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Abstract. Let 1 → A → E → G → 1 be a short exact sequence of locally compact
groups, A amenable. Given a recurrent G-valued cocycle ω of an ergodic nonsingular
transformation, we consider the subset of those E-valued cocycles whose G-projection
is ω. It is proved that for a generic cocycle from this subset the restriction of the
associated (Mackey) E-action to A is trivial. This improves the results of K. Dajani
[D1, D3] and answers a question from [D1].

0. Introduction

Consider a short exact sequence of locally compact second countable (l.c.s.c.)
groups

(0-1) 1 → A → E
π→ G → 1.

Let T be an ergodic transformation of a Lebesgue space. We endow the subset of
all E-valued cocycles of T with the (Polish) topology of convergence in measure. It
is well known that for a generic E-valued cocycle of T the associated Mackey action
of E is trivial [PS, CHP]. We study in this paper a more subtle problem. Given a
G-valued cocycle ω of T , we denote by Z1

ω the closed subset of E-valued cocycles
whose G-quotient is ω. Our purpose is to show that for a generic cocycle from Z1

ω

the associated Mackey E-action restricted to A is trivial, i.e. A is contained in the
stability group of a.e. point, or, equivalently, A is a subgroup of the kernel of the
unitary representation of E generated by this action (provided that ω is recurrent
and A amenable). This strengthens the main result of K. Dajani from [D3], where
it was proved that a generic cocycle from Z1

ω is recurrent and the intersection rA of
its essential range (i.e. an analogue of the Krieger-Araki-Woods asymptotic ratio
set) with A contains infinity. (She additionally assumed that A is Abelian and
noncompact and (0-1) splits.) She also asked in [D1] whether the subset of cocycles
from Z1

ω with rA = {1,∞} is residual? As it follows from our result stating that
generically rA = G∪∞ the answer is quite opposite: this subset is of first category.

Notice that the main result of this paper turned out to be useful in studying
the centralizer of ergodic skew products [DL]. We also study the A-cohomology
relation on the space of E-valued cocycles: two cocycles are A-cohomologous if they
are cohomologous in an ordinary sense and, besides, admit a transfer function with
values in A. It suffices to restrict ourselves to studying Z1

ω, since it is saturated with

1991 Mathematics Subject Classification. Primary 28D99, 46L55; Secondary 20Jxx.
Key words and phrases. Measured equivalence relation, cocycle, group extension.

Typeset by AMS-TEX

1



2

respect to the A-cohomology relation—see Sections 2, 3 for details. Remark that
the subject of this work is related closely to the theory of the so-called ‘H-cocycles’
elaborated by several authors [D1–D3, Ul, Be]. In this paper we demonstrate a
different approach to the problems considered there: we first translate them into
the language of usual cocycles and then apply a wealth of the low dimensional
cohomology theory for hyperfinite equivalence relations [FM, S1, S3, Z2, GS1, GS2,
Da]. This permits us to extend and refine many of the results from [D1–D3, Be]
providing them with new short proofs.

The outline of the paper is as follows. Section 1 contains a background on mea-
sured equivalence relations and their cohomology. In Section 2 we find an “ergodic”
criterion for the sequence (0-1) to split (Theorem 2.4). We also find conditions un-
der which an ergodic A-action can be extended up to an E-action on the same
measure space (Proposition 2.5, cf. [Be]). Furthermore, the A-cohomology relation
for cocycles is studied. For example, A-analogues of the essential range and the
normalized essential range of a cocycle from Z1

ω are investigated in Proposition 2.7.
(The second one is an invariant for the A-cohomology). We also consider a natural
map from Z1

ω to the set of cocycles of the ω-skew product extension of T and study
its functoral (cohomological) properties in Remark 2.2 and Theorem 2.3. The inter-
play between these results and the theory of ‘H-cocycles’ is explained in details in
Section 3. The last Section 4 contains the main result of the paper—Theorem 4.4—
(about the generic property of Z1

ω) and explains its relation to K. Dajani’s work.
The author would like to thank S. Bezuglyi for a discussion on the subject.

1. Preliminaries

Let (X, B, µ) be a standard probability space. Denote by Aut(X, µ) the group
of its automorphisms, i.e. Borel, one-to-one, onto, µ-nonsingular transformations.
Throughout this paper we do not distinguish between two measurable maps which
agree on a conull subset. Given a Borel discrete µ-nonsingular equivalence relation
R ⊂ X×X, we endow it with the induced Borel structure and the σ-finite measure
µR, dµR(x, y) = dµ(x), (x, y) ∈ R, and write

[R] = {γ ∈ Aut(X, µ) | (γx, x) ∈ R for µ-a.a. x ∈ X},
N [R] = {θ ∈ Aut(X,µ) | (θx, θy) ∈ R for µR-a.a. (x, y) ∈ R}

for the full group of R and the normalizer of [R] respectively. For a countable
subgroup Γ of Aut(X, µ) we denote by RΓ the Γ-orbital equivalence relation (and
it is known that each R is of the form RΓ [FM]). R is called hyperfinite if it is
generated by a single transformation. R is of type I if the R-partition of X is
measurable. R is conservative if µ-a.e. ergodic component of this partition is
properly ergodic.

Let G be a l.c.s.c. group, 1G the identity in G, and λG the right Haar measure
on G. A Borel map α : R→ G is a (1-)cocycle of R if

α(x, y)α(y, z) = α(x, z)

for a.e. (x, y), (y, z) ∈ R. Two cocycles, α, β : R → G, are cohomologous (α ≈ β),
if

α(x, y) = φ(x)−1β(x, y)φ(y),
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for µR-a.e. (x, y) ∈ R, where φ : X → G is a Borel function (we call it a transfer
function). A cocycle is a coboundary if it is cohomologous to the trivial one. The
set of cocycles of R with values in G will be denoted by Z1(R, G). It is well known
that Z1(R, G) endowed with the topology of convergence in µR is a Polish space.
By H1(R, G) we denote the quotient space Z1(R, G)/≈.

