−1x)−1

⊂Wn+kα(x, Tn+k−1x)β(x, Tn+k−1x)−1 ⊂ . . .

⊂Wn+kWn+k−1 . . .Wn+1α(x, Tnx)β(x, Tnx)−1 ⊂Wnfn(x).

Since µ(
⋂n+k−1

i=n Ai) ≥ 1 − 2−n − 2−n−1 − · · · − 2−n−k+1 ≥ 1 − 2−n+1 → 1, the
sequence fn converges in measure as n→∞. Hence a subsequence of fn converges
a.e. and α ≈ β by Lemma 1.4. �

Remark 1.7. If G′ is normal in G then the conclusion of Proposition 1.5 follows from
the Connes-Krieger cohomology lemma (see [Su], [JT]). For G locally compact (and
any G′) the conclusion of the proposition was proved in [GS, Proposition 1.2]. We
modified the argument of V. Ya. Golodets and S. D. Sinelshchikov in such a way
to avoid the use of the local compactness.

Proposition 1.8. Let R be hyperfinite. Given a cocycle α : R → G with dense
range in G, there exists a cocycle β ≈ α such that {(x, y) ∈ R | β(x, y) = 1G} is an
ergodic subrelation of R.

Proof. By virtue of Dye theorem [Dy] we may assume that (X,B, µ) and R are of
the following special form:

(a) (X,µ) = ({0, 1}, λ)N, where λ is the equidistribution on {0, 1}, i.e. λ(0) =
λ(1) = 0.5,

(b) R =
⋃∞

n=1Rn, where Rn = {(x, y) ∈ X ×X | xi = yi for all i ≥ n}.
Let {Wn}∞n=1 be a fundamental system of neighborhoods of 1G with the properties
as above. We construct inductively an increasing sequence S1 ⊂ S2 ⊂ . . . of type I
subrelations of R. Describe in general the n-th step.

Let Fn := {x | xi = 0 for all i < n}. Clearly, µ(Fn−1 \ Fn) = µ(Fn). Since α
has dense range in G, we apply the standard exhaustion argument to construct a
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Borel isomorphism tn : Fn−1 \Fn → Fn such that (x, tnx) ∈ R and α(x, tnx) ∈Wn.
Define a Borel map Tn : X → Fn by setting

Tnx =
{
x, for x ∈ Fn

tnTn−1Tn−2 . . . T1, otherwise.

Now we put Sn = {(x, y) | Tnx = Tny}. Since the Sn-class of a.e. x ∈ X is finite,
Sn is of type I. Moreover, Fn is a Sn-fundamental domain. Clearly, S1 ⊂ · · · ⊂
Sn ⊂ R.

Now we put S =
⋃∞

n=1 Sn. Then S is an ergodic subrelation of R. Actually, if
a Borel function f : X → R is Sn-invariant then it does not depend on the first
n-coordinates of x. Since n is arbitrary, f equals a.e. to a constant, as desired.

We claim that α � S is a coboundary. Notice that α(x, y) = α(x, Tnx)α(y, Tny)−1

for a.e. (x, y) ∈ Sn and

fn+k := α(x, Tn+k) = α(x, Tn+k−1x)α(Tn+k−1x, tn+kTn+k−1x)

∈ α(x, Tn+k−1x)Wn+k ⊂ · · · ⊂ α(x, Tnx)Wn+1Wn+2 . . .Wn+k ⊂ fn(x)Wn

for a.e. x ∈ X. Hence fn converges a.e. to a map φ : X → G. By Lemma 1.5
α(x, y) = φ(x)φ(y)−1 for a.e. (x, y) ∈ S. This implies that the cocycle β(x, y) :=
φ(x)−1α(x, y)φ(y), (x, y) ∈ R, satisfies the conclusion of the proposition. �

We conclude this section with an extension of the remarkable Uniqueness Theo-
rem for Cocycles (due to V. Ya. Golodets and S. D. Sinelshchikov) to cocycles with
dense ranges in Polish groups.

