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Electromagnetic and acoustic waves in layered organic conductors „a review …
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The review is devoted to theoretical investigations of propagation of electromagnetic and
acoustic waves in layered conductors of organic origin. Attention is focussed on spectroscopic
possibilities for studying the electron structure of organic quasi-two-dimensional
conductors, which is of great importance for understanding physical processes in these materials.
High-frequency and magnetoacoustic effects considered in this review are typical of quasi-
two-dimensional conductors and quite informative. The analysis of these effects makes it possible
to study in detail the electron energy spectrum and relaxation properties of charge carriers
in layered conductors. ©1999 American Institute of Physics.@S1063-777X~99!00111-5#
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1. INTRODUCTION

The search for new materials in the sixties attracted
attention of researchers to conductors of organic origin w
a layered or filamentary structure. Intense experimental
vestigations of physical properties of organic conduct
were stimulated in the hope of obtaining superconduc
with high critical parameters just among quasi-on
dimensional filamentary conductors in which a superc
ducting transition can theoretically occur at high tempe
tures. Many years of efforts made by physicists and chem
to obtain a large number of new organic conductors cul
nated in the synthesis of organic quasi-one-dimensional c
ductors with a superconducting transition temperatureTc of
the order of several kelvins as well as layered organic su
conductors with a record-high superconducting transit
temperatureTc>13 K. Although these values ofTc are
lower than for some intermetallic compounds, the inter
towards the electronic properties of organic conductors
mains unabated.

Layered conductors of organic origin are attractive
experimenters to a considerable extent due to their pec
behavior in strong magnetic fields and a number of ph
transitions under comparatively low pressures. Their elec
cal conductivity along layers is several orders of magnitu
higher than electrical conductivity along the normaln to the
layers, and the critical magnetic field at which supercond
tivity is violated depends considerably on its orientation re
tive to the layers. Under the action of applied pressure,
superconducting transition temperature of theb-modification
of tetrathiafulvalene salt~BEDT–TTF!2JBr2 increases ap-
proximately by a factor of three.1 Such a sensitive reaction o
the system of charge carriers to crystal deformation indica
that acoustoelectronic phenomena in layered conductors
a quasi-two- dimensional electron energy spectrum ap
ently possess peculiar properties.

The interest in investigations of organic conductors w
a layered structure is also due to the variety of various ph
8371063-777X/99/25(11)/20/$15.00
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states of these compounds and the possibility of changing
ground state with external agencies.

Shubnikov–de Haas magnetoresistance oscillations
served in tetraselenetetracene halides and a large fami
tetrathiafulvalene-based ion-radical salts with a charge tra
port in magnetic fields of the order of several tens tesla
dicate that these compounds possess the metal-type con
tivity. This allows us to describe the electron processes
such conductors on the basis of the concept of quasipart
carrying an electric chargee, which are similar to conduc-
tion electrons in metals. Strong anisotropy of the electri
conductivity of a layered conductor is apparently associa
with strong anisotropy of the velocity of charge carriersv
5]«(p)/]p on the Fermi surface«(p)5«F , i.e., their en-
ergy «(p) weakly depends on the momentum compon
pz5p•n along the normaln to the layers.

The Fermi surface of quasi-two-dimensional conduct
is open and weakly corrugated along thepz-axis. The corru-
gated planes can be rolled into a cylinder whose base lie
a unit cell of the momentum space so that the Fermi surf
of layered conductor can be presented as a system of we
corrugated cylinders or a system of planes corrugated we
along thepz-axis. Small closed cavities belonging to anom
lously small groups of charge carriers can also be prese

The mean free pathl of charge carriers in experimentall
investigated layered conductors attains values of several
crometers, and the radius of curvaturer of conduction elec-
trons in strong magnetic fields that may be induced in ac
practice can be much smaller thanl . Under these conditions
it is appropriate to formulate the inverse problem of reco
struction of the electron energy spectrum with the help
experimental investigation of kinetic phenomena in a m
netic field.

Galvanomagnetic phenomena and quantum oscilla
effects in low-dimensional conductors of organic origin ha
been investigated experimentally by many authors. In rec
years, several publications appeared,2–7 in which the results
of experimental studies of high-frequency phenomena w
reported~including the discovery of cyclotron resonance
© 1999 American Institute of Physics
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the layered conductora-(BEDT2TTF!2KHg~SCN!.
High-frequency parameters of layered and filament

conductors are undoubtedly quite informative, and th
analysis will make it possible to determine in fine details
electron energy spectrum and relaxation properties of ch
carriers. Here we shall consider the propagation of elec
magnetic and acoustic oscillations in organic quasi-tw
dimensional conductors, choosing these oscillations from
variety of waves that can propagate in current-carrying m
dia.

