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Abstract. We construct fanny rank-one infinite measure preserving free actions
T of a countable Abelian group G satisfying each of the following properties: (1)
Tg1×· · ·×Tgk is ergodic for each finite sequence g1, . . . , gk of G-elements of infinite
order, (2) T×T is nonconservative, (3) T×T is nonergodic but all k-fold Cartesian
products are conservative, and the L∞-spectrum of T is trivial, (4) for each g of
infinite order, all k-fold Cartesian products of Tg are ergodic, but T2g × Tg is
nonconservative.

A topological version of this theorem holds. Moreover, given an AT-flow W , we
construct nonsingular G-actions T with the similar properties and such that the
associated flow of T is W . Orbit theory is used in an essential way here.

0. Introduction

The goal of this work is to construct infinite measure preserving and non-
singular fanny rank-one free actions of countable Abelian groups with various
dynamical properties. The construction of these actions is based on a common
idea: every one appears as an inductive limit of some partially defined actions
associated to certain two sequences (Cn) and (Fn) of finite subsets in the group.
We call them (C,F )-actions. It is worthwhile to remark that the (C,F )-actions
appear as minimal topological actions on locally compact totally disconnected
spaces. Moreover, they are uniquely ergodic, i.e. they admit a unique (up to
scaling) invariant σ-finite Radon measure (Borel measure which is finite on the
compact subsets).

Now we record our main result about infinite measure preserving actions.

Theorem 0.1. Let G be a countable Abelian group. Given i ∈ {1, . . . , 5},
there exists a funny rank one infinite measure preserving free (C,F )-action T =
{Tg}g∈G of G such that the property (i) of the following list is satisfied:

(1) for every g ∈ G of infinite order, the transformation Tg has infinite er-
godic index, i.e. all its k-fold Cartesian products are ergodic,
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(2) for each finite sequence g1, . . . , gn of G-elements of infinite order, the
transformation Tg1 × · · · × Tgn

is ergodic,
(3) for each g ∈ G of infinite order, Tg has infinite ergodic index but T2g×Tg

is nonconservative,
(4) the Cartesian square of T is nonconservative,
(5) T has trivial L∞-spectrum, nonergodic Cartesian square but all k-fold

Cartesian products conservative.

When proving this theorem we obtain automatically a topological version of
(a part of) it as follows

Theorem 0.2. Given i ∈ {1, 2}, there exists a minimal uniquely ergodic (C, F )-
action T = {Tg}g∈G of G on a locally compact non-compact totally disconnected
metrizable space without isolated points such that the property (i) of the following
list is satisfied:

(1) for every g ∈ G of infinite order, the transformation Tg has infinite topo-
logically transitive index, i.e. all its k-fold Cartesian products are topo-
logically transitive,

(2) for each finite sequence g1, . . . , gn of G-elements of infinite order, the
transformation Tg1 × · · · × Tgn

is topologically transitive.

For other topological properties of (C, F )-transformations we refer to [Da].
The third main result of this paper is a nonsingular counterpart of Theorem 0.1.

Theorem 0.3. Let W be an AT-flow (see the comment below). Given i ∈
{1, . . . , 5}, there is a funny rank one nonsingular free (C, F )-action T of G whose
associated flow is W and the property (i) of Theorem 0.1 is valid.

After the main results being formulated let us make some comments. We recall
that for finite measure preserving actions the following properties are equivalent:
(a) T has trivial L∞ (=L2)- spectrum, (b) T × T is ergodic, (c) T has infi-
nite ergodic index. In general—for arbitrary nonsingular actions—we have only
(c) ⇒ (b) ⇒ (a). The first counterexamples to (b) ⇒ (c) and (a) ⇒ (b) for
infinite measure preserving actions of Z were given in [KP] and [ALW] respec-
tively. Those transformations are infinite Markov shifts. They possess “strong”
stochastic properties and are quite different from our (C, F )-actions. Moreover,
as it was noticed in [AFS1] it is impossible to construct Markov shifts satisfying
Theorem 0.1(5). Another sort of counterexamples which are similar to our ones
were demonstrated in [AFS1], [AFS2], [DGMS] and [M–Z]. A particular case of
Theorem 0.1 where G = Z was proved there: the examples (1), (4), (5) appear in
[AFS1], the example (2) in [DGMS], and the example (3) in [AFS2]. Moreover,
for G = Zd, the example (2) appears in [M–Z].

Before we pass to Theorem 0.3 let us remind that one can associate a measur-
able flow (i.e. an action of R) to every nonsingular action of G [Sc], [HO]. By the
celebrated Dye-Krieger theorem there is a bijective correspondence between the
orbit equivalent classes of ergodic G-actions and the conjugacy classes of ergodic
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R-flows. An important class of ergodic flows, AT-flows, was isolated in [CW].
They are exactly the associated flows of product odometers. For example, the
transitive flows and the finite measure preserving flows with discrete spectra are
AT.

By the way, we mention a natural problem concerning AT-flows. Since a prod-
uct odometer is a rotation on a compact group, its L∞-spectrum is large: the
eigenfunctions separate points. So, given G and an AT-flow W , is it possible to
find a free action of G with trivial L∞-spectrum and whose associated flow is W?
For the moment, the answer was not known even for G = Z. Now the positive
solution to this problem follows from Theorem 0.3(2).

A very particular case of Theorem 0.3 was proved for the moment. If G = Z,
W is transitive and its stabilizer is (log λ)Z, 0 < λ < 1, then the example (5) was
constructed in [AFS1] and the example (2) in [AFS2]. These assumptions on W
mean that the corresponding G-action is of type IIIλ. As concern to Zd-actions
only a weak version of (1) is demonstrated in [M–Z]: there is an action of type
IIIλ, 0 < λ ≤ 1 such that the generators of Zd have infinite ergodic index, and
there is an action of type III0 such that the generators are ergodic and have
trivial L∞-spectrum (the associated flow is not specified there).

Now we specify the main point of difference between our work and those papers.
The transformations from [AFS1], [AFS2], [DGMS] and [M–Z] are constructed via
the well-known ”cutting and stacking” techniques [Fr]. It has a clear geometrical
nature and is very convenient in the case G = Z or even G = Zd. However
for more “complicated” groups like Z∞0 ,Q or groups with torsions it does not
appear quite transparent especially when constructing nonsingular actions. That
is why we develop an alternative approach replacing “cutting and stacking” with
the “more algebraic” (C,F )-construction. The latter is rather universal and
does not “feel” much difference between Z and Q or between measure preserving
and nonsingular actions. Moreover, it is especially well suited for applying the
measurable orbit theory which is used in an essential way here.

Remark also that the transformations from [AFS1], [AFS2], [DGMS] and [M–
Z] are rank-one. However, it is not quite clear what “rank one” is for actions of
Abelian groups other than Zd. But a concept of “fanny rank one”—introduced
by J.-P. Thouvenot—is generalized naturally to nonsingular actions of arbitrary
groups [So]. We show that the (C, F )-actions have fanny rank one. Moreover,
in the case G = Zd, the assertion of Theorems 0.1–0.3 can be a bit strengthened
by claim that T has rank one (“by cubes”) and not only funny rank one. This
is because the sets Fn in the (C,F )-construction in our theorems are rather
“flexible” and it is always possible to choose them in the form of cubes (see
Remark 2.6(ii)).