Let R = RΓ. There is a cocycle ρµ ∈ Z1(R,R) such that ρµ(x, γx) = log dµ◦γ
dµ (x)

for all γ ∈ Γ at µ-a.e. x ∈ X. It is called the Radon-Nikodym cocycle of R. If
ρ ≡ 1 then µ is [R]-invariant. R is said to be of type II1 (II∞) if there exists a
finite (infinite, σ-finite) [R]-invariant measure on X equivalent to µ. Otherwise R
is of type III.

Let R and S be two equivalence relations on measure spaces (X, B, µ) and
(Y, G, ν) respectively and some cocycles α ∈ Z1(R, G) and β ∈ Z1(S, G) be given.
The pairs (R, α) and (S, β) (or, simply, α and β) are weakly equivalent if there is
a Borel isomorphism θ : X → Y so that µ ∼ ν ◦ θ, (θ × θ)(R) = S, and α ≈ β ◦ θ,
where the cocycle β ◦ θ ∈ Z1(R, G) is defined by β ◦ θ(x, z) = β(θx, θz).

Given a cocycle α ∈ Z1(R, G), we define an equivalence relation R ×α G on
(X×G, µ×λG) by setting (x, g) ∼ (y, h) if (x, y) ∈ R and h = gα(x, y). It is called
the α-skew product extension of R. We define a Borel nonsingular action Vα of G on
(X×G,µ×λG) as follows Vα(h)(x, g) = (x, hg). It is clear that Vα(h) ∈ N [R×α G]
for all h ∈ G. Hence Vα induces a new G-action on the measure space of R×α G-
ergodic components. It is called the Mackey action of G associated to α. We denote
it by Wα. Remark that Wα is ergodic if and only if R is. If two cocycles, α, β, are
weakly equivalent, then Wα and Wβ are conjugate.

α is recurrent (resp. transient) if R ×α G is conservative (resp. of type I). α
has dense range in G if Wα is the trivial action on a one-point set, i.e. the α-skew
product extension of R is ergodic. It is well known that the properties of cocycles
to be recurrent, transient, or to have dense range are invariant under the weak
equivalence.

We need the following results. Associate to every cocycle α ∈ Z1(R, G) a double
cocycle α0 = α× ρµ ∈ Z1(R, G× R), where ρµ the Radon-Nikodym cocycle of R.

Uniqueness Theorem for Cocycles [GS2, Theorem 3.1]. Let R and S be two
ergodic hyperfinite equivalence relations on standard probability spaces (X, B, µ)
and (Y, C, ν) respectively, and α ∈ Z1(R, G), β ∈ Z1(S, G) recurrent cocycles.

(i) If R and S are both of type II1 or II∞ and the Mackey actions Wα and
Wβ of G are conjugate then α and β are weakly equivalent.

(ii) If R and S are both of type III and the Mackey actions Wα0 and Wβ0 of
the group G×R associated to the double cocycles α0 and β0 respectively are
conjugate then α and β are weakly equivalent.

Existence Theorem for Cocycles [GS1, Corollary]. Let G be a l.c.s.c. group
and let an amenable nonsingular ergodic action V of G × R be given. Then there
are a discrete ergodic hyperfinite equivalence relation R and a recurrent cocycle
α ∈ Z1(R, G) such that V is conjugate to the Mackey action associated to α0.

Theorem on Amenability of Group Actions [GS1, p.523]. Let V = {V (g)}g∈G

be a nonsingular ergodic action of a l.c.s.c. group G on a standard measure space
(X,µ). Then V is amenable if and only if the V (G)-orbital equivalence relation on
X is amenable and for µ-a.e. x ∈ X the stability group Gx

def= {g ∈ G | V (g)x = x}
at x is amenable.
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The definitions of an amenable equivalence relation and an amenable group ac-
tion can be found in [Z1, Z2]. We remark that a discrete equivalence relation R
is amenable if and only if it is hyperfinite [CFW]. For such a R and an arbitrary
l.c.s.c. group G the Mackey action associated to every cocycle α ∈ Z1(R, G) is
amenable [Z1, Theorem 3.3].

Denote by G the one point compactification of G. An element g ∈ G is an
essential value of α if for every neighborhood U of g in G and every subset B ⊂ X
of positive measure there is a subset C ⊂ R ∩ (B × B) with µR(C) > 0 and
α(C) ⊂ U . By r(α) we denote the essential range of α, i.e. the set of all its
essential values. Notice that r(α) def= r(α) ∩G is a closed subgroup of G and α has
dense range in G if and only if r(α) = G. We put also r(nor)(α) def=

⋂
g∈G g−1r(α)g

for the normalized essential range of α. Notice that r(nor)(α) is the kernel of the
unitary representation of G generated by Wα. If α and β are weakly equivalent
cocycles then r(nor)(α) = r(nor)(β).

For a more detailed exposition of these concepts we refer to [FM, S1, S3, Z2].

2. Cocycles with values in group extensions

Turn back to the sequence (0-1). We have a continuous map

π∗ : Z1(R, E) 3 α 7→ π∗(α) ∈ Z1(R, G),

where π∗(α)(x, y) = π(α(x, y)) for all (x, y) ∈ R (throughout this paper Z1(R, G)
is endowed with the topology of convergence in measure). It is clear that π∗ factors
through the cohomology relations. Moreover, π∗(α ◦ θ) = (π∗(α)) ◦ θ for each auto-
morphism θ ∈ N [R]. Hence if two cocycles α, β ∈ Z1(R, E) are weakly equivalent,
the same is also valid for π∗(α) and π∗(β).

Now for a cocycle ω ∈ Z1(R, G) we put Z1
ω(R, E) def= π−1

∗ (ω) and endow this set
with the induced (Polish) topology. It is easy to see that Z1

ω(R, E) 6= ∅ whenever
R is hyperfinite.