2. ENERGY SPECTRUM OF LAYERED CONDUCTORS

A unit cell of a crystal in layered organic conducto
contains a large number of atoms, and the separationa be-
tween layers is much larger than atomic spacing in a la
As a result, the overlapping of wave functions for electro
belonging to different layers is quite small, and we can u
the strong-coupling approximation for dispersion relatio
for charge carriers:

«~p!5 (
n50

`

«n~px ,py!cosS anpz

h D . ~2.1!

Hereh is Planck’s constant and«n(px ,py) are assumed to b
arbitrary functions of their arguments. However, the ma
mum values«n

max at the Fermi surface decrease significan
with increasingn so that«1

max5h«F!«F , and «n11
max !«n

max,
where h is the quasi-two-dimensionality parameter of t
spectrum.

Shubnikov–de Haas quantum oscillations are obser
virtually for all organic conductors of the family of tetrath
afulvalene salts.8–19 This points to the presence of close
sections of the Fermi surface by the planepH5p•H/H for
such conductors, and the large value of the oscillation a
plitude suggests the presence of a group of charge car
for which the states with the Fermi energy are located
weakly corrugated cylinder in the momentum space, suc
group of conduction electrons dominating over the remain
charge carriers with the Fermi energy.

The model of a Fermi surface of a quasi-tw
dimensional conductor in the form of a weakly corrugat
cylinder ~Figs. 1 and 2! is in good agreement with the ex
perimental investigations of galvanomagnetic phenom
and Shubnikov–de Haas oscillations in many layered co
plexes of organic origin with charge transport. Among oth
things, the results of theoretical calculations based on
model are in complete accord with the experimentally o
served quantum oscillations of magnetoresistance of tetra
afulvalene salts~BEDT2TTF!2JBr2 and ~BEDT2TTF!2J3.
However, the substitution of the complex MHg~SCN!4 for
halogens in these salts, where M is a metal of the group~K,
Rb, Tl!, leads to a more complex dependence of resista
on magnetic field. According to band analysis of the elect
energy spectrum,20 the Fermi surface of
~BEDT2TTF!2MHg~SCN!4, salts contains, apart from
weakly corrugated cylinder, two quasi-one-dimensio
sheets. Although the presence of a magnetic field affect
dynamic properties of charge carriers with a quasi-o
dimensional spectrum only slightly, the existence of suc
y
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charge carrier group can change significantly the depende
of electromagnetic and acoustic impedances on the ma
tude of a strong magnetic field.

Yamagji21 used a rather simplified model of the Ferm
surface in theoretical calculations of the magnetoresista
anisotropy of layered conductors, while Zimbovskaya22 ana-
lyzed the rf properties by using the energy spectrum

FIG. 1. Various types of electron trajectories in momentum space i
magnetic field parallel to the layers: open trajectories~curves1!, closed
electron orbits~curve 2!, and a self-intersecting orbit containing a sadd
point pc ~curve3!. The cross section of the Fermi surface by the planepy

5pc separates the regions of open and closed electron trajectories;~a! and
~b! show different projections of the Fermi surface.

FIG. 2. Electron trajectories in momentum space in a magnetic field~u is the
angle formed by the magnetic field vector with the normal to the layers!; ~a!
and ~b! show different projections of the Fermi surface.
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charge carriers of an exotic form with kinks on the Fer
surface. Under such assumptions, spectroscopic potentia
of studying electron processes in organic conductors i
magnetic field were underestimated or even disregarded
together. We shall consider here the high-frequency
magnetoacoustic effects in organic conductors under
most general assumptions concerning the form of quasi-t
dimensional electron energy spectrum~2.1!.

The quasi-one-dimensional energy spectrum of cha
carriers will not be specified either. We shall only assu
that the coefficientsA000 and A100 in the expression for the
dependence of energy on quasimomentum

« l~p!5(
nml

`

Anml cosS a1npx

h D cosS a2mpy

h D cosS alpz

h D
~2.2!

are much larger than all the remaining coefficientsAnml . The
dimensionsa1 and a2 of a unit cell of the crystal lattice in
thexy plane of the layers can also differ considerably. In t
case when these planes are not the symmetry planes o
crystal, we must take into account additional phase in
arguments of the cosines in formulas~2.1! and ~2.2!, which
changes sign upon the substitution of2p for p. This will not
alter the wave spectrum in layered conductors considera
and so there is no need to complicate the solution of
given problem. Thus, we shall use below the dispersion
lation for charge carriers in the form~2.1! and~2.2!, assum-
ing that the coefficientsAnml and the functions«n(px ,py)
are arbitrary.