The outline of the paper is as follows. Section 1 contains a background mate-
rial mainly from orbit theory. In Section 2 we introduce and study the (C, F )-
construction of σ-finite measure preserving actions and prove Theorems 0.1, 0.2
and related results. A particular case of this construction, where Cn and Fn are
“well balanced” is considered in Section 3. It results to what we call generalized
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Hajian-Kakutani actions (cf. [HK], [EHI], [M–Z]). They are of finite type
in the sense of [EHI]. The problems related to tilings, weakly wandering subsets,
nonsingular disjointness are under discussion here. In the final § 4 we adapt the
(C,F )-construction to the non-singular case and prove Theorem 0.3.

After this work has been already done the author learned that the (C, F )-
construction appeared initially in [Ju]. However A. del Junco studied there only
finite measure preserving actions while our paper is devoted to infinite measure
preserving and nonsingular ones. Moreover, the problems considered here and
in [Ju] are quite different and have no “common” part. I thank C.E. Silva for
drawing my attention to [AFS2], [M–Z] and [Ju].

1. Preliminaries

Measured equivalence relations and their cocycles. For a detailed account
of the discussion in this section we refer the reader to [FM], [Sc], [HO].

Let (X, B) be a standard Borel space and R a Borel countable equivalence
relation on it [FM]. Consider a Borel bijection γ of a Borel subset A onto a Borel
subset B. If (x, γx) ∈ R for each x ∈ A then γ is a partial R-transformation
with the domain A and the range B (we shall write D(γ) = A, R(γ) = B).
The groupoid of partial R-transformations is denoted by [[R]]. The full group
[R] is the subset of partial R-transformations whose domain and range are the
entire X. Given A ∈ B, we denote by R ¹ A the restriction of R to A, i.e.
R ¹ A := R ∩ (A × A) with the induced Borel structure. The product of two
equivalence relations R and R′ is denoted by R⊗R′.

Let µ be a σ-finite measure on X. R is said to be µ-nonsingular if µ ◦ γ
is equivalent to µ for each γ ∈ [R]. It is known that every Borel equivalence
relation is the orbit equivalence relation for a countable group Γ of Borel au-
tomorphisms of X (see [FM]) (this group is not unique). R is µ-nonsingular
if every transformation γ ∈ Γ so is. R is ergodic if every Borel R-saturated
subset (i.e. a union of R-classes) is either µ-null or µ-conull. Two nonsingular
equivalence relations R on (X, B, µ) and (X ′, B′, µ′) are isomorphic if there is
a Borel bijection φ: X → X ′ such that µ′ ◦ φ ∼ µ and φ× φ(R ¹ X0) = R′ ¹ X ′

0

for conull subsets X0 ⊂ X and X ′
0 ⊂ X ′. An ergodic equivalence relation is hy-

perfinite if it is isomorphic to the orbit equivalence relation of a single (ergodic)
transformation. If Γ is an ergodic Abelian transformation group then its orbit
equivalence relation is hyperfinite.

Let G be a locally compact second countable group. A Borel map α: R → G
is a cocycle if

α(x, y)α(y, z) = α(x, z)

for all (x, y), (y, z) ∈ R. We define the α-skew product equivalence relation
R×α G on X ×G equipped with the product Borel structure by setting

(x, g) ∼ (y, h) if (x, y) ∈ R and h = gα(x, y).
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Suppose that R is µ-nonsingular. Then R×α G is µ×λG-nonsingular, where λG

is right Haar measure on G. If R×α G is ergodic then α is said to have dense
range in G. α is said to be transient if R ×α G is nonconservative, i.e. its
“orbit partition” is measurable.

Remark that the natural G-action on X × G by left translations along the
second coordinate induces a nonsingular G-action on the quotient measure space
of R×α G-ergodic components. It is called the action associated to (R, α) or
the Mackey action. It is ergodic if and only if R so is.

Let R be an ergodic equivalence relation generated by a countable transfor-
mation group Γ and ρµ: G → R+ the Radon-Nikodym cocycle, i.e.

ρµ(x, γx) = log
dµ ◦ γ

dµ
(x) at a.e. x for each γ ∈ Γ.

The corresponding Mackey action W = {Wt}t∈R is called the associated flow
of (R, µ) (or the associated flow of Γ). There are several cases:

— W is (essentially) transitive and free,
— W is (essentially) transitive, nonfree. Its stabilizer is (log λ)Z for some

λ ∈ (0, 1),
— W is trivial (on a singleton),
— W is free and nontransitive.

R is said to be of (Krieger’s) type II, IIIλ, III1, III0 respectively. Remark that
R is of type II if and only if there exists a measure µ′ ∼ µ which is R-invariant,
i.e. µ′ ◦ γ = µ′ for each γ ∈ [R]. The R-invariant measure in the class of µ is
unique up to scaling. If it is finite then R is of type II1, otherwise R is of type
II∞. If A is a subset of positive measure then the associated flows of (R, µ) and
(R ¹ A,µ ¹ A) are conjugate.

Theorem 1.1(Dye-Krieger). Two ergodic hyperfinite equivalence relations R
and R′ are isomorphic if and only if one of the following is fulfilled:

(i) they are both of type II1,
(ii) they are both of type II∞,
(iii) they are both of type III and the flows associated to them are conjugate.

We also need the following simple fact. LetR and S be two ergodic equivalence
relations. If S is of type II then the associated flow of R⊗S is conjugate to that
of R.

Tail equivalence relations. Let (Vn)∞n=1 be a sequence of finite nonempty sets.
Put V =

∏∞
n=1 Vn and endow it with the product of the discrete topologies. Then

V is a compact metrizable space. Denote by R ⊂ V × V the tail equivalence
relation. Remind that two elements v = (vn) and v′ = (v′n) in V are R-equivalent
if vn = v′n for all sufficiently large n > 0. It is easy to verify the following
properties of R:

(i) R is a σ-compact subset of V × V ;
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(ii) R is minimal, i.e. each R-equivalence class is dense in V ;
(iii) R is uniquely ergodic, i.e. there exists a unique probability R-invariant

measure on V (we call it Haar measure for R).

AT-flows and fanny rank one. Let νn be a measure on Vn. Throughout this
paper we assume that νn(vn) > 0 for all vn ∈ Vn. If νn(Vn) = 1 for all n > 1
then the product ν :=

⊗∞
n=1 νn is a finite Borel measure on V . Clearly, it is

non-atomic if and only if
∏∞

n=1 maxvn∈Vn
νn(vn) = 0. ¿From now on we shall

assume that ν is non-atomic. It is well known that R is ν-nonsingular, ergodic
and hyperfinite. Moreover,

ρν(v, v′) =
∞∑

n=1

(log νn(v′n)− log νn(vn)).

Notice that the sum contains only finitely many non-zero items. Clearly, ν is
R-invariant if and only if νn is equidistributed for every n ∈ N. In this case R is
of type II1. In general (R, ν) can be of an arbitrary Krieger’s type.

Definition 1.2. A nonsingular flow {Wt}t∈R on a standard measure space (X,µ)
is approximately transitive (AT) if given ε > 0 and finitely many non-negative
functions f1, . . . , fn ∈ L1

+(X, µ) there exists a function f ∈ L1
+(X, µ) and reals

t1, . . . , tn such that
∣∣∣∣∣

∣∣∣∣∣fi −
m∑

k=1

aikf ◦Wtk

dµ ◦Wtk

dµ

∣∣∣∣∣

∣∣∣∣∣
1

< ε, i = 1, . . . , n,

where aik, i = 1, . . . , n, j = 1, . . . , m, are some non-negative reals.

The following fundamental statement is due to A. Connes and J. Woods [CW]
(see also [Haw] and [Ham] for a measure theoretical proof).