Theorem 1.9. Let α, β : R → G be two cocycles with dense ranges in G. If R is
hyperfinite then α and β are weakly conjugate.

Proof. This is almost the same as that of [GS, Lemma 1.12], where G was as-
sumed to be locally compact, but one should use Proposition 1.5 instead of [GS,
Proposition 1.2]. �

2. Quasinormal subrelations

We begin this section with a brief exposition of the basic notions of measurable
index theory [FSZ].

Let R be an ergodic µ-preserving equivalence relation on (X,B, µ) and S an
ergodic subrelation of R. Then there exist N ∈ N ∪ {∞} and Borel functions
φj : X → X so that {S[φj(x)] | 0 ≤ j < N} is a partition of R[x], where R[x]
(resp. S[x]) stands for the R- (resp. S-) class of x. N is called the index of S in R
and {φj}j are called choice functions for the pair S ⊂ R. We may assume without
loss in generality that φj ∈ Aut(X,µ), j ∈ J , and φ0(x) = x for all x ∈ X. Denote

by Σ(J) the full permutation group of the set J def= {0, 1, . . . , N − 1} for N <∞ or
J

def= {0, 1, 2, . . . } for N = ∞. We define the index cocycle σ : R → Σ(J) by setting
σ(x, y)(i) = j if S[φi(y)] = S[φj(x)]. Notice that although choice functions are
non-unique, the cohomological class of σ is independent of their particular choice
and is an invariant of S ⊂ R. Moreover, any cocycle cohomologous to an index
cocycle arises from a suitable selection of choice functions.

Two subrelations S1,S2 of R are said to be R-conjugate if there is a transfor-
mation T ∈ N [R] such that (T × T )S1 = S2. In view of [FSZ, Theorem 1.6] S1 is
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isomorphic to S2 if and only if their indices are equal and their index cocycles are
weakly equivalent.

Let σ stand for the index cocycle of S ⊂ R. Then S is said to be normal in R
if the restriction σ � S of σ to S is a coboundary. Equivalently, there are choice
functions {φj}j∈J with φj ∈ N [S], j ∈ J . If, in addition, R is hyperfinite, then by
[FSZ, §2] there is a countable amenable group Q ⊂ N [S] with Q ∩ [S] = 1Q and
such that R is generated by S and Q.

Definition 2.1. S is called quasinormal if σ is regular.

From now on R is an ergodic hyperfinite equivalence relation on (X,B, µ).

Proof of Theorem 0.1. By Proposition 1.7 there exists an index cocycle σ : R →
Σ(J) such that the subrelation P := {(x, y) ∈ R | σ(x, y) = Id} is ergodic. Replac-
ing, if necessary, S by a R-conjugated subrelation we may assume that σ is deter-
mined by a family of choice functions {φj}j∈J with the properties: σ(x, φj(x))(0) =
j for all x ∈ X, j ∈ J and S = {(x, y) ∈ R | σ(x, y)(0) = 0} (see [FSZ, Theo-
rem 1.6]). Clearly, P ⊂ S and φj ∈ N [P], j ∈ J . Let {ψi}i∈I be choice functions
for the pair P ⊂ S. We claim that ψi ∈ N [P]. Actually, given (x, y) ∈ P, we have

(ψi(x), ψi(y)) ∈ P ⇐⇒ σ(ψi(x), ψi(y))(j) = j for all j ∈ J.

Since σ(ψi(x), ψi(y)) = σ(ψi(x), φj◦ψi(x))σ(φj◦ψi(x), φj◦ψi(y))σ(φj◦ψi(y)), ψi(y))
and σ(φj ◦ψi(x), φj ◦ψi(y))(0) = 0, we deduce that σ(ψi(x), ψi(y)) = 0 for all j ∈ J
and hence ψi ∈ N [P], as claimed. Notice that {ψi ◦ φj}i∈I,j∈J are choice functions
for P ⊂ R. As in [FSZ], we define a multiplication law on I × J by setting

(i1, j1) ∗ (i2, j2) = (i3, j3) ⇐⇒ (ψi1 ◦ φj1 ◦ ψi2 ◦ φj2(x), ψi3 ◦ φj3(x)) ∈ P a.e.