Definition 2.1. We say that two cocycles α, β ∈ Z1(R, E) are A-cohomologous
(α ≈A β) if α ≈ β and there is a transfer function with values in A.

Notice that ≈A is an equivalence relation on Z1(R, E) and Z1
ω(R, E) is ≈A-

saturated, i.e. if α ∈ Z1
ω(R, E) and β ∈ Z1(R, E) then α ≈A β implies β ∈

Z1
ω(R, E). We put H1

ω(R, E) = Z1
ω(R, E)/≈A. Let s : G → E be a Borel nor-

malized cross-section of π (which means that π ◦ s = Id and s(1G) = 1E). Sup-
pose that ω is weakly equivalent to a cocycle ω1, i.e. ω1 ≈ ω ◦ θ with a transfer
function φ : X → G and an automorphism θ ∈ N [R] (we assume for simplic-
ity’s sake that ω and ω1 are defined on the same equivalence relation). Then the
map Z1

ω(R, E) 3 α 7→ α1 ∈ Z1
ω1

(R, E) is a homeomorphism, where α1(x, y) =
s(φ(x))−1α ◦ θ(x, y)s(φ(y)). This map passes through the ≈A-cohomology relation
and generates the canonical map H1

ω(R, E) → H1
ω1

(R, E).
Let λA, λE , λG be right Haar measures on A, E, G (resp.) and λ̂A, λ̂G probability

measures equivalent to λA, λG (resp.). Then the map

(2-1) qs : X ×G×A 3 (x, g, a) 7→ qs(x, g, a) = (x, as(g)) ∈ X × E

is a Borel isomorphism sending the measure µ × λ̂G × λ̂A to µ × λ̂E , where λ̂E is
a λE-equivalent probability measure on E. We call qs the s-map. If two arbitrary
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points (x, as(g)), (y, bs(h)) ∈ X × E are R×α E-equivalent, we obtain easily that
b = as(g)α(x, y)s(h)−1 and hence h = gω(x, y) (we assume that a, b ∈ A and
g, h ∈ G). Notice that the map

(2-2) α(s) : R×ω G 3 ((x, g), (y, h)) 7→ α(s)((x, g), (y, h)) def=

s(g)α(x, y)s(h)−1 ∈ A

is a cocycle from Z1(R×ω G,A). Hence we deduce from (2-1) and (2-2) that

(2-3) R×α E = (qs × qs)((R×ω G)×α(s) A).

In view of this the cocycles α and α(s) are transient, recurrent, or have dense ranges
simultaneously.

Next, if we choose another normalized cross-section s1 : G → E then α(s1) ≈ α(s).
Thus the cohomology class of α(s) is well defined by (0-1) and ω only. Notice also
that α(s) ≈ β(s) for every pair of A-cohomologous cocycles from Z1

ω(R, E). Hence
(0-1) and ω well define the canonical map

H1
ω(R, E) 3 [α] 7→ [α(s)] ∈ H1(R×ω G, A).

Its image in H1(R×ω G,A) will be denoted by Inv(ω).
Recall that a transformation θ ∈ N [R] is compatible with ω if ω ◦ θ ≈ ω [DG,

Da]. Denote by ω(θ) the set of all transfer functions for the pair ω, ω ◦ θ. The
group of all ω-compatible transformations is denoted by D(R, ω). Let L(R, ω) be
the set of all transformations of (X ×G,µ× λG) of the form θ̂(x, g) = (θx, gφ(x))
for some transformation θ ∈ D(R, G) and function φ ∈ ω(θ). One can easily see
that L(R, ω) is a subgroup of N [R×ω G].

Remark 2.2. Suppose that two cocycles, α, β ∈ Z1
ω(R, E) are weakly equivalent,

i.e. there exists a transformation θ ∈ N [R] such that β ◦ θ ≈ α with a transfer
function ψ : X → E. This implies that θ ∈ D(R, ω) and the function φ : X 3
x 7→ π(ψ(x)) ∈ G lies in ω(θ). We define two measure space transformations
θ̃ : (X×E, µ×λE) → (X×E, µ×λE) and θ̂ : (X×G,µ×λG) → (X×G, µ×λG) by
setting θ̃(x, e) = (θx, eψ(x)) and θ̂(x, g) = (θx, gπ(φ(x))). It is easy to verify (and
well known) that (θ̃×θ̃)(R×αE) = R×βE. Since θ̂ ∈ L(R, ω) and q−1

s θ̃qs(x, g, a) =
(θ̂(x, g), af(x, g)) for a measured function f : X × G → A, it follows from (2-3)
that β(s) ◦ θ̂ ≈ α(s) with f being a transfer function. Thus we obtain that the
cocycles α(s) and β(s) are also weakly equivalent and, besides, admit an intertwining
transformation—we mean θ̂—from L(R, ω).

In the case of Abelian A this observation may be refined. Notice first of all that
A is a G-module (g · a def= s(g)as(g)−1 for all g ∈ G and a ∈ A). Denote by Aut E
the group of continuous group automorphisms of E and set up

Aut (E;A, G) = {l ∈ AutE | l(a) = a for all a ∈ A and l(eA) = eA for all e ∈ E}.
It is easy to verify (and well known) that an automorphism l of E belongs to this
subgroup if and only if l(e) = ev(π(e)) for all e ∈ E, where the map v : G → A is
a continuous skew homomorphism, i.e. v(gh) = h−1 · v(g) + v(h) for all g, h ∈ G.