Theorem 1.3. The associated flow of (R, ν) is AT. Conversely, for every AT-
flow {Wt}t∈R there exists a sequence (Vn, νn)n as above such that the associated
flow of the tail equivalence relation on (V, ν) is conjugate to {Wt}t∈R.

Definition 1.4. A nonsingular action S of G on a σ-finite Lebesque space
(Y,A, ν) has funny rank one if there is a sequence (Yn)∞n=1 of measurable
subsets of Y and a sequence (Gn)∞n=1 of finite G-subsets such that

(i) the subsets SgYn, g ∈ Gn, are pairwise disjoint for each n > 0,
(ii) given A ∈ A of finite measure, then infP⊂Gn ν(A4⋃

g∈P SgYn) → 0 as
n →∞,

(iii)
∑

g∈Gn
inf
r∈R

∫
SgYn

|dν◦g
dν − r|dν → 0 as n →∞.

Remark that the fanny rank one was introduced by J.-P. Thouvenot for prob-
ability preserving Z-actions (see also [Fe]) and extended to the general case by
A. Sokhet [So]. This property does not depend on a particular choice of ν inside
its equivalence class. Clearly, funny rank one implies ergodicity.
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2. (C, F )-actions

Two finite subsets C1 and C2 of G are called independent if

(C1 − C1) ∩ (C2 − C2) = {0}.

A sequence (Cn)∞n=1 of finite G-subsets is independent if C1+· · ·+Cn and Cn+1

are independent for each n. This means that every element c of C1 + · · · + Cn

can be written uniquely as c = c1 + · · ·+ cn with c1 ∈ C1, . . . , cn ∈ Cn.

G-actions associated to pairs of sequences of finite subsets. Let (Cn)∞n=1

and (Fn)∞n=0 be two sequences of finite G-subsets such that F0 = {0} and for
each n > 0 the following are satisfied:

Fn + Cn+1 ⊂ Fn+1, #(Cn) > 1,(2-1)

Fn, Cn+1, Cn+2, . . . is independent.(2-2)

We put Xn := Fn ×
∏

k>n Ck and define a map in: Xn → Xn+1 by setting

in(fn, cn+1, cn+2, . . . ) := (fn + cn+1, cn+2, . . . ).

Clearly, in is a homeomorphism of Xn onto its image in Xn+1. Denote by X

the topological inductive limit of the sequence (Xn, in) and by în: Xn → X the
canonical embeddings, n > 0. Clearly, X is a locally compact non-compact to-
tally disconnected metrizable space without isolated points and în(Xn) is clopen
in X.

Denote by Rn the tail equivalence relation on Xn. Clearly,

(in × in)(Rn) = Rn+1 ¹ in(Xn).

Hence an inductive limit R of (Rn, in × in) is well defined. Clearly, R is a
countable σ-compact minimal equivalence relation on X. Assume in addition
that

(2-3) given g ∈ G, there is m ∈ N with g + Fn + Cn+1 ⊂ Fn+1 for all n > m.

Given g ∈ G and n ∈ N, we set

D(n)
g := (Fn ∩ (Fn − g))×

∏

k>n

Ck and R(n)
g := D

(n)
−g .

Clearly, D
(n)
g and R

(n)
g are clopen subsets of Xn and the map T

(n)
g : D

(n)
g → R

(n)
g

given by
T (n)

g (fn, cn+1, . . . ) := (fn + g, cn+1, . . . )
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is a homeomorphism. Put

Dg :=
∞⋃

n=1

în(D(n)
g ), Rg :=

∞⋃
n=1

în(R(n)
g ).

Since the diagram

D
(n)
g

T (n)
g−−−−→ R

(n)
g

in

y
yin

D
(n+1)
g

T (n+1)
g−−−−→ R

(n+1)
g

commutes, a homeomorphism Tg: Dg → Rg is well defined by Tg în = înT
(n)
g . It

follows from (2-3) that for each g ∈ G there is m such that D
(n+1)
g ⊃ in(Xn)

for all n > m. Hence Dg = X. Since Rg = D−g, we conclude that Rg = X.
Moreover it is easy to verify that Tg2Tg1 = Tg2+g1 . Thus T = {Tg}g∈G is a
topological action of G on X.

Theorem 2.1.

(i) T is a minimal free action of G on X,
(ii) R is the T -orbit equivalence relation.
(iii) there is a unique (ergodic) σ-finite T -invariant measure on X such that

µ(̂i0(X0)) = 1,
(iv) µ is finite if and only if

lim
n→∞

#(Fn)
#(C1) · · ·#(Cn)

< ∞,

(v) T has fanny rank one.

Proof. (i)–(iv) is routine.
(v) We put

Yn := în

(
{0} ×

∏

k>n

Ck

)
and Gn := Fn.

It is easy to verify that (Yn)n and (Gn)n satisfy Definition 1.4 and

⋃

g∈Gn

TgYn = în(Xn). ¤
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Definition 2.2. We call T the (C, F )-action of G associated to (Cn)n and (Fn)n.
µ is called Haar measure for R.

Notice that in the case of finite Haar measure, T is an analogue of the Chacon
transformation. The difference Fn \ (Cn + Fn−1) plays the role of “spacers” at
the n-th step in the classical construction [Fr].

It is possible that X is compact. This happens if and only if Fn+1 = Fn +Cn+1

for all sufficiently large n. Consider, for example, G = Z, Cn = {0, (−2)n−1},
Fn = C1 + · · ·+ Cn, n > 0.

We record without proof a standard

Lemma 2.3. Let βi ≥ αi > 0 and
∑n

i=1 αi ≥ (1− ε)
∑n

i=1 βi. Then
∑

i∈I βi >
2
3

∑n
i=1 βi, where I = {i| αi > (1− 3ε)βi}.

Let (V, ν) =
∏∞

i=1(Vn, νn) for an independent sequence (Vn)∞n=1 of finite G-
subsets and probability measures νn on them. Given g1 ∈ V1, . . . , gn ∈ Vn, we
set I(g1, . . . , gn) = {v = (vn) ∈ V | v1 = g1, . . . , vn = gn}.
Lemma 2.4. let S be a ν-nonsingular equivalence relation on V and δ, β: G →
R+ two maps. If for every n ∈ N and g1, g

′
1 ∈ V1, . . . , gn, g′n ∈ V ′

n, there is a
partial transformation γ ∈ [[S]] such that the following properties are satisfied:

D(γ) ⊂ I(g1, . . . , gn), R(γ) ⊂ I(g′1, . . . , g
′
n),

ν(D(γ)) ≥ δ(g1 + · · ·+ gn − g′1 − · · · − g′n)ν(I(g1, . . . , gn)),
dν ◦ γ

dν
(v) ≥ β(g1 + · · ·+ gn − g′1 − · · · − g′n) for all v ∈ D(γ),

then S is ergodic.