3. COMPLETE SET OF EQUATIONS

An acoustic wave in a conductor always generate
varying electromagnetic field accompanying it. However,
perturbation of the electron subsystem of a conductor by
electromagnetic wave incident on its surface can also ex
elastic oscillations in it. Consequently, the system of eq
tions describing the propagation of waves in a conduc
contains the equation of the theory of elasticity for ion
displacementu, i.e.,

r
]2ui

]t2 5l i j lm

]ulm

]xj
1Fi , ~3.1!

as well as Maxwell’s equations

curl H5
4p

c
j1

1

c

]E

]t
; curl E52

1

c

]B

]t
; div B50.

~3.2!

Here r and l i j lm are the density and elastic tensor of t
crystal,ulm5(1/2)(]ul /]xm1]um /]xl) is the strain tensor
andc the velocity of light.

In view of a quite high number density of charge car
ers, Poisson’s equation can be reduced to the electroneu
ity condition of the conductor, and hence the continuity co
dition for charge flux in the asymptotic approximation
reciprocal density of conduction electrons assumes the f

div j50. ~3.3!
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The magnetizationM induced by an external magnet
field in conductors without a spontaneous magnetic mom
is usually small, and there is no need to distinguish betw
the magnetic inductionB and the magnetic fieldH5B
24pM (B) except at ultra-low temperatures. At quite lo
temperatures, when the inclusion of charge carrier ene
quantization in a magnetic field is significant, the amplitu
of quantum oscillations of magnetization as a function of 1B
can become comparable withB, and the differenceB
24pM (B) can become an infinitely small quantity. In th
case, the wave process is essentially nonlinear even for s
wave amplitude.23,24

If M (B)!B, Eqs.~3.2! can be reduced to a high degre
of accuracy to the equation

curl curl E2
v2

c2 E5
4p iv

c2 j . ~3.4!

In the case of a small wave amplitude, it is sufficient
confine the analysis to the linear approximation in weak p
turbation of the electron system, and the wave process ca
regarded as monochromatic with frequencyv so that the
differentiation with respect to time is equivalent to multip
cation by (2 iv), which is taken into account in Eq.~3.4!.
This assumption does not violate in any way the genera
of the problem since in view of the linearity of equation
relative to the displacement of ions, the electric fieldE(r ,t),
and the magnetic field of the wave, the generalization to
case of an arbitrary time dependence of the fields is triv
and can be reduced to the summation of various harmo
of the solution of the system of equations~3.1!–~3.3!.

The perturbation of the electron system by crystal def
mation leads to a renormalization of the conduction elect
energy,25 i.e.,

d«5l i j ~p!ui j ~3.5!

and to the emergence of the force

Fi5
1

c
@ j3H# i1

m

e
iv j i1 f i

d , ~3.6!

exerted by electrons on the crystal lattice.
The electric current density

j i52
2

~2ph!3 E ev ic
] f 0

]«
d3p[^ev ic& ~3.7!

and the deforming force density26,27

f i
d5

]

]xk
^L ikc&, ~3.8!

characterizing the response of the electron system to pe
bation are functionals of the charge carrier distribution fun
tion f 5 f 0$«(p)1 ivp–u%2c] f 0 /]«, where f 0$«(p)
1 ivp–u% is the equilibrium Fermi function in a referenc
frame moving with the vibrating lattice at a velocity2 ivu.
The nonequilibrium correction to this velocity should be d
termined by solving the kinetic equation closing the co
plete system of equations of the problem and having
form
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v
]c

]r
1

]c

]t
1S 1

t
2 iv Dc5g. ~3.9!

Here the functiong52vL i j (p)ui j 1eẼ•v takes into ac-
count the perturbation of the system of charge carriers by
electric field

Ẽ5E2
iv

c
@u3H#1

muv2

e
~3.10!

and by crystal deformation.
The componentsl i j (p) of the deformation potential ten

sor in the kinetic equation~3.9! and in expression~3.8! for
the deforming force density are given in the form taking in
account the conservation of the number of charge carri
i.e.,

L ik~p!5l ik~p!2^l ik~p!&/^1&. ~3.11!

The collision operator in the equation forc is taken in
the approximation of the relaxation timet for charge carri-
ers, and the timet is a coordinate in momentum space, whi
indicates the position of a charge on its trajectory in a m
netic field in accordance with the equation of motion

]p

]t
5

e

c
@v3H#. ~3.12!

The kinetic equation must be supplemented with
boundary condition taking into account the scattering
charge carriers at the conductor surface coinciding, say,
the planex50:

c~p1,0!5q~p2!c~p2,0!1E d3pW~p,p1!