Given a cocycle α : R→ E and an automorphism l of E, we denote by l∗(α) the
l-image of α, i.e. l∗(α) : R 3 (x, y) 7→ l(α(x, y)) ∈ E.
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Theorem 2.3. Let R be ergodic and hyperfinite, A Abelian, G countable, and ω
have dense range in G. Given two cocycles, α, β ∈ Z1

ω(R, E), we have α(s) ≈ β(s)

if and only if l(α) ≈A β for an automorphism l ∈Aut(E; A,G). In a similar way,
α(s) ≈ β(s) ◦ θ̂ for a transformation θ̂ ∈ L(R, ω) if and only if l∗(α) ≈A β ◦ θ for an
automorphism l ∈Aut(E; A,G), where the transformation θ ∈ D(R, ω) is the “ first
coordinate” of θ̂, i.e. θ̂(x, .) = (θx, .) a.e.

Proof. We prove only the first conclusion of the theorem, since the second one is
similar.

(=⇒) Let α(s) ≈ β(s). In view of (2-2) and (2-3) there is a Borel function
f : X ×G → A with

(2-4) α(x, y) = f(x, g)−1β(x, y)f(y, gω(x, y))

for µR×λG-a.e. (x, y, g) ∈ R×G. Since we are free to replace ω by a cohomologous
cocycle, we may assume that the subrelation S = {(x, y) ∈ R | ω(x, y) = 1G} is
ergodic [GS2, Lemma 1.6]. It follows from the exactness of (0-1) that the restrictions
of α and β to S take values in A. We deduce from (2-4) that

α(x, y) = −f(x, g)−1 + β(x, y) + f(y, g)

for a.e. (x, y, g) ∈ S ×G. Thus α ¹ S ≈A β ¹ S. Moreover, since S is ergodic, the
transfer function is determined up to an additive constant (see [DG, §1.3]). Hence
f(x, g) = φ(x) + v(g) for some Borel maps φ : X → A and v : G → A. We put
β̃(x, y) = φ(x)−1β(x, y)φ(y) for (x, y) ∈ R. Perturb φ (and hence v), if necessary,
by a constant function to deduce from (2-4) and the Fubini theorem that

(2-5) α(x, y) = β̃(x, y)v(ω(x, y))

for a.e. (x, y) ∈ R. This implies

v(ω(x, y)) = β̃(y, x)α(x, y) = β̃(y, z)β̃(z, x)α(x, z)α(z, y) =

β̃(y, z)v(ω(x, z))β̃(z, y)v(ω(x, y)) = β̃(y, z)v(ω(x, z))β̃(y, z)−1 + v(ω(z, y)) =

ω(y, z) · v(ω(x, z)) + v(ω(z, y))

for a.e. (x, y), (y, z) ∈ R (we use the fact that π∗(β̃) = ω). Since ω has dense range
in G, it is a routine to deduce from this equality (apply the standard exhaustion
argument) that v(gh) = h−1 ·v(g)+v(h) for all (g, h) ∈ G×G. It follows from (2-5)
that l−1(α) ≈A β, where l is the automorphism from Aut(E; A,G) associated to v.

(⇐=) Let l(α) ≈A β with a transfer function φ : X → A. Denote by v : G → A
the skew homomorphism associated to l−1 and put f(x, g) = v(g) + φ(x), x ∈ X,
g ∈ G. It is easy to check that (2-4) is satisfied. But this is equivalent to the
relation α(s) ≈ β(s) and we are done. ¤

I was informed by S. Bezuglyi that he considered problems which are close to
Remark 2.2 and Theorem 2.3 in the case of Abelian A and topologically trivial
extension (0-1). But his approach is different. Notice that Theorem 2.3 holds also
for continuous G, but the proof is a little complicated and will be omitted.

The next statement provides an “ergodic description” of split short exact se-
quences of l.c.s.c. groups (from now on we do not assume that A is Abelian).
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Theorem 2.4. Let R be ergodic and ω have dense range in G. Then (0-1) splits
if and only if Inv(ω) contains the coboundary class.

Proof. Assume that (0-1) splits and s is a (continuous) group homomorphism. Then
s∗(ω) ∈ Z1

ω(R, E) and it follows from (2-2) that (s∗(ω))(s) is trivial, as desired.
Conversely, suppose that there are a measurable function η : X × G → E and a
cocycle α ∈ Z1

ω(R, E) with α(x, y) = η(x, g)−1η(y, gω(x, y)). We let F (x, g, h) =
η(x, g)η(x, hg)−1 for all (x, h, g) ∈ X ×G×G. Then F (x, g, h) = F (y, gω(x, y), h)
a.e. Since ω has dense range in G, it follows that F (x, g, h) = l(h) a.e. for some
measurable function l : G → E. Reproduce the argument of [Da, Theorem 5.3] to
obtain that η(x, g) = l(g)a(x), where l : G → E is a continuous homomorphism
and a : X → E. Hence α(x, y) = a(x)−1l(ω(x, y))a(y), (x, y) ∈ R. We obtain
that ω ≈ (π ◦ l)∗(ω). It follows that (ω × ω) ≈ (ω × (π ◦ l)∗(ω)) as cocycles of
R with values in the group G × G. The two cocycles take values and have dense
ranges in the subgroups r(ω × ω) = {(g, g) | g ∈ G} and r(ω × (π ◦ l)∗(ω)) =
{(g, π(l(g))) | g ∈ G} respectively. Hence the Mackey actions associated to these
cocycles are the transitive actions of G×G on the homogeneous spaces generated
by these subgroups respectively. Since the cocycles are cohomologous, the Mackey
actions are conjugate and hence these subgroups are conjugate in G×G. It is easy
to deduce that π ◦ l ◦ τ = Id for some inner automorphism τ of G, i.e. l ◦ τ is a
cross-section of π. ¤

Let p1 : (X×E, µ× λ̃E) → (Ω1, ν1) and p2 : (X×G×A, µ× λ̃G× λ̃A) → (Ω2, ν2)
be the (R×αE)- and the ((R×ωG)×α(s) A)-ergodic decompositions and Wα(E) and
Wα(s)(A) the associated Mackey actions on Ω1 and Ω2 respectively. It follows from
(2-1) and (2-3) that there is a measure space isomorphism j : (Ω2, ν2) → (Ω1, ν1)
such that the following diagram is commutative:

(X × E,µ× λ̃E)
p1−−−−→ (Ω1, ν1)

qs

x
xj

(X ×G×A,µ× λ̃G × λ̃A) −−−−→
p2

(Ω2, ν2)

Moreover, since for each a ∈ A the map qs intertwines the left a-shift along A with
the left a-shift along E, we have jWα(s)(a) = Wα(a)j. Identifying Ω1 with Ω2 via
j we can view Wα(E) as an extension of the A-action Wα(s) to an E-action on the
same measure space. It is also useful to notice that Wω(G) can be viewed naturally
as the quotient action of Wα(E) on the space of Wα(A)-ergodic components. Thus,
Wα(A) is ergodic if and only if Wω(G) is the trivial G-action on a one-point set,
i.e. ω (= π∗(α)) has dense range in G.

Proposition 2.5. Let E be amenable, R ergodic hyperfinite type II, and ω a
cocycle of R with dense range in G. Given an ergodic nonsingular action V of A,
the following statements are equivalent:

(i) V can be extended up to a nonsingular E-action on the same measure
space,

(ii) V is conjugate to Wα ¹ A for some recurrent cocycle α ∈ Z1
ω(R, E),

(iii) V is conjugate to Wβ(A) for some recurrent cocycle β ∈ Z1(R×ω G,A)
with the cohomology class [β] ∈ Inv(ω).
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Proof (cf. [Be]). (ii)⇒(i) is trivial, (iii)⇒(ii) follows from the remark before the
Proposition. It remains to prove (i)⇒(iii). Suppose that V (A) can be extended up
to some E-action which we denote by the same symbol V . It is amenable because
every action of an amenable group is amenable [Z2]. By the Existence Theorem
for Cocycles there is a recurrent α ∈ Z1(R, E) such that Wα(E) is conjugate to
V (E). Since Wα(A) is ergodic, π∗(α) has dense range in G. By the Uniqueness
Theorem for Cocycles π∗(α) and ω are weakly equivalent and hence without loss
in generality we may assume that π∗(α) = ω. Now we set up β = α(s) for a Borel
normalized cross-section s : G → E. It is easy to see that β is as desired. ¤
Corollary 2.6. (i) Let p be a positive integer, T be an ergodic nonsingular trans-
formation and (0-1) as follows

0 → Z ×p→ Z→ Z/pZ→ 0.

Let R satisfy the hypotheses of Proposition 2.5 and and ω : R→ Z/pZ a be cocycle
with dense range. Take an arbitrary cocycle β ∈ Z1(R×ω (Z/pZ),Z) such that the
transformation Wβ(1) is conjugate to T . Then [β] ∈ Inv(ω) if and only if T admits
a p-root.

(ii) For p = 2, let R, ω, T , β be as above but (0-1) as follows

1 → Z→ Z o (Z/2Z) → Z/2Z→ 1.

Then [β] ∈Inv(ω) if and only if there is an involution in Aut(X, µ) conjugating T
and T−1. For example, if T has simple spectrum, then [β] ∈ Inv(ω) by [GJLR].

Let α ∈ Z1(R, E). One can extend the topological embedding A ⊂ E up to a
topological embedding A ⊂ E and set up rA(α) = r(α) ∩ A, rA(α) = rA(α) ∩ A,
and r

(nor)
A (α) =

⋂
a∈A a−1rA(α)a. We summarize some properties of these objects

in

Proposition 2.7. (i) rA(α) and r
(nor)
A (α) are closed subgroups of A, the second

one is normal,
(ii) r(nor)(α) ∩A ⊂ r

(nor)
A (α) ⊂ rA(α),

(iii) if rA(α) = A then r
(nor)
A (α) = r(nor)(α) ∩A = A,

(iv) if rA(α) is noncompact then ∞ ∈ rA(α),
(v) if α ≈A β then r

(nor)
A (α) = r

(nor)
A (β), and ∞ ∈ rA(α) whenever ∞ ∈

rA(β),
(vi) if α is transient and A noncompact, then rA(α) = {0,∞}.

Proof. (i), (iv) follow from [FM, Proposition 8.5], (vi) from [S3, §2], (ii) and (iii)
are obvious.

(v) Let β(x, y) = φ(x)−1α(x, y)φ(y) for some measurable function φ : X → A

and suppose that a ∈ r
(nor)
A (α). We want to show that a ∈ r

(nor)
A (β). Given

a neighborhood U of a in E and a subset B ∈ B, µ(B) > 0, one can find an
element b ∈ A, a neighborhood O of b and a neighborhood V of bab−1 such that
O−1V O ⊂ U and µ(B ∩ φ−1(O)) > 0. Since bab−1 ∈ rA(α), there are a subset
C ∈ B, µ(C) > 0, and a transformation γ ∈ [Γ] with C ∪ γC ⊂ B ∩ φ−1(O) and
φ−1(x)α(x, γx)φ(γx) ∈ O−1V O ⊂ U and we are done. The second statement of
(v) is not difficult and we leave its proof to the reader. ¤
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Remark 2.7. It is easy to see that the short sequence of groups (in the algebraic
sense, without topologies)

(2-6) 1 → rA(α) → r(α) π→ π(r(α)) → 1

is exact. Let us assume that (0-1) splits and the cross-section s : G → E is a
group homomorphism. Then, clearly, (2-6) splits whenever s(π(r(α))) ⊂ r(α)—for
example, if rA(α) = A.

3. On H-cocycles

Let R(2) = {(x, y, z) ∈ X × X × X | (x, y), (y, z) ∈ R}. We fix a normalized
cross-section s : G → E and define two Borel functions f2 : G × G → A and
f

(s)
2 : R(2) → A by setting

f2(g1, g2) = s(g1)s(g2)s(g1g2)−1,

f
(s)
2 (x, y, z) = f2(ω(x, y), ω(y, z)).