Proof. Let A and A′ be two Borel subset of V of positive measure. We can find
n ∈ N and g1, g

′
1 ∈ V1, . . . , gn, g′n ∈ V ′

n such that

ν(A1) >
4
5
ν(I(g1, . . . , gn)) and ν(A′1) >

4
5
ν(I(g′1, . . . , g

′
n)),

where A1 = A ∩ I(g1, . . . , gn) and A′1 = A′ ∩ I(g′1, . . . , g
′
n). Since V1, . . . , Vn are

independent, the map

(v1, . . . , vn) 7→ v1 + · · ·+ vn

is a natural bijection of V1×· · ·×Vn onto V1+ · · ·+Vn. Without loss of generality
we may assume that n = 1. (Actually, replace the sequence V1, V2, . . . by the
following one V1 + · · ·+ Vn, Vn+1, . . . .) Next, we set

ε :=
1
4
δ(g1 − g′1) and ε′ := min

(
1
15

,
εβ(g1 − g′1)ν(I(g1))

4ν(I(g′1))

)
.
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There are clopen subsets I0 ⊂ I(g1) and I ′0 ⊂ I(g′1) with ν(I04A1) < εν(I0) and
ν(I ′04A′1) < ε′ν(I ′0). Again we may assume that there are subsets C, C ′ ⊂ V2

with I0 =
⋃

c∈C I(g1, c) and I ′0 =
⋃

c′∈C′ I(g′1, c
′). Set

C1 := {c ∈ C| ν(A1 ∩ I(g1, c)) > (1− 3ε)ν(I(g1, c))}
C ′1 := {c′ ∈ C ′| ν(A′1 ∩ I(g′1, c

′)) > (1− 3ε′)ν(I(g′1, c
′))}.

Since ν(I0 ∩ A1) > (1 − ε)ν(I0) and ν(I ′0 ∩ A′1) > (1 − ε′)ν(I ′0), we deduce from
Lemma 2.3 that

ν2(C1) =
ν(

⋃
c∈C1

I(g1, c))
ν(I(g1))

>
2
3

ν(I0)
ν(I(g1))

>
2
3

µ(A1)
(1 + ε)ν(I(g1))

>
8

15(1 + ε)
.

Without loss of generality we may assume that δ(g) < 1
4 for all g ∈ G. Therefore

ε < 1
15 and ν2(C1) > 1

2 . In a similar way ν2(C ′1) > 1
2 . Thus there exists

c ∈ C1∩C ′1. We apply the hypothesis of the lemma to I(g1, c) and I(g′1, c): there
exists a partial transformation γ ∈ [[S]] such that

D(γ) ⊂ I(g1, c), ν(D(γ)) > δ(g1 − g′1)ν(I(g1, c)),

R(γ) ⊂ I(g′1, c), and
dν ◦ γ

dγ
(v) = β(g1 − g2) for all v ∈ D(γ).

Since ν(D(γ) ∩A1) > εν(I(g1, c)), we deduce

ν(γ(D(γ) ∩A1)) ≥ β(g1 − g′1)ν(D(γ) ∩A1)

> εβ(g1 − g′1)
ν(I(g1, c))
ν(I(g′1, c))

ν(I(g′1, c))

= εβ(g1 − g′1)
ν(I(g1))
ν(I(g′1))

ν(I(g′1, c)) ≥ 4ε′ν(I(g′1, c)).

Recall that ν(A′1∩ I(g′, c)) > (1−3ε′)ν(I(g′, c)). Hence ν(γ(D(γ)∩A)∩A′) > 0,
as desired. ¤

In the following 5 subsections we demonstrate the 5 claims of Theorem 0.1
respectively. Theorem 0.2 is proved simultaneously.

Infinite ergodic index for (C,F )-transformations. From now on we shall
assume that G has elements of infinite order. Enumerate them as a1, a2, . . . .

Lemma 2.5. Let δ: G → R+ be a map with
∑

g∈G δ(g) < 1/2. Then there exist
a sequence of positive integers (Nn)∞n=1 and two sequences (Cn)∞n=1 and (Fn)∞n=0

of finite G-subsets satisfying (2-1)–(2-3) such that 0 ∈ ⋂∞
n=1(Cn ∩ Fn) and

(2-4) #(Cn(f)) > δ(f)#(Cn) for each f ∈ Fn−1,
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where Cn(f) = {c ∈ Cn| c′ − c = Nnan + f for some c′ ∈ Cn}.
Proof. Let G = {gi| i ∈ N} and g1 = 0. Suppose that we already have
N1, . . . , Nn−1, C1, . . . , Cn−1, F0, . . . , Fn−1. Our purpose is to construct Nn, Cn

and Fn. Let Fn−1 = {fi| i = 1, . . . , k}. Select positive integers d1, . . . , dk in such
a way that δ(fi) < (di− 1)/d, i = 1, . . . , k, where d := d1 + · · ·+ dk. Now choose
an integer Nn large so that

(2-5) Z(Nnan) ∩ (Fn−1 + · · ·+ Fn−1︸ ︷︷ ︸
d times

−Fn−1 − · · · − Fn−1︸ ︷︷ ︸
d times

) = {0},

We define Cn by listing its elements as follows:

(2-6)

0, Nnan + f1, 2Nnan + 2f1, . . . , (d1 − 1)Nnan + (d1 − 1)f1,

d1Nnan + f2, (d1 + 1)Nnan + 2f2, . . . , (d1 + d2)Nnan + d2f2,

. . . ,

(d + 1− dk)Nnan + fk, . . . , dNnan + dkfk.

Clearly, Cn(fi) is just the i-th line in (2-6) without the first (left) element. Hence
#(Cn(fi)) = di − 1 > δ(fi)d = δ(fi)#(Cn). It follows from (2-5) that Cn and
Fn−1 are independent. Now we define Fn by setting

Fn :=
n⋃

i=1

(gi + Fn−1 + Cn). ¤

Remark 2.6.
(i) It is worthwhile to observe that (2-1)–(2-4) imply Cn−Cn ⊃ Nnan+Fn−1

and Cn(f) ∩ Cn(f ′) = ∅ if f 6= f ′.
(ii) In our inductive construction the “upper size” of Fn is not bounded, i.e.

every finite set containing our Fn could also work as Fn. Hence without
loss of generality we may assume that #(Fn)

#(Fn−1+Cn) > n.

Let T be a (C,F )-action of G associated with (Cn) and (Fn) satisfying (2-1)–
(2-4). Without loss of generality we may assume that T is infinite measure pre-
serving (see Remark 2.6(ii) and Theorem 2.1(iv)). We define a cocycle αn: Rn →
G by setting

αn(x, x′) =
∞∑

i=1

(xi − x′i), x = (xi)∞i=1, x′ = (x′i)
∞
i=1 ∈ Xn = Fn ×

∏

k>n

Ck.

It is easy to deduce from (2-2) that the subrelation α−1
n (0) is trivial (diagonal),

i.e.
{(x, x′) ∈ Rn| αn(x, x′) = 0} = {(x, x)| x ∈ Xn}.

Given a ∈ G, we put Rn(a) := {(x, y) ∈ Rn| αn(x, y) ∈ Za}.
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Lemma 2.7. Let µn be Haar measure for Rn. Given a ∈ G of infinite order,
the equivalence relation Rn(a) is ergodic with respect to µn.

Proof. Let k ∈ N and g1, g
′
1 ∈ Fn, g2, g

′
2 ∈ Cn+1, . . . , gk, g′k ∈ Ck+n−1. Since

0 ∈ ⋂∞
n=1(Cn ∩ Fn), it follows from (2-3) that F1 ⊂ F2 ⊂ . . . and

⋃
n Fn = G.

Take l > k such that g := g1 + · · ·+ gk − g′1 − · · · − g′k ∈ Fl−1 and al ∈ Za. Put

D(γ) :=
⋃

ck+1∈Ck+1,...,cl−1∈Cl−1,c∈Cl(g)

I(g1, . . . , gk, ck+1, . . . , cl−1, c)

γ := T
(n)
Nlal

¹ D(γ).