3$12Q@vx~p!#%c~p,0!. ~3.13!

Here the specular reflection parameterq(p) is the prob-
ability that a conduction electron incident on the sample s
face with a momentump2 has after reflection a momentum
p1 connected withp2 through the specular reflection cond
tion presuming the conservation of the energy of the cha
and of the component of its momentum along the scatte
boundary. The specular reflection parameter is conne
with the scattering indicatrix W(p,p1) through the
relation28,29

q~p2!512E d3pW~p,p1!$12Q@vx~p!#%, ~3.14!

whereQ(z) is the Heaviside function.
In a bulk conductor whose size is much larger than

mean free pathl of charge carriers, most of them do n
collide with the sample surface during their mean free tim
If we are interested in ‘‘bulk’’ effects that are not associat
with interaction of a small group of charge carriers with t
sample surface, there is no need to use the boundary co
tion, and the functionc can be presented in the form

c5E
2`

t

dt8g@x1x~ t8!2x~ t !#exp@n~ t82t !#, ~3.15!

wheren51/t2 iv, andx(t)5* tvx(t)dt.
e
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Let us suppose that a wave propagates along the no
to the surface of a conductor occupying the half-spacx
>0. Using the Fourier method, we continue evenlyu(x) and
Ẽ(x) to the region of negative values ofx and obtain for the
fourier component

ui~k!52E
0

`

dx ui~x!coskx ~3.16!

of ion displacement and for the electric field

Ẽi~k!52E
0

`

dxẼi~x!coskx ~3.17!

the following system of algebraic equations:

4p iv

c2 j a~k!52E8~0!1k2Ea~k!2S v

c D 2

Ea~k!, ~3.18!

a5y,z,

j x~k!50 ~3.19!

2v2rui~k!52l ixlx@2ua8 ~0!1k2ul #1~ imv/e! j i~k!

1c21@ j ~k!3H# i1 ik^L ixc&. ~3.20!

The fluxes characterizing the response of the elect
system to a perturbation can be presented with the help o
solution of the kinetic equation in the following form:

j i~k!5s i j ~k!Ẽj~k!1ai j ~k!kvuj~k!, ~3.21!

^L ixc~k!&5bi j ~k!Ẽj~k!1ci j ~k!kvuj~k!, ~3.22!

where the Fourier transforms of electrical conductiv
s i j (k) and of acoustoelectronic tensorsai j (k),bi j (k) and
ci j (k) are defined as

s i j ~k!5^e2v i R̂v j&; ai j ~k!5^ev i R̂L jx&, ~3.23!

bi j ~k!5^eL ixR̂v j&; ci j ~k!5^L ixR̂L jx&. ~3.24!

Here

R̂g[E
2`

t

dt8g~ t8!exp$ ik@x~ t8!2x~ t !#1n~ t82t !%,

g~ t !5vL j i ~ t !kiuj~k!1ev~ t !•Ẽ~k!. ~3.25!

Substituting expressions~3.21! and ~3.22! into Eqs.
~3.18!–~3.20!, we obtain a system of linear algebraic equ
tions in ui(k) and Ẽi(k). The problem of distribution of
electric field and the field of displacement of ions in a co
ductor will be solved completely if we apply the invers
Fourier transformation to its solutions.

The condition for the existence of a nontrivial solutio
of the obtained system of equations~i.e., the equality to zero
of its determinant! is a dispersion equation. The imagina
components of the roots of the dispersion equation determ
the damping factors of the acoustic and electromagn
waves, while the real components of these roots desc
renormalizations of the velocities of the waves.
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4. PROPAGATION OF ELECTROMAGNETIC WAVES IN
LAYERED CONDUCTORS

The equations in the theory of elasticity and Maxwel
equations turn out to be coupled weakly when the mut
transformation of electromagnetic and acoustic waves
hampered. In this case, the propagation of acoustic wave
conductors can be investigated without using Maxwe
equations, and the problem of propagation of electrom
netic waves can be solved to a sufficiently high degree
accuracy without using equations in the theory of elastic

We consider the propagation of electromagnetic wa
in a layered conductor. Their attenuation length depends c
siderably on the polarization of the incident wave. A linea
polarized wave with the electric field directed along the n
mal to the layers penetrates into the conductor to a con
erably larger depth than a wave with the electric field
rected along the layers.