Then we have

f2(g1, g2)f2(g1g2, g3) =Ads(g1)[f2(g2, g3)]f2(g1, g2g3),

f
(s)
2 (x, y, z)f (s)

2 (x, z, w) =Ads(ω(x,y))[f
(s)
2 (y, z, w)]f (s)

2 (x, y, w),

i.e. f2 and f
(s)
2 are “noncommutative 2-cocycles” of G and R respectively with

value in A. (As usual, Adb(a) = bab−1.) Moreover, they are normalized, i.e.
f2(g, g) = 1A and f

(s)
2 (., ., ., ) = 1A whenever two of three variables are the same.

Given a cocycle α ∈ Z1
ω(R, E), we set up

(3-1) α̃(x, y) = α(x, y)s(ω(x, y))−1

for a.e. (x, y) ∈ R. Then α̃ is a Borel map R→ A with

(3-2) α̃(x, z) = α̃(x, y)Ads(ω(x,y))[α̃(y, z)]f (s)
2 (x, y, z)

for (x, y, z) ∈ R(2). Conversely, as one can easily see, every map α̃ : R → A
satisfying (3-2) determines a cocycle α ∈ Z1

ω(R, E) by (3-1). Such maps are called
‘H-cocycles’. The set of all ‘H-cocycles’ is denoted by Z1

ω,s(R, A). If Z1
ω,s(R, A) is

furnished with the topology of convergence in measure then, clearly, the map

Z1
ω(R, E) 3 α 7→ α̃ ∈ Z1

ω,s(R, A)

is a homeomorphism. Two ‘H-cocycles’, α̃, β̃, are said to be ‘H-cohomologous’ if
α ≈A β or, equivalently,

α̃(x, y) = φ(x)−1β̃(x, y)Ads(ω(x,y))[φ(y)]

for a.e. (x, y) ∈ R and some measurable function φ : X → A.
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Suppose from now on that A is Abelian. Then A is a G-module (see Section 2)
and f2 and f

(s)
2 are Borel 2-cocycles of G and R respectively in an ordinary sense

[Mo, FM]. Moreover, Z1
ω,s(R, A) with the pointwise addition is an Abelian Polish

group.

Remark 3.1. We observe that if R is hyperfinite and ergodic, then f
(s)
2 can be

represented in the form f
(s)
2 (x, y, z) = ω(x, y) · φ(y, z) − φ(x, z) + φ(x, y) a.e. for

some Borel map φ : R → A with φ(x, x) = 1A [FM, Theorem 6]. Let us perturb an
‘H-cocycle’ α̃ by adding φ. Then the resulting map α̂ : R → A satisfies

α̂(x, z) = α̂(x, y) + ω(x, y) · α̂(y, z)

for a.e. (x, y, z) ∈ R(2). If (0-1) is central, i.e. A is the trivial G-module, we obtain
α̂ ∈ Z1(R, A).

Remark 3.2. In the particular case when (0-1) is topologically trivial—i.e. s can be
chosen to be continuous—our definitions of ‘H-cocycles’ and ‘H-coboundaries’ are
equivalent to those from [Be] (and to those from [D1, D2] if, in addition, (0-1) splits
and s is a group homomorphism; this implies that f2 and f

(s)
2 are trivial). We also

observe that the concepts of the ‘H-superrecurrence’ and the ‘H-supertransitivity’ of
‘H-cocycles’ from Z1

ω,s(R, A) considered in [D1–D3, Be] correspond exactly to the
recurrence and the transitivity of the related cocycles from Z1

ω(R, E). Hence most
of the results from [Be], [D2], [D1, §§2,3], [D3, §§1–3] follow from our Section 2.

4. Generic results

In this section we prove the main result of the paper—Theorem 4.4. For this
we need several auxiliary statements. We first recall the definition of the weak
topology on Aut(X, µ). Every transformation θ induces a linear bounded operator
Uθ on L1(X, µ) as follows

(Uθf)(x) = f(θx)
dµ ◦ θ

dµ
(x).

By a classical result of Banach the map θ 7→ Uθ is a bijection of Aut(X,µ) onto the
group of positive invertible isometries in L1(X, µ). The strong operator topology
when restricted to Aut(X, µ) is called the weak topology.

Let (X, µ) = (Z, κ) × (Y, λ). Denote by AutZ(X, µ) the set of µ-nonsingular
transformations which factor trivially through the first coordinate mapping Z×Y →
Z. More exactly, a transformation θ belongs to AutZ(X,µ) if

(4-1) θ(z, y) = (z, θzy) a.e.

for a measurable field Z 3 z 7→ θz ∈Aut(Y, λ). Clearly, AutZ(X, µ) is a closed
subgroup of Aut(X,µ) endowed with the weak topology. It is well known that
the ergodic transformations form a (dense) Gδ in Aut(X, µ) [CK, Theorem 3]. We
need a generalization of this fact. Let E stand for the set of all measurable fields
of ergodic transformations on Y . More exactly, a transformation θ ∈ E if (4-1) is
satisfied with θz being ergodic for κ-a.e. z.
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Lemma 4.1. E is a Gδ in Aut(X, µ) with the weak topology.