Clearly, D(γ) ⊂ I(g1, . . . , gk),

γI(g1, . . . , gk, ck+1, . . . , cl−1, c) = I(g′1, . . . , g
′
k, ck+1, . . . , cl−1, c + Nlal + g)

and hence R(γ) ⊂ I(g′1, . . . , g
′
k). From (2-4) we deduce that

µn(D(γ))
µn(I(g1, . . . , gk))

=
#(Cl(g))
#(Cl)

> δ(g).

Since γ is a partial transformation from [[Rn(a)]], we apply Lemma 2.4 to com-
plete the proof. ¤

For each m > 1, we let (Xn,m, µn,m) :=
⊗m

1 (Xn, µn), Rn,m :=
⊗m

1 Rn and
αn,m :=

⊗m
1 αn. Remark that Xn,m can be considered as an infinite product

space Xn,m = Fm
n × ∏

k>n Cm
k , where the upper index m means the m-fold

Cartesian product. Thus Rn,m is just the tail equivalence relation on Xn,m and
µn,m its Haar measure.

Corollary 2.8. Let a be an element of G of infinite order and

Rn,m(a) := α−1
n,m(Z(a, . . . , a)).

Then Rn,m(a) is an ergodic subrelation of Rn,m.

Proof. Define a map δm: Gm → R+ by setting δm(g1, . . . , gm) = δ(g1) · · · δ(gm).
Replace (Ck)k and (Fk)k by (Cm

k )k and (Fm
k )k respectively, where the upper

indices mean the m-fold Cartesian products. Then the later pair of sequences
satisfies (2-1)–(2-4) with δm instead of δ. It remains to apply Lemma 2.7. ¤
Remark 2.9. Since the set of cylinders is a base for the topology on Xn, it follows
that Rn(a) and Rn,m(a) are topologically transitive.

It is easy to verify that αn+1 ◦ (in × in) = αn for each n ∈ N. Hence an
inductive limit α of (αn, in× in) is well defined. Clearly, α is a cocycle of R with
values in G. It is straightforward that α(Tgx, x) = g for all x ∈ X, g ∈ G, i.e. α
is a “return time” cocycle for T . Hence α is transient. Put Rm := R⊗ · · · ⊗ R︸ ︷︷ ︸

m times

and Rm(a) := (αm)−1(Z(a, . . . , a)) for an element a ∈ G. Recall that µ is Haar
measure for R.
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Theorem 2.10. Let a be a G-element of infinite order.
(i) Ta is a µ-preserving transformation on X of infinite ergodic index,
(ii) Rm(a) is an ergodic subrelation of Rm for each m > 0.

Proof. (ii) It is easy to verify that

Rm(a) = inj lim
n→∞

(Rn,m(a), imn × imn ).

By Corollary 2.8, Rn,m(a) is ergodic. From this we deduce that so is Rm(a).
(i) follows from (ii), since Rm(a) is the Ta × · · · × Ta︸ ︷︷ ︸

m times

-orbit equivalence rela-

tion. ¤
Remark 2.11. We observe that Theorem 0.2(1) was proved simultaneously (cf.
Remark 2.9):

(i) Ta × · · · × Ta︸ ︷︷ ︸
m times

is a topologically transitive transformation of Xm,

(ii) Rm(a) is a topologically transitive subrelation of Rm.

Power weakly mixing actions. The above ideas can be adapted to construct
G-actions with more stronger ergodic properties. Let S = {Sn| n ∈ N} be the
set of finite sequences of G-elements (possibly equal) of infinite order. We record
an analogue of Lemma 2.5.

Lemma 2.12. Let δ: G → R+ be a map with
∑

g∈G δ(g) < 1/2. Then there exist
a sequence of positive integers (Nn)∞n=1 and two sequences (Cn)∞n=1 and (Fn)∞n=0

of finite G-subsets satisfying (2-1)–(2-3) such that 0 ∈ ⋂
n(Cn ∩ Fn) and

(2-7) #(Cn(f, b)) > δ(f)#(Cn)#(Sn)−1 for each f ∈ Fn−1 and every b ∈ Sn,

where Cn(f, b) = {c ∈ Cn| c′ − c = Nnb + f for some c′ ∈ Cn}.
Sketch of the proof. Let Sn = (b1, . . . , bq). The argument is similar to what we
used in Lemma 2.5. Notice that if A is a finite G-subset and b an element of
infinite order then for each a ∈ A and all sufficiently large n, the element nb−a is
of infinite order. Hence there is an increasing sequence l1 < · · · < lq−1 such that
mbs+1− ibj is of infinite order for all m ≥ ls, j ≤ s, i < ls−1 + d, s = 1, . . . , q− 1.
Here d is just the same as in Lemma 2.5. Now we let

Cn := An(b1) ∪ (Nnl1b2 + An(b2)) ∪ · · · ∪ (Nnlq−1bq + An(bq)),

where An(bj) is the set “Cn” from Lemma 2.5 with bj instead of “an”. The
integer Nn here is chosen so large to make Cn and Fn−1 independent. We leave
details to the reader. ¤

Remark that the assertions 2.7—2.11 are corollaries from Lemma 2.5. In a
similar way, one can deduce some analogues of them from Lemma 2.12 with an
almost literal argument. We summarize them in the following
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Theorem 2.13. Let T be the (C,F)-action of G associated to (Cn)n and (Fn)n

which satisfy (2-1)–(2-3), (2-7) and Remark 2.6(ii). Then T is infinite measure
preserving. Moreover, the transformation Ta1×· · ·×Taq is topologically transitive
and ergodic for each sequence (a1, . . . , aq) ∈ S.

Remark 2.14.
(i) If G = Z we obtain an infinite measure preserving transformation T

such that Tn1 × · · · × Tnk is ergodic for each sequence of non-zero inte-
gers n1, . . . , nk. This property of T is called power weakly mixing in
[DGMS].

(ii) The cocycle α has an interesting property. Suppose for simplicity that G
is torsion-free. Then for each m ∈ N and a subgroup H of Gm with the
nontrivial coordinate pullbacks, the quotient cocycle

αm + H:
m⊗
1

R → Gm/H

has dense range in Gm/H. Recall that αm is transient.

Actions with nonconservative “square”. Our purpose here is to demon-
strate Theorem 0.1(4). To this end we replace (2-4) by some conditions of the
“opposite” nature: there are two sequences (Cn)n and (Fn)n which satisfy (2-1)–
(2-3) and

(a) the sequence C1 − C1, C2 − C2, . . . is independent,
(b) for each n > 0, the map

(Cn × Cn) \D 3 (c, c′) 7→ c− c′ ∈ Cn − C ′n

is one-to-one, where D := {(g, g)| g ∈ G} is the diagonal in G×G,
(c)

∑∞
n=1

1
#(Cn) < ∞.

These sequences can be constructed explicitly by an inductive process. This is
routine.

Theorem 2.15. Let T be the (C,F)-action of G associated to (Cn)n and (Fn)n

as above. Then the Cartesian square {Tg × Tg}g∈G of T is nonconservative.

Proof. Recall that X0 =
∏∞

n=1 Cn and hence X0 × X0 =
∏∞

n=1(Cn × Cn). We
let A :=

∏∞
n=1((Cn × Cn) \D). It follows from (c) that A has positive measure:

(µ× µ)(A) =
∞∏

n=1

#(Cn)2 −#(Cn)
#(Cn)2

=
∞∏

n=1

(
1− 1

#(Cn)

)
> 0.