The surface impedance and the penetration depth of
varying electric field of the wave can easily be determined
solving the system of equations~3.18!, ~3.7!, and~3.9! with
the boundary condition~3.13!. The solution of the kinetic
equation~3.9! allows us to find the relation between the Fo
rier transforms of current density and electric field:

j i~k!5s i j ~k!Ej~k!1E dk8Qi j ~k,k8!Ej~k8!, ~4.1!

where

s i j ~k![2e3H/c~2ph!3

3E dpHE
0

T

dt v i~ t,pH!E
0

t

dt8v j~ t8,pH!

3exp$n~ t82t !%cosk$x~ t8,pH!2x~ t,pH!%

[^e2v i R̂v j&. ~4.2!

The kernel of the integral operatorQi j (k,k8) depends
considerably on the state of the sample surface, i.e., on
probability of specular reflection of charge carriers at
surface.

In the cases when the relation between the Fourier tra
forms of current density and electric field is local, i.e., t
contribution of electrons colliding with the sample bounda
to the alternating current is considerably smaller than
contribution from ‘‘bulk’’ electrons, the electric field attenu
ation length is determined by the imaginary component
the roots of the dispersion equation

detH S k22
v2

c2 D dab2
4p iv

c2 s̃ab~k!J 50, ~4.3!

where

s̃ab~k!5sab~k!2
sax~k!sxb~k!

sxx~k!
; a,b5~y,z!.

~4.4!

Under the conditions of normal skin effect, when t
mean free path of charge carriers is smaller than the
depth, the relation between current density and electric fi
is local to a high degree of accuracy, i.e.,
l
is
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j i~x!5s i j Ej~x!, ~4.5!

and the component of the electrical conductivity matrixs i j

5s i j (0) have the same form as in a uniform electric fie
The electrical conductivityszz5h2s0 across the layers is
proportional to the square of the quasi-two-dimensiona
parameter of the electron energy spectrum, ands0 has the
same order of magnitude as the electrical conductivity alo
the layers in a uniform electric field. In this case, the disp
sion equation~4.3! implies that the attenuation depthd i of
the electric fieldEz(r ) is larger than the attenuation depthd'

of the electric field along the layers by a factor of 1/h, i.e.,

d'5d ih. ~4.6!

Under the conditions of anomalous skin effect, when
skin depthd i is much smaller than the mean free pathl of
charge carriers, the relation betweend' andd i has the form

d'5d ih2/3, ~4.7!

since the tensor componentss i j (k) are inversely propor-
tional to the wave numberk for kl@1.

In a magnetic field, the relations betweend' andd i are
more diversified.

Let us consider the propagation of electromagne
waves in a layered conductor in a magnetic fieldH
5(H sinw,H cosw sinu,H cosw cosu), tilted by the anglew
to the conductor surfacexs50.

The integral term in the boundary condition~3.13! en-
sures the absence of current through the sample surface
in the range of high frequenciesv, the solution of the kinetic
equation weakly depends on this functional.30 Disregarding
this functional forw50 and assuming the absence of char
carrier drift along thex-axis along open electron orbits, w
can write the solution of the kinetic equation in the form

c~ t,pH ,x!5E
l

t

dt8ev~ t8,pH!•E@x~ t8,pH!2x~l,pH!#

3exp$n~ t82t !%1q~l,pH!@12q~l,pH!

3exp$n~2l2T!%#21E
l

T2l

dt8

3ev~ t8,pH!•E@x~ t8,pH!2x~l,pH!#

3exp$n~ t82t12l2T!%, ~4.8!

whereT52p/V52pm* c/eH is the period of motion of a
charge in the magnetic field,m* the effective cyclotron mass
of conduction electrons, andl is the root of the equation

x~ t,pH!2x~l,pH!5E
l

t

vx~ t8,pH!dt85x. ~4.9!

which is nearest tot.
Conduction electrons for which$x(t,pH)2xmin%,x do

not collide with the sample surface, and we must p
l52` for such electrons.

In a magnetic field tilted to the sample surface, cond
tion electrons either penetrate to the bulk of the sample a
several collisions with the boundary, or tend to approach
surface. The relative fraction of the latter electrons is n
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large, and they make a small contribution to the alternat
current. The contribution of the remaining electrons to
current forw>1 is naturally determined by the type of the
interaction with the sample surface, but the state of the
face affects only insignificant factor of the order of unity
the expression for surface impedance.

4.1. Normal skin effect

We shall apply the term normal skin effect to penetrat
of an electromagnetic field to the bulk of a sample under
condition when the current densityj „r … is determined to a
high degree of accuracy by the value of the electric fieldE„r …
at the same pointr . In a strong magnetic field parallel to th
conductor surface, charge carriers with closed orbits drif
the momentum space along the sample surface. If the d
eter 2r of their orbits is much smaller than the skin dep
the main contribution to rf current comes from carriers se
rated from the surfacexs50 by a distance greater than 2r .
These conduction electrons do not collide with the sam
surface, and it is expedient to use the approximation of lo
coupling between the current density and the electric field
the wave to calculate the surface impedance in
asymptotic approximation in the small parameterr /d in the
absence of open cross sections of the Fermi surface.