Proof. The forthcoming argument is similar to that of [CK, Theorem 1] and [Iw,
Lemma 3]. Denote by Cons(X, µ) the set of nonsingular conservative transforma-
tions on X. It is clear that E ⊂Cons(X,µ). For a transformation θ ∈Aut(X,µ), we
denote by B(θ) the σ-algebra of all θ-invariant measurable sets. By virtue of the
Halmos-Hurevich-Oxtoby Ratio Ergodic Theorem [Ha, Ch] for every θ ∈Cons(X, µ)
and f ∈ L1(X, µ) we have

( n∑

i=1

U i
θf

) / n∑

i=1

U i
θ1 → E(f |B(θ)) a.e. as n →∞,

where E stands for the conditional expectation. Clearly, θ ∈ E if and only if the
limit equals the function

∫
fdλ given by (

∫
f dλ)(z, y) =

∫
Y

f(z, y′) dλ(y′). Since
the map f → E(f |B(θ)) is continuous on L1(X,µ) and since convergence a.e.
implies convergence in measure, we have θ ∈ E if and only if

( n∑

i=1

U i
θfk

) / n∑

i=1

U i
θ1 →

∫
fk dλ in measure as n →∞

for every k, where {fk}∞k=1 is a fixed norm dense sequence in L1(X, µ). By a
standard argument, the set

A(k, n, r, p) =
{

θ ∈ Aut(X, µ) : µ

({∣∣∣∣
( n∑

i=1

U i
θfk

) / n∑

i=1

U i
θ1−

∫
fk dλ

∣∣∣∣ ≥

1
r

})
<

1
p

}

is open in Aut(X,µ). Since Cons(X, µ) is a Gδ in Aut(X, µ) (see [Iw, Lemma 2]),
we deduce that

E = Cons(X,µ) ∩ E = Cons(X, µ) ∩
∞⋂

p=1

∞⋂
r=1

∞⋂

k=1

∞⋂

j=1

∞⋃

n=j

A(k, n, r, p)

is a Gδ in Aut(X, µ) and hence in AutZ(X,µ). ¤
Let M(X, µ) stand for the set of all measurable functions on X with values in a

l.c.s.c. group G.

Lemma 4.2 [CHP, Theorem 1]. The map Aut(X,µ)×M(X,G) 3 (θ, f) 7→ θf ∈
Aut(X × G,µ × λG), where θf (x, g) = (θx, gf(x)) is continuous when Aut(X, µ)
and Aut(X ×G,µ× λG) are assumed to have the weak topology and M(X, G) the
topology of convergence in measure.

Let µ′ be a probability measure on R equivalent to µR.

Corollary 4.3. Let T be an ergodic transformation on (X, B, µ) and R the T -
orbital equivalence relation. Then the map Z1(R, G) 3 α 7→ Tα ∈Aut(X × G,µ ×
λG), where Tα(x, g) = (Tx, gα(x, Tx)), is continuous. (Recall that the topology of
convergence in µ′ on Z1(R, G) is implicit).
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Proof. It is enough to notice that the map Z1(R, G) 3 α 7→ fα ∈ M(X,G) is a
homeomorphism, where fα(x) = α(x, Tx), and then to apply Lemma 4.2. ¤

Let R be a type III equivalence relation on (X, B, µ) and ρµ : R → R stand
for the corresponding Radon-Nikodym cocycle. Consider an “extension” of (0-1)
as follows

1 → A → E × R π×Id−→ G× R→ 1,

where A is embedded into E ×R via the map a 7→ a× {0}. Notice that ŝ
def= s× Id

is a cross-section of π× Id.

Theorem 4.4. Let R be ergodic and hyperfinite, G arbitrary l.c.s.c., A amenable
and ω recurrent. Then the subset Z∗ω = {α ∈ Z1

ω(R, E) | rA(α0) = A} is a dense
Gδ in Z1

ω(R, E), where α0 = α× ρµ.

Proof. We proceed in several steps.
Step 1. Consider the ω0-skew product extension R×ω0 (G×R) of R on the space

(X×G×R, µ×λG×λR). Since ω is recurrent, so is ω0. (This fact was proved in [S2]
in a particular case where G = Rn. However only a slight and obvious modification
of this proof is needed to adopt it in the general situation.) Therefore R×ω0 (G×R)
is a conservative type II equivalence relation. Denote by (Z, κ) the measure space
of its ergodic components. As it was shown in [GS2, the proof of Proposition 3.2]
only two possibilities may be realized: either κ-a.e. ergodic component is of type
II∞ or κ-a.e. ergodic component is of type II1. Let T be an ergodic hyperfinite
type II equivalence relation of the corresponding type (we mean II1 or II∞) on a
standard measure space (Y, ν). Since R is hyperfinite, there is a Borel nonsingular
isomorphism

i : (Z × Y, κ× ν) → (X ×G× R, µ× λG × λR)

such that (i × i)(D × T ) = R ×ω0 (G × R), where D is the diagonal equivalence
relation on Z [HO, S1]. Then every cocycle β ∈ Z1(R×ω0 (G×R), A) splits into a
measurable field of cocycles Z 3 z 7→ zβ ∈ Z1(T , A) as follows

zβ(y1, y2) = β((z, y1), (z, y2))

for all (y1, y2) ∈ T . Conversely, every measurable field Z 3 z 7→ zβ ∈ Z1(T , A)
determines a cocycle β ∈ Z1(R ×ω0 (G × R), A). Let qŝ : X × (G × R) × A →
X× (E×R) be the ŝ-map (see (2-1)). Recall that R×δ (E×R) = (qŝ× qŝ)((R×ω0

(G × R)) ×
δ(ŝ) A) for every cocycle δ ∈ Z1

ω0
(R, E × R) (see (2-3)). We define a

weakly continuous group isomorphism

Ψ : Aut(X × E × R, µ× λE × λR) → Aut(Z × Y ×A, κ× ν × λA)

by setting Ψ(θ) = (i× Id)−1q−1
ŝ θqŝ(i× Id).