If (x, y) ∈ A and (x′, y′) := (Tgx, Tgy) ∈ A for some g ∈ G then there is an
integer r > 0 such that

x1 + · · ·+ xr + g = x′1 + · · ·+ x′r,

y1 + · · ·+ yr + g = y′1 + · · ·+ y′r.
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Hence x1 − y1 + · · · + xr − yr = x′1 − y′1 + · · · + x′r − y′r. ¿From (a) we deduce
that x1 − y1 = x′1 − y′1, . . . , xr − yr = x′r − y′r. It follows from (b) that x1 =
x′1, . . . , xr = x′r; y1 = y′1, . . . , yr = y′r. Hence g = 0. ¤

Remark that the wandering subset A is compact without isolated points and
its interior is empty.

Actions with continuous L∞-spectrum, nonergodic Cartesian squares
and all m-fold Cartesian products conservative. We first recall that given
a nonsingular action S of G on (Y, ν), a measurable map f : Y → T is called an
eigenfunction of S if f ◦ Sg = ξ(g)f a.e. for a character ξ ∈ Ĝ. S is said to have
trivial L∞-spectrum if every eigenfunction of S is constant.

The following lemma is standard and we state it without proof.

Lemma 2.16. Let S be a nonsingular equivalence relation on a standard measure
space (Y, A, ν), A0 a dense subalgebra of A and δ a positive real. If for every
A ∈ A0 there is a partial transformation γ ∈ [[S]] such that D(γ) ∪ R(γ) ⊂ A,
ν(D(γ) > δν(A), ν(R(γ)) > δν(A) and γx 6= x for each x ∈ D(γ) then S is
conservative.

Let a be an element of infinite order in G and {gn}∞n=1 a sequence of G-
elements in which every g occurs infinitely often. One can construct inductively
two sequences (Cn)∞n=1 and (Fn)∞n=0 which satisfy (2-1)–(2-3) and such that

(a) Cn = {0, Nna, 3Nna + gn} for some integer Nn, n = 1, 2 . . . ,
(b) the sequence C1 − C1, C2 − C2, . . . is independent.

Notice that

Cn − Cn = {−3Nna− gn,−2Nna− gn,−Nna, 0, Nna, 2Nna + gn, 3Nna + gn}.
Theorem 2.17. Let T be the (C,F)-action of G associated to (Cn)∞n=1 and
(Fn)∞n=1 as above. Then T has trivial L∞-spectrum, nonergodic Cartesian square
but all k-fold Cartesian products conservative.

Proof. Given m > 1, we denote by S the {Tg × · · · × Tg︸ ︷︷ ︸
m times

}g∈G-orbit equivalence

relation. First we prove that S is conservative. To this end it is enough to verify
that the restriction of S to X0,m is conservative. Recall that X0,m =

∏
k>0 Cm

k .
Given c1 ∈ Cm

1 , . . . , cl ∈ Cm
l , we denote by I(c1, . . . , cl) the corresponding cylin-

der in X0,m. Put v := (0, . . . , 0), w := (Nl+1a, . . . , Nl+1a) ∈ Cm
l+1 and define a

partial transformation γ ∈ [[S]] by setting

D(γ) := I(c1, . . . , cl, v), R(γ) := I(c1, . . . , cl, w)

γy := (TNl+1a × · · · × TNl+1a)y

for all y ∈ D(γ). Clearly, D(γ) ∪R(γ) ⊂ I(c1, . . . , cl). We deduce from (a) that

µ(D(γ))
µ(I(c1, . . . , cl))

=
µ(R(γ))

µ(I(c1, . . . , cl))
=

1
3m

.
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It follows from Lemma 2.16 that S is conservative. Actually, let A0 be the algebra
generated by the cylinders and δ := 1/(2 · 3m). If A is a cylinder then—as we
have just shown—the hypothesis of the lemma is satisfied. If A is the union
of finitely many cylinders then define γ as the “concatenation” of the partial
transformations acting within each of these cylinders. Clearly, γ is as desired.

We now show that {Tg × Tg}g∈G is not ergodic. Let A := {0} ×∏
k>1 Ck and

B := {N1a} ×
∏

k>1 Ck. Clearly, A and B are subsets of positive measure in
X0 ⊂ X. If there is g ∈ G with (Tg × Tg)(A×B) ∩ (A×A) 6= ∅, then

{
g ∈ 0 +

∑
k>1(Ck − Ck)

g ∈ N1a +
∑

k>1(Ck − Ck).

But this contradicts to (b).
It remains to show that the L∞-spectrum of T is trivial. Let f : X → T be

a measurable map such that f ◦ Tg = ξ(g)f for all g ∈ G and some character
ξ ∈ Ĝ. Given ε > 0, there exists a subset A ⊂ X0 of positive measure such that
|f(x)− f(y)| < ε for all x, y ∈ A. Take a cylinder I(b1, . . . , bq) ⊂ X0 such that

(2-8) µ(I(b1, . . . , bp) ∩A) > 0.99µ(I(b1, . . . , bp)).

Since

µ(I(b1, . . . , bp, 0)) = µ(I(b1, . . . , bp, Np+1a))

= µ(I(b1, . . . , bp, 3Np+1a + gp+1))

and T preserves µ, there is a subset B ⊂ I(g1, . . . , bp, 0) such that µ(B) > 0 and
B ∪ TNp+1aB ∪ TNp+1a+gp+1B ⊂ A. Hence

|1− ξ(Np+1a)| ≤ ε and |1− ξ(2Np+1a + gp+1)| ≤ ε.

It follows that |1 − ξ(gp+1)| ≤ 3ε. For every q > p, there exists a cylinder
I(b1, . . . , bp, . . . , bq) for which (2-8) holds. Repeating the argument we obtain
that |1− ξ(gq+1)| ≤ 3ε. Since every element of G occurs infinitely many times in
{gn}∞n=1, it follows that |1− ξ(g)| ≤ 3ε for all g ∈ G. Thus ξ is trivial. ¤
Infinite ergodic index without power weak mixing. It may seem that
Theorem 0.1(1) implies Theorem 0.1(2). The purpose of this subsection is to
disprove this conjecture: we demonstrate Theorem 0.1(3) here.

Lemma 2.18. Let δ be as in Lemma 2.5. Then there are sequences (Nn), (Cn),
(Fn) satisfying (2-1)–(2-4) such that 0 ∈ ⋂

n(Cn ∩ Fn) and
(i) the sequence 2C1 − C1, 2C2 − C2, . . . is independent,
(ii) for each n > 0, the map

(Cn × Cn) \ Γ 3 (c, c′) 7→ 2c− c′ ∈ Cn − Cn

is one-to-one, where Γ = {(g, 2g)| g ∈ G}.
(iii)

∑∞
n=1 #(Cn)−1 < ∞.
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Sketch of the proof. One should repeat almost literally the proof of Lemma 2.5.
The modification is as follows. Let a be an element of infinite order in G. Take
some integer Mn (to be specified below) and set Cn := (C ′n + Mna)∩ {0}, where
C ′n is just the set Cn from Lemma 2.5. Clearly (2-4) remains true for this new
Cn. It will be also true if we replace Nn by a larger integer. Now we select Mn

in such a way that the “distance” between elements of 2Cn −Cn is greater than
the “diameter” of 2Cn−1−Cn−1. In order to achieve this we may need to enlarge
Nn. ¤
Theorem 2.19. Let T be the infinite measure preserving (C,F )-action of G
associated to (Cn) and (Fn) from Lemma 2.18. Then for each g ∈ G of infinite
order the following is satisfied:

(i) Tg has infinite ergodic index,
(ii) T2g × Tg is nonconservative.