Then (I×J, ∗) is a countable amenable group, say Q, and (I×{0}, ∗) is a subgroup
of Q, say F [FSZ]. Moreover, the map v : Q 3 q = (i, j) 7→ ψi ◦ φj ∈ N [P] is an
outer near homomorphism, i.e. (a) v(q) ∈ [P] if and only if q = 1Q, (b) v(q1 ∗ q2) ∈
v(q1)v(q2)[P]. Since Q is amenable, there exists a map w : Q → [P] such that the
map Q 3 q 7→ v(q)w(q) ∈ N [P] is an outer homomorphism [FSZ]. Thus Q can be
viewed as a subgroup ofN [P]. Clearly, {φjw((0, j))}j∈J are choice functions for S ⊂
R (they determine the very same index cocycle σ) and {ψiw((i, 0))}i∈I are choice
functions for P ⊂ S. Hence the following properties are satisfied: (a) Q∩ [P] = Id,
(b) R is generated by P and Q, (c) S is generated by P and F . For (i, j) ∈ Q and
a.e. (x, y) ∈ P we have

σ(x, ψi ◦ φj(y))(j1) = j2 ⇐⇒ (φj1 ◦ ψi ◦ φj(x), φj2(y)) ∈ S
⇐⇒ ∃i1 ∈ I with (ψi1◦φj1◦ψi◦φj(x), φj2(y)) ∈ P ⇐⇒ (i1, j1)∗(i, j) = (0, j2).

It is clear that the map π : Q 3 (i, j) 7→ j ∈ J = F\G is the F -quotient map
taking F to {0}. Hence ρ((i, j))(j1) = π((i1, j1) ∗ (i, j)) = π((0, j2)) = j2. To put
it in another way, σ(x, qy)(j1) = ρ(q)(j1) for a.e. (x, y) ∈ P, q ∈ Q, j1 ∈ F\G,
i.e. σ = ρ ◦ θ, as desired. To complete the proof, we observe that the kernel of ρ is
trivial, since Σ(J) acts freely on J . This implies that F ⊂ Q is irreducible. �

Remark 2.2. We observe that σ takes values in ρ(Q) and ρ(Q) ∈ 〈σ〉. In a similar
way, the restriction of σ to S takes values in ρ(F ) and ρ(F ) ∈ 〈σ � S〉.

The proof of Theorem 0.3 is divided into several lemmas.
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Lemma 2.3. Let S1,S2 be two ergodic quasinormal subrelations of R. They are
R-conjugate if and only if their indices are equal and 〈σ1〉 = 〈σ2〉, where σ1 and σ2

denote the index cocycles of S1 and S2 respectively.

Proof follows from Theorem 1.9 and [FSZ, Theorem 1.6]. �

Lemma 2.4. Let F1 ⊂ Q1 and F2 ⊂ Q2 be two irreducible pairs of countable
amenable groups corresponding to a quasinormal subrelation S of R as in Theo-
rem 0.1. Then they are weakly isomorphic.

Proof. Without loss of generality we may assume that Qi is a transitive subgroup
of Σ(J), Fi = {q ∈ Qi | q(0) = 0}, the index cocycle σi takes values in Qi ⊂ Σ(J)
and has dense range in Qi, and the restriction σi � Si takes values in Fi and has
dense range in Fi, i = 1, 2. Since σ1 ≈ σ2, there is a Borel function φ : X → Σ(J)
with σ1(x, y) = φ(x)−1σ2(x, y)φ(y) for a.e. (x, y) ∈ R. Let τ ∈ Σ(J) be a proper
value of φ. By Proposition 1.1 Q1 = τ−1Q2τ , F1 = τ−1F2τ and hence the pairs
F1 ⊂ Q1 and F2 ⊂ Q2 are weakly isomorphic. �

Lemma 2.5. Let F ⊂ Q correspond to S as in Theorem 0.1 and T be any auto-
morphism from N [R]. Then F ⊂ Q corresponds also to the R-subrelation (T×T )S.