Let T be an ergodic transformation on (X, µ) generatingR, α : R→ E a cocycle,
and Tα0 the α0-skew product extension of T , i.e. Tα0(x, e, t) = (Tx, eα(x, Tx), t +
ρµ(x, Tx)). We consider the following chain of maps

Z1
ω(R, E) 3 α 7→ α0 ∈ Z1

ω0
(R, E × R) 3 α0 → Tα0 ∈

Aut(X × E × R, µ× λE × λR) 3 θ 7→ Ψ(θ) ∈ Aut(Z × Y ×A, κ× ν × λA).
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The first map is, clearly, a homeomorphism, the second one is continuous by Corol-
lary 4.3. We observe also that Ψ(Tα0) belongs to the subgroup AutZ(Z × Y ×
A, κ × ν × λA) consisting of κ × ν × λA-nonsingular transformations which factor
trivially through the first coordinate mapping Z×Y ×A → Z. One can check easily
that rA(α0) = A if and only if the cocycle (α0)(ŝ) ∈ Z1(R ×ω0 (G × R), A) splits
into a measurable field of cocycles on T with dense ranges in A. This, in turn, is
equivalent to the fact that Ψ(Tα0) ∈ E , where E ⊂AutZ(Z × Y ×A, κ× ν × λA) is
the set of measurable fields of ergodics on Y ×A. We obtain that Z∗ω is a preimage
of E with respect to a continuous map. It follows from Lemma 4.1 that Z∗ω is a Gδ

in Z1
ω(R, E).

Step 2. Let α and β be two arbitrary cocycles from Z1
ω(R, E). Given ε > 0

and N ∈ N we find a Borel subset B ⊂ X such that TnB ∩ TmB = ∅ for
all 0 ≤ n < m < N and µ(

⋃N−1
n=0 TnB) > 1 − ε (Rokhlin’s lemma for non-

singular ergodic transformations [S3, §3]). Then there is a Borel function b :
X → A with b(x)−1β(x, Tx)b(Tx) = α(x, Tx) for all x ∈ ⋃N−2

n=0 TnB. Actu-
ally, put b(x) = 1A for all x ∈ B, b(x) = β(T−1x, x)−1α(T−1x, x) for x ∈ TB,
b(x) = β(T−1x, x)−1b(T−1x)α(T−1x, x) for x ∈ T 2B, etc. Notice that b takes val-
ues in A because π∗(α) = π∗(β). As N → ∞ and ε → 0 we obtain a sequence of
Borel maps bN : X → A such that bN (x)−1β(x, Tx)bN (Tx) → α(x, Tx) in measure.
Since R is generated by T , it follows that the A-cohomology class of β is dense in
Z1

ω(R, E).
Thus to complete the proof we need to establish that Z∗ω 6= ∅.
Step 3. Let Wω0 = {Wω0(g, r)}(g,r)∈G×R be the Mackey action of the group

G × R associated to the double cocycle ω0 and (Z, ν) the space of this action.
We define a nonsingular action V = {V (e, r)}(e,r)∈E×R of the group E × R on
(Z, ν) by setting V (e, r) = Wω0(π(e), r). Denote by (G × R)z and (E × R)z the
stability subgroups at z ∈ Z for Wω0 and V respectively. Since R is hyperfinite,
Wω0 is amenable. By the Theorem on Amenability of Group Actions (G × R)z is
amenable for ν-a.e. z ∈ Z and the Wω0(G × R)-orbital equivalence relation and
hence V (E × R)-orbital equivalence relation on Z is amenable. Since (E × R)z

is an extension of (G × R)z via A and A is amenable, (E × R)z is amenable for
ν-a.e. z ∈ Z. Hence again by the Theorem on Amenability of Group Actions V is
amenable. It follows from the Existence Theorem for Cocycles that there exists an
ergodic discrete hyperfinite equivalence relation S on (X, µ) and a recurrent cocycle
β ∈ Z1(S, E) such that V is conjugate to the Mackey action Wβ0 of E×R associated
to the double cocycle β0 = β × ρ′µ, where ρ′µ is the Radon-Nikodym cocycle of S.
Since Wβ0 ¹ A is trivial, r(nor)(β0) ⊃ A and the Mackey action of G×R associated
to the projection cocycle (π × Id)∗(β0) = π∗(β) × ρ′µ is conjugate to Wω0 (see the
remark before Proposition 2.5). π∗(β) is recurrent because β is. We deduce from
the Uniqueness Theorem for Cocycles that ω and π∗(β) are weakly equivalent. Then
every cocycle from Z1

π∗(β)(S, E) is weakly equivalent to a cocycle from Z1
ω(R, E).

Thus there exists a cocycle α ∈ Z1
ω(R, E) which is weakly equivalent to β. Since

the double cocycles α0 and β0 are weakly equivalent as well, r(nor)(α0) = r(nor)(β0).
By Proposition 2.7 A ⊃ r

(nor)
A (α0) ⊃ r(nor)(α0) ∩A = A and hence α ∈ Z∗ω. ¤

Remark 4.5. Notice that if α ∈ Z∗ω then rA(α) = A. However, the converse is not
true: there exist cocycles α with rA(α0) = {1A} but rA(α) = A (see, for example
[BG, Example 7.4]).
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Remark 4.6. The main result of [D3]—Theorem 4.10—states that for an arbitrary
l.c.s.c. group G and a noncompact Abelian group A the subset

Z∗∗ω = {α ∈ Z1
ω(R, E) | α is recurrent and ∞ ∈ rA(α)}

is residual in Z1
ω(R, E) provided that the double cocycle ω0 is recurrent. We see

that our Theorem 4.4 improves this assertion, since Z∗∗ω ⊃ Z∗ω.

Remark 4.7. Let A = G = R, E = A o G, R be type IIIλ, 0 < λ < 1, and ω the
Radon-Nikodym cocycle of R. K. Dajani asks in [D1, p.131] whether the subset
Z0

ω
def= {α ∈ Z1

ω(R, E) | rA(α) = {0,∞} is residual in Z1
ω(R, A)? As it follows from

the same theorem, the answer is negative—Z0
ω is of first category. Recall that the

Radon-Nikodym cocycle of every ergodic equivalence relation is recurrent [S2].
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