The asymptotic expression for the tensor compon
s i j (k) for kr!1 has the same form as in a uniform elect
field so that the electric currentEy for kr!1 attenuates a
distances

]'>d05c~2pvs0!21/2 ~4.10!

for any relation between the mean free path of charge ca
ers and the skin depth.

For h!1, each of the componentsszx andsxz is at least
proportional toh2 so thats̃zz>szz The asymptotic form of
szz(k) for small anglesu is equal tos0h2 in order of mag-
nitude, and the attenuation lengthd i of the electric fieldEz is
larger thand' by a factor of 1/h as in zero magnetic field i
the corrugation of the Fermi surface is nor very small a
h>d0v/c. For v@s0h2, the skin depth

d i5
d0

2v

ch2 S 11
r 2v2

c2 D 21/2

~4.11!

increases with the magnetic field, attaining its limiting val
vd0

2/ch2.31,32

For significant values ofu, there exists a sequence
values ofu5uc for which the asymptotic behavior ofszz

changes considerably, as well as the behavior of
quantity33–35 s̃zz which satisfies the expression

s̃zz~k,h,u!5
ae3tTH cosu

4p2h4c (
n

n2I n
21s0h2$h2f 1~u!

1g2f 2~u!1~kr !2f 3~u!%, ~4.12!

where thef i stand for functions ofu of the order of unity,
and

I n~u!5E
0

T

dt «n~ t !cos$anpy~ t !tanu/h%. ~4.13!
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For u5uc , when I 1(uc) vanishes, he value ofs̃zz de-
creases abruptly for smallh,g5(Vt)21,v/V, andkr.

As a result, the penetration depth for the electric fieldEz

increases considerably foru5uc , and the angular depen
dence of impedance acquires a series of narrow peaks.
tanu@1, these peaks are repeated periodically, with a pe
determined by the separation between the stationary p
points on the electron orbit, wherek•v5v, which are close
to turning points (vx50). Since the phase velocity of th
wavevw5v/k5(vt)21/2vc/v0h is much smaller than the
Fermi velocity vF of conduction electrons, the separatio
between stationary phase points on the electron orbit ca
regarded to be equal to the diameter of the orbit to a h
degree of accuracy.

The height of sharp peaks foru5uc in pure conductors
at low temperatures, whenlh2.d0 , decreases with increas
ing magnetic field, and conversely, forlh2,d0 , it increases
in proportion told0 /rh if lh,r ,d0 /h. At not very high
frequencies, when the displacement current is smaller t
the conduction current, the solution of the dispersion eq
tion ~4.3! for u5uc can be represented in the form of th
interpolation formula

d i5 l S r 21d0
2h22

r 21 l 2h2 D 1/2

. ~4.14!

In the case of extremely low electrical conductivi
along the normal to the layers, whenv.s0h2(h21r 2/ l 2),
the skin depthd i has the form

d i5~d0 /h2!$11~r / lh!21~rv/ch!2%21/2

3$11~rh/d0!2%, ~4.15!

and the electric field attenuation depth along the norma
the layers is again equal tod0 /h2 in a strong magnetic field
when r ,( l 2h21d0

2/h2)1/2. In the range of moderate mag
netic fields in which the relationd0 /h!r !d i holds for u
5uc , the impedance as a function of magnetic field ha
minimum since forr @ lh the skin depth

d i5 lr h/d0 ~4.16!

is inversely proportional to the magnetic field, i.e., decrea
with increasing magnetic field.32–35

For d'!r !d i , the attenuation length of the electr
field Ez(x) depends weakly on the type of reflection
charge carriers at the sample surface as before, but the
etration depth for the electric fieldEy(x) is quite sensitive to
the state of the conductor surface if the value ofd' is smaller
than or comparable to the mean free path of charge carr
In this range of magnetic fields, normal skin effect can ta
place only ford'@ l , when the local relation between th
current density and electric field is observed for any pol
ization of the wave. The asymptotic expressions̃yy(k) for
kl!1 coincides withs0 to within a numerical factor of the
order of unity, and henced' coincides in order of magnitude
with d0 . However, the penetration depth of the electric fie
Ez(x) in the sample depends considerably on the magn
field orientation.