Lemma 2.6. For each irreducible pair of countable amenable groups F ⊂ Q there
exists a quasinormal ergodic subrelation S ⊂ R such that F ⊂ Q corresponds to S.

Proof. It is well known that Q can be embedded into N [R] in such a way that
Q ∩ [R] = Id. Denote by R′ (resp. S ′) the equivalence relation generated by R
and Q (resp. by P and F ). Since R′ is hyperfinite, there is a transformation
T ∈ Aut(X,µ) with (T × T )R′ = R. Clearly, the subrelation S := (T × T )S ′ is as
desired. �

Proof of Theorem 0.3. In view of Theorem 0.1 and Lemmas 2.4–2.6 the map {R-
conjugacy class of S} 7→ {the weak isomorphism class of F ⊂ Q as in Theorem 0.1}
is well defined and onto. It remains to verify the injectivity. Let S1 and S2 be
two quasinormal subrelations of R such that the corresponding pairs F1 ⊂ Q1 and
F2 ⊂ Q2 are weakly isomorphic. Since Card(F1\Q1) = Card(F2\Q2), the R-indices
of S1 and S2 are equal. Let σ1, σ2 : R → Σ(J) stand for the index cocycles of S1

and S2 respectively. It is clear that Q1 and Q2 viewed as closed subgroups of Σ(J)
are conjugate. Since Q1 ∈ 〈σ1〉 and Q2 ∈ 〈σ2〉, it follows from Lemma 2.3 that S1

and S2 are R-conjugate. �

Remind that S is normal if σ � S is a coboundary. Hence it is natural to state

Proposition 2.7. S is quasinormal if and only if σ � S is regular.

Proof. (=⇒) Without loss of generality we may assume that σ takes values and
has dense range in a closed transitive subgroup G ⊂ Σ(J) and S = {(x, y) ∈ R |
σ(x, y)(0) = 0}. Since H := {τ ∈ G | τ(0) = 0} is an open subgroup of G and
S = σ−1(H), it follows that σ � S has dense range in H.

(⇐=) Let σ � S take values and has dense range in a closed subgroup H ⊂ Σ(J).
By Proposition 1.8 we may assume that P := {(x, y) ∈ S | σ(x, y) = Id} is an
ergodic subrelation. It remains to repeat the argument of Theorem 0.1 almost
literally to deduce that S ⊂ R has the structure described in Theorem 0.1. �
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3. Generic properties of subrelations

Denote by Z1 the set ofR-cocycles with values in Σ(J). Let λ be a µR-equivalent
probability measure on R. It is well known that Z1 endowed with the topology of
convergence in λ is a Polish space [FM]. This topology is unaffected if we replace
λ with an equivalent probability measure. Let δ stand for Haar (σ-finite) measure
on J . The group Aut(X × J, µ × δ) of µ × δ-preserving automorphisms of X × J
is Polish when endowed with the weak topology. Remind that Rn → R weakly in
Aut(X × J, µ × δ) if (µ × δ)(RnA4RA) + (µ × δ)(R−1

n A4R−1A) → 0 as n → ∞
for each Borel subset A ⊂ X × J with (µ × δ)(A) < ∞. By [CK] the ergodics,
say E , form a dense Gδ in Aut(X × J, µ × δ). Since R is hyperfinite, there exists
an ergodic transformation T ∈ Aut(X,µ) such that R is the T -orbital equivalence
relation. Consider the map Φ : Z1 3 α 7→ Tα ∈ Aut(X × J, µ × δ), where Tα is
given by Tα(x, j) = (Tx, α(x)(j)). It is a routine to verify that Φ is continuous.
Let Z1

ind stand for the set of index cocycles, i.e.