Proof. The first assertion follows from Theorem 2.10. To prove the second we let
A :=

∏∞
n=1(Cn ×Cn) \ Γ ⊂ X0 ×X0 and repeat the proof of Theorem 2.15 with

an obvious modification. ¤
Thus Theorems 0.1 and 0.2 are proved completely (see Theorems 2.10, 2.13,

2.15, 2.17, 2.19; and Remark 2.11(i), Theorem 2.13 respectively).

3. Generalized Hajian-Kakutani actions

In this section we isolate a special class of (C, F )-actions which possess a num-
ber of interesting properties.

Exhausting weakly wandering subsets. Let T = {Tg}g∈G be a free Borel
action of a countable Abelian group G on (X, B). A set A ∈ B is called ex-
hausting weakly wandering (e.w.w.) for T under a (countable) subset S ⊂ G
if the sets TgA, g ∈ S, are disjoint and their union is X. The corresponding subset
S is called tiling for T .

Proposition 3.1. Let µ be a σ-finite T -invariant ergodic measure on (X, B).
(i) If A,B ∈ B are e.w.w. under a very same tiling subset then µ(A) = µ(B);
(ii) if there exists an e.w.w. subset A ∈ B with µ(A) < ∞ then every µ-

nonsingular transformation commuting with T preserves µ.

For the proof in the case G = Z we refer the reader to [EHI]. The general case
is considered in a similar way.

We do not provide a proof of the following statement since it is routine.

Proposition 3.2. There exists an independent sequence (C ′n)∞n=1 of finite G-
subsets such that 0 ∈ ⋂∞

n=1 C ′n, #(C ′n) > 1, and C ′1 + C ′2 + · · · = G.

It is clear that given n1 < n2 < . . . , the sequence

(C ′1 + · · ·+ C ′n1
), (C ′n1+1 + · · ·+ C ′n2

), . . .
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is also independent. We call it a telescoping of (C ′n)n.
We put F0 := {0}, Fn := C ′1 + · · · + C ′2n, and Cn := C ′2n for n ≥ 1. Clearly,

(2-1) and (2-2) are satisfied.
Replacing (C ′n)n by an appropriate telescoping we may (and shall) assume that

(2-3) holds.

Definition 3.3. The (C, F )-action T of G is called a generalized Hajian-Ka-
kutani action or, more precisely, the G-action associated to (C ′k)∞k=1.

It follows from Theorem 2.1 that T is free, minimal and the corresponding
Haar measure is infinite. Moreover, T is ergodic and has funny rank one with
respect to this measure.

Notice that T is an analogue of Hajian-Kakutani transformation—i.e. Z-
action—from [HK] (see also [EHI] and [M–Z]).

It follows straightforward from the definition of T that

în+1(Xn+1) =
⋃

g∈C′2n+1

Tg în(Xn)

and Tg (̂in(Xn))∩Th(̂in(Xn)) = ∅ for all g, h ∈ C ′2n+1 with g 6= h. ¿From this we
deduce

Proposition 3.4.

(i) Given n > 0, the subset în(Xn) is e.w.w. for T under
∑

k≥n C ′2k+1.
(ii) If Tg î0(X0) ∩ î0(X0) 6= ∅ for some g ∈ G then g ∈ ∑∞

k=1(C
′
2k − C ′2k).

It follows that T is of finite type in the sense of [EHI], i.e. T admits e.w.w.
sets of finite Haar measure. The following statement follows from this and Propo-
sition 3.1.

Corollary 3.5.

(i) For each h ∈ G, the set A := Thî0(X0) is e.w.w. for T under
∑

k≥0 C ′2k+1.
(ii) If TgA ∩A 6= ∅ then g ∈ ∑∞

k=1(C
′
2k − C ′2k).

(iii) Every µ-nonsingular transformation commuting with T preserves µ.

Definition 3.6. We say that a tiling set for a G-action is generating if it is
not contained in any proper subgroup of G.

Remark that in [M–Z], for G = Zd, the generating tiling sets are called prop-
erly exhaustive.

Proposition 3.7. If G is not a torsion group then there exists a sequence of
independent finite G-subsets (C ′n) satisfying (2-3) and such that C ′1+C ′2+· · · = G,
0 ∈ ⋂

n C ′n and the associated G-action has a generating tiling set. Moreover, the
corresponding e.w.w. subset is of finite Haar measure.



WEAK MIXING FOR NONSINGULAR ACTIONS 19

Proof. Let a be an element of G of an infinite order. Denote by π: G → G/Za
the canonical projection map. One can choose a sequence of independent finite
G-subsets (Cn)∞n=1 in such a way that the following is satisfied:

(i) a ∈ C1,
(ii) Za = C1 + C2 + C4 + C6 · · · ,
(iii) π(C3 + C5 + · · · ) = G/Za,
(iv) 0 ∈ ⋂

n Cn, #(Cn) > 1.
Replace each of the two sequences C1, C2, C4, . . . and C3, C5, . . . by some tele-
scopings C ′1, C

′
2, C

′
4, . . . and C ′3, C

′
5, . . . respectively in such a way that (C ′n)n

satisfies (2-3). It remains to apply Proposition 3.4(i). ¤
Strong disjointness.

Definition 3.8. Let F and F ′ be two topological G-actions on Polish spaces Z
and Z ′ respectively. We say that F and F ′ are strongly disjoint if there is no
any non-atomic probability {F (g)×F ′(g)}g∈G-quasi-invariant ergodic measure on
Z×Z ′ whose Z-pullback is F -quasi-invariant or Z ′-pullback is F ′-quasi-invariant.

Let σ: N → N be a bijection such that {σ(2), σ(4), . . . } ⊂ {1, 3, 5 . . . }. De-
note by Tσ the generalized Hajian-Kakutani G-action associated to the sequence
(C ′σ(n))n∈N and by Xσ the space of this action.

Theorem 3.9 (cf. [EHI, Theorem 2]). T and Tσ are strongly disjoint.

Proof. Let ν be a non-atomic probability {Tg × Tσ
g }g∈G-quasi-invariant ergodic

measure on X×Xσ and µ its X-pullback. We assume that µ is T -quasi-invariant.
Denote î0(X0) by W and the similar subset of Xσ by Wσ. If

(Tg × Tσ
g )(W ×Wσ) ∩ (W ×Wσ) 6= ∅

for some g ∈ G then TgW ∩W 6= ∅ and Tσ
g Wσ ∩Wσ 6= ∅. By Proposition 3.4(ii),

g ∈
∞∑

k=1

(C ′2k − C ′2k) and g ∈
∞∑

k=1

(C ′σ(2k) − C ′σ(2k)).

Since the collection (Ck)∞k=1 is independent, it follows that g = 0. Hence the
sets (Tg × Tσ

g )(W × Wσ), g ∈ G, are pairwise disjoint. Since ν is ergodic and
non-atomic, we obtain ν(W × Wσ) = 0. In a similar way, ν(W × T σ

h Wσ) = 0
for every h ∈ G (see Corollary 3.5). Since Wσ is e.w.w. for T σ, it follows that
ν(W × Xσ) = 0 and hence µ(W ) = 0. In turn, W is e.w.w. for Tσ and this
implies µ(X) = 0 and hence ν(X ×Xσ) = 0, a contradiction. ¤
Remark 3.10. Slightly modifying the above argument one can find countably
many bijections σi: N → N such that the corresponding G-actions T σi , i ∈ N,
are pairwise strongly disjoint. In particular, (Xσi , µi, T

σi) is a countable family
of pairwise disjoint (and hence non-isomorphic in the measure category sense)
ergodic infinite measure preserving G-actions of finite type, where µi stands for
Haar measure on Xσi .
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4. Nonsingular (C,F)-actions and Theorem 0.3

To prove Theorem 0.3 we adapt the argument used in the proof of Theorem 0.1
to the nonsingular case. Trying to avoid repetitions we concentrate our attention
on new phenomena only. We begin with an analogue of Lemma 2.5.