A peculiar dependence of the attenuation length of
electric fieldEz(x) is observed foru5p/2, when, apart from
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the drift of charge carriers along the magnetic field, a fan
various drift directions is possible in thexy plane for con-
duction electrons belonging to open cross sections of
Fermi surface. In this case, the dependence ofszz on the
magnitude of a strong magnetic field~g051/(V0t)!1,
whereV0 is the frequency of electron rotation in a magne
field orthogonal to the layers! can be presented by the fo
lowing interpolation formula:

szz5s0g0
2h2~g0

21h!21/2, ~4.17!

which is valid for any orientation of the magnetic field in th
xy plane, i.e., for any angle of its inclination to the samp
surfacexs50.

Using formulas~4.3! and ~4.17!, we can easily verify
that the value ofd i increases with the magnetic field in pro
portion toH1/2 for h1/2!g0!1, while the attenuation length
d i>d0 /g0h3/4 of the electric field along the normal to th
layers increases linearly with the magnetic field forh2!g0

<h1/2.
The solution of the dispersion equation~4.3! for w dif-

fering from zero has the form

k5
~2pv!1/2~11 i !

2c
$s0

211szz
216@~szz

212s0
21!2

2~2H cosu sinw/Nec!2#1/2%21/2, ~4.18!

whereN is the charge carrier density.
This formula shows that in the extremely strong ma

netic field, wheng0!h2, helicoidal waves can propagat
For w>1, one of the roots of the dispersion equation d
scribes attenuation of electric field along the layers at d
tances of the order of

d'5d0S 11
szz

s0g0
2D 1/2

. ~4.19!

It can easily be seen that the penetration depth for
electric fieldEy increases as the magnetic field increases
proportion to H when g0!h. The electric field directed
along the normal to the layers forg0@h2 attenuates a
distances35

d i5d0~s0 /szz!
1/2, ~4.20!

i.e., at distances of the order ofd0 /h as in zero magnetic
field.

In the presence of an additional group of charge carr
with a quasi-one-dimensional energy spectrum, hi
frequency properties of layered conductors are quite se
tive not only to the polarization of the incident wave, b
also to the direction of propagation of electromagnetic fi
in the plane of the layers.36–38 If the reflection of charge
carriers at the conductor surface is close to specular,
relation between the Fourier transforms of current den
and electric field can be regarded as local to a fairly h
degree of accuracy even for an indefinitely large mean
path of charge carriers:

j i~k!5$s i j ~k!1s i j
~1!~k!%Ej~k!. ~4.21!
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Here s i j
(1)(k) is the contribution to the rf electrical conduc

tivity from charge carriers with the energy spectrum~2.2!, in
which we retain only a few terms by putting

A1005U, A0105h1U!U, A0015h2U!U.

The contribution tos̃ab(k) from charge carriers with a
quasi-one- dimensional energy spectrum is mainly de
mined by the componentsxx

(1)(k) which has the following
form accurate to small corrections proportional toh1

2 and
h2

2:

sxx
~1!~k!5s1~k!5

s1

11~kl1!2 , ~4.22!

where l 15v01t1 /(12 i t1);s1 is the contribution of this
group of charge carriers to electrical conductivity along t
x-axis in a uniform electric field,t1 the mean free time of
charge carriers with the energy spectrum~2.2!, and v0

5(Ua1 /h)sin@(«F2A000)/U#.
The magnetic field dependence ofs i j

(1)(k) is manifested
only in the next terms of expansion into a power series in
small parametersh1 andh2 :

syy
~1!~k!5(

6

h1
2s1a2

2U2/4h2v0
2

11~k6eHa2 cosu/ch!2l 1
2 , ~4.23!

szz
~1!~k!5(

6

h2
2s1a2U2/4h2v0

2

11~k6eHasinu/ch!2l 1
2 , ~4.24!

whose inclusion does not affect significantly the skin de
of electromagnetic field attenuation.

The asymptotic behavior of the components ofs̃ab(k)
in strong magnetic fields (g51/Vt!1), i.e.,

s̃yy~k!5
s1~k!$g2s01szztan2u%1g2s0

2

s1~k!1g2s0
, ~4.25!

s̃yz~k!5s̃zy~k!5
s1~k!

s1~k!1g2s0
szztanu, ~4.26!

s̃zz~k!5szz1szz
~1!~k!. ~4.27!

is very sensitive to the emergence of a group of charge
riers with a quasi-one-dimensional energy spectrum.

We have omitted here insignificant numerical factors
the order of unity and small corrections of the order of (kr)2

in the expression forszz, i.e., the contribution of charge
carriers with a quasi-two-dimensional spectrum to the c
rent is taken into account, as before, in the approximat
valid for normal skin effect.