Z1
ind = {α ∈ Z1 | α is the index cocycle of some ergodic subrelation S ⊂ R}

Clearly, Z1
ind 6= ∅. Since by [FSZ, Proposition 1.5 and Theorem 1.6(a)] Z1

ind =
Φ−1(E), it follows that Z1

ind is a Gδ in Z1 and hence a Polish space when endowed
with the induced topology. We set

Z1
max := {α ∈ Z1 | α is quasinormal and 〈α〉 = {Σ(J)}}.

Let Q be the group of finite permutations of J , F := {τ ∈ Q | τ(0) = 0} , and S
the quasinormal subrelation of R corresponding to F ⊂ Q by Theorem 0.3. Since
Q is dense in Σ(J), the index cocycle of S belongs to Z1

max and hence Z1
max 6= ∅.

Only a slight modification of the routine argument from [PS] or [CHP, Theorem 3]
is needed to prove that Z1

max is a dense Gδ in Z1. Since Z1
max ⊂ Z1

ind, we obtain

Proposition 3.1. Z1
max is a dense Gδ in Z1

ind.

In view of this statement it is of interest to give an example of non quasinormal
ergodic subrelation.

Example 3.2. Let (X,µ) = ({0, 1}, λ)Q, where λ is the equidistribution on {0, 1}.
Let H := Q o Z with multiplication as follows

(q, n)(p,m) = (q + 2np, n+m).

We define an action of H on X by setting (hx)p = x2−n(p−q) for all p ∈ Q, where
h = (q, n) and x = (xp)p∈Q. Clearly, (X,µ) is an ergodic H-space. Hence the
Cartesian square (Z, ν) = (X,µ) × (X,µ) is an ergodic H2-space. Denote by R
the H2-orbit equivalence relation. Since H is amenable, R is hyperfinite. Consider
the homomorphism π : H2 → Σ(H) given by π(h1, h2)(h) = h1hh

−1
2 . It is easy

to verify that the kernel of π is isomorphic to the center of H. Since the center is
trivial, π is one-to-one. We put

W := {τ ∈ Σ(H) | τ(1H) = 1H , τ(h′) = h′, and τ(h′′) = h′′},

where h′ = (1, 0) and h′′ = (0, 1). Clearly, W is an open neighborhood of the
identity in Σ(H). It is a routine to verify that π(s)W ∩W = ∅ for every nontrivial
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s ∈ H2. Now we define a cocycle σ : R → Σ(H) by setting σ(z, sz) = π(s)−1, z ∈ Z
and s ∈ H2. Let S := {(z, y) ∈ R | σ(z, y)(1H) = 1H}. Notice that S is ergodic,
since it contains an ergodic subrelation generated by the diagonal (Bernoulli) Q-
action on Z = X × X. For each h ∈ H, we define a map φh : Z → Z by setting
φh(z) = sz, where s = (1H , h) ∈ H2. Then σ(z, φh(z))(0) = h, i.e. {φh}h∈H are
choice functions for S ⊂ R and σ is the corresponding cocycle. We claim that
S is not quasinormal in R. Suppose the contrary: there exists a closed subgroup
G ⊂ Σ(H) and a Borel map φ : Z → Σ(H) such that the cocycle β : R 3 (z, y) 7→
φ(z)−1σ(z, y)φ(y) ∈ Σ(H) takes values and has dense range in G. Choose an open
set U ⊂ Σ(H) and a neighborhood O ⊂ Σ(H) of IdH such that UOU−1 ⊂ W
and ν(φ−1(U)) > 0. By assumption, there are a subset A ⊂ Z and a nontrivial
s ∈ H2 with ν(A) > 0, A ∩ sA ⊂ φ−1(U), and β(sz, z) ∈ O for all z ∈ A. Then
W 63 π(s) = σ(sz, z) ∈ UOU−1 ⊂W for all z ∈ A, a contradiction.
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