Recall that (an)∞n=1 is a sequence consisting of all elements of G of infinite
order.

Lemma 4.1. Let W = {Wt}t∈R be an AT-flow and δ: G → R+ a map with∑
g∈G δ(g) < 1/2. There exist a sequence of positive integers (Nn)∞n=1, two se-

quences (Cn)∞n=1 and (Fn)∞n=0 of finite G-subsets and a sequence (κn)∞n=1 of prob-
ability measures on (Cn)n such that: (2-1)–(2-3) are satisfied, 0 ∈ ⋂∞

n=1(Cn∩Fn),
the associated flow of the (nonsingular) tail equivalence relation on the product
measure space

⊗∞
n=1(Cn, κn) is W and

(4-1) κn(C0
n(f)) > δ(f) for each f ∈ Fn−1,

where

C0
n(f) := {c ∈ Cn| c′ − c = Nnan + f for some c′ ∈ Cn with κn(c′) = κn(c)}.

Proof. Let G = {gi| i ∈ N} and g1 = 0. By Theorem 1.3, W is the as-
sociated flow of the tail equivalence relation, say S1, on an infinite product
space

⊗∞
n=1(Vn, νn), where each Vn is finite. Suppose that we already have

N1, . . . , Nn−1, C1, . . . , Cn−1, F0, . . . , Fn−1, κ1, . . . , κn−1 and our purpose is to
construct Nn, Cn, Fn, κn. Let Vn = {1, . . . , m} and Fn−1 = {fj}k

j=1. Select
positive integers d1, . . . , dk in such a way that di

d > 2δ(fi), di > 2m and di is
divided by m for each i = 1, . . . , k. Now choose Nn large so that (2-5) holds and
define Cn by (2-6). Consider a finite set Dn partitioned as Dn =

⋃k
i=1 Dn(i) with

#(Dn(i)) = di/m. Decompose the i-th line of (2-6) into m consecutive blocks of
equal length as follows:

1−st block︷ ︸︸ ︷• · · · •︸ ︷︷ ︸
di/m terms

· · ·
m−th block︷ ︸︸ ︷• · · · •︸ ︷︷ ︸
di/m terms

.

There is a bijection of Vn × Dn onto Cn which maps {j} × Dn(i) onto the j-
th block of the i-th line. This bijection transfers the product measure νn ×
(the equidistribution) to some probability measure on Cn. We call it κn. Clearly,
C0

n(fi) is just the i-th line of (2-6) without the “bad” elements—the first terms
of the blocks. Hence

κn(C0
n(i)) ≥ di

d
(1− m

di
) >

di

2d
> δ(fi),

as desired. Now we define Fn just like in Lemma 2.5, i.e.

Fn :=
n⋃

i=1

(gi + Fn−1 + Cn).
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It remains to find the associated flow of the tail equivalence relation S on the
space

⊗∞
n=1(Cn, νn). To this end we remark that S = S1 ⊗ S2, where S2 is the

tail equivalence relations on
⊗∞

n=1(Dn, the equidistribution). Since S2 is of type
II1, the associated flows of S and S1 are conjugate. ¤

Suppose that (Cn)n and (Fn)n satisfy (2-1)–(2-3). Given a sequence κn of
probability measures on Cn such that

⊗∞
n=1 κn is non-atomic, one can construct

inductively a sequence (τn) of measures on (Fn) such that τ0(0) = 1 and τn(fn−1+
cn) = τn−1(fn−1)κn(cn). We furnish Xn = Fn ×

∏
k>n Ck with the product

measure µn := τn ⊗
⊗

k>n κk. Clearly, µn ◦ i−1
n = µn+1 ¹ in(Xn). Hence an

inductive limit µ of (µn)∞n=1 is well defined. Clearly, µ is a σ-finite measure on
X.

Definition 4.2. We call µ a (C, F, κ)-measure.

Remark that the equivalence class of µ does not depend on a particular choice
of (τn). It is determined uniquely by (κn).

Clearly, R (and the corresponding G-action T ) is µ-nonsingular. Denote by ρµ

its Radon-Nikodym cocycle. If x = (fn, cn+1, . . . ), y = (f ′n, cn+1, . . . ) ∈ Xn then

ρµ(̂inx, îny) = log τn(f ′n)− log τn(fn) +
∑

k>n

(log κk(c′k)− log κk(ck)).

It is easy to verify that T has funny rank one (cf. Theorem 2.1) with respect to
µ. Since X0 is a subset of positive measure in X, the associated flows of R and
R ¹ X0 are conjugate.

The following statement is an analogue of Lemma 2.7.

Lemma 4.3. Rn(a) is an ergodic equivalence relation on (Xn, µn) for every
element a ∈ G of infinite order.

Sketch of the proof. The proof is similar to that of Lemma 2.7. The crucial point
is to apply Lemma 2.4. Remark that Rn is no longer measure preserving. We
define a map β: G → R+ by setting

β(g) =
{

1 if g /∈ αn(Rn)
exp(ρµ(x, y)) if g = αn(x, y)

With this β and δ from Lemma 4.1 we apply Lemma 2.4 in a way similar to that
used in Lemma 2.7. Remark that we replaced Cn (used in Lemma 2.5) by C0

n

(used in Lemma 4.1) just to obtain the required (in Lemma 2.4) inequality for
the Radon-Nikodym derivative. ¤

Slightly modifying the proof of Theorem 2.10 we obtain

Theorem 4.4. Let (Cn), (Fn), (κn) satisfy (2-1)–(2-3) and (4-1). Then the cor-
responding (C,F )-action T of G is has funny rank one with respect to a (C, F, τ)-
measure. The associated flow of T is W . For every a ∈ G of infinite order, the
transformation Ta has infinite ergodic index.
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Thus Theorem 0.3(1) is done. Theorem 0.3(2) can be demonstrated in a similar
way. As for Theorem 0.3(4,5) they follow from the following two statements (cf.
Theorems 2.15, 2.17 respectively).

Theorem 4.5. Given an AT-flow W , there exist (Cn), (Fn), (κn) satisfying
(2-1)–(2-3), (a) and (b) before Theorem 2.15 and

(c’)
∑

n

∑
c∈Cn

κn(c)2 < ∞,
(d) W is the associated flow of the tail equivalence relation on the product

measure space
∏∞

n=1(Cn, τn).
The corresponding (C, F )-action T of G has funny rank one with respect to a
(C,F, κ)-measure. The associated flow of T is W . The action T × T is noncon-
servative.

Theorem 4.6. Given an AT-flow W , there exist (Cn), (Fn), (κn) satisfying
(2-1)–(2-3), (b) before Theorem 2.17 and

(a’) C2n = {0, Nna, 3Nna + gn} for some integer Nn, where a is a G-element
of infinite order,

(c) κ2n is equidistributed on C2n,
(d) W is the associated flow of the tail equivalence relation on the product

measure space
∏∞

n=1(Cn, τn).
The corresponding (C, F )-action T of G has funny rank one with respect to a
(C,F, κ)-measure. The associated flow of T is W . T has trivial L∞-spectrum,
nonergodic Cartesian square but all k-fold Cartesian products conservative.

Combining the arguments of Theorems 4.5 and 4.6 one can deduce Theo-
rem 0.3(3). We leave details to the reader.
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