If s1 and s0 are of the same order of magnitude, th
value ofs̃yy(k) does not attain saturation in strong magne
fields as in the case ofs150 and turns out to be much
smaller thans0 in a fairly wide range of magnetic fields
This leads to a considerable increase in the conductor tr
parency.

The dispersion equation~4.3! taking into account rela-
tions ~4.25!–~4.27! makes it possible to determine the leng
of attenuation of electromagnetic fields in a strong magn
field:

d1>d0 /h, d2>d0 /g, ~4.28!
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whered05$c/2pv(s01s1)%1/2.
If s1 is much smaller thans0 , but s1>g2s0 , the ex-

pression ford2 should be supplemented with the small fac
(s1 /s0)1/2. For s1!g2s0 , the attenuation lengths for th
electric fieldsEz(x) and Ey(x) differ significantly ~d i5d1

and d'>d0 , respectively!, by the electric fields along an
across the layers fors1@g2s0 contain both component
with considerably different attenuation lengthsd1 and d2 .
Consequently, in pure conductors for whichlh@d0 , not
only the fieldEz(x), but also the fieldEy(x) attenuate over
distances considerably longer than the mean free pat
charge carriers in magnetic fields for whichr !d0 .

When an electromagnetic wave propagates along
y-axis, the presence of a group of charge carriers wit
quasi-one-dimensional energy spectrum does not affect
nificantly the attenuation length of electromagnetic wav
As in the case of a single group of charge carriers with
dispersion relation~2.1!, the electric field along the layer
attenuates over distances of the order ofd0 , and the electric
field along the normal to the layers penetrates a quasi-t
dimensional conductor to the depthd i for which the above
formulas~4.11!, ~4.14!–~4.16! are valid. The effect of charge
carriers with spectrum~2.2! on the propagation of electro
magnetic waves becomes significant when cosa@g2s0 /s1,
wherea is the angle between the wave vector and the p
dominant direction of the velocity of charge carriers with
quasi-one-dimensional energy spectrum.

Thus, analyzing the dependence of surface impedanc
the magnetic field during the propagation of an electrom
netic wave in two different directions in the plane of th
layers, we can determine unambiguously the presence
quasi-one-dimensional cavity on the Fermi surface and
contribution of the electrical conductivity of an organic co
ductor.

4.2. Anomalous skin effect

With increasing frequency of an electromagnetic wa
the skin depthd decreases, and the relation between curr
density and electric field becomes essentially nonlocal
d<2r . In this case, Maxwell’s equations are of the integ
type even in the Fourier representation.39 Hartmann and
Luttinger40 proposed a correct solution of these equations
a magnetic field for some special cases. If we disregard
merical factors of the order of unity, we can obtain a reas
able solution of the physical problem, i.e., determine the
pendence of surface impedance and other characteristic
waves in a conductor on physical parameters, with the h
of a correct estimation of the contribution of the integ
term in formula~4.1! to the Fourier transform of the high
frequency current. In a magnetic field parallel to the sam
surface, ford'<r , the contribution of charge carriers collid
ing with the sample surface to the current is significant.
the case of a nearly specular reflection of charge carrier
the sample boundary~the width of scattering indicatrix for
charge carriersw!r 3/2/ ld'

1/2!, the contribution of conduction
electrons ‘‘sliding’’ along the sample surface and remain
in the skin layer to the rf current is quite large. In this ca
the asymptotic expression fors̃yy(k) for largek has the form
r
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s̃yy~k!5
v0

2

V~kr !1/2~w1r / l !
. ~4.29!

Using the dispersion equation~4.3!, we can easily deter-
mine the attenuation length of electric fields, i.e.,

d'5d0
6/5r 21/5~w1r / l !2/5; d i5d0 /h. ~4.30!

In the range of not very strong magnetic fields, whe
d'!r ! l , the impedance has a minimum forr 5wl, and its
position determines uniquely the width of indicatrix o
charge carrier scattering at the sample boundary~Fig. 3!.

Under the conditions of extremely anomalous skin
fect, when the depth of electromagnetic wave penetration
the conductor is the smallest parameter of the problem h
ing the dimensions of length~i.e., not onlyd' , but alsod i is
much smaller thanr and l !, the values ofd' and d i are
connected through a universal relation in a magnetic fi
parallel to the sample surface forw!r 3/2/ ld i

1/2:33

d'5d ih4/5. ~4.31!

If w@r 3/2/ ld'
1/2 andd'!r ! l , the contribution to the rf

current mainly comes from charge carriers that do not in
act with the sample surface, and the relation betweend' and
d i has the form~4.7!.

In the intermediate case whenr 3/2/ ld i
1/2!w!r 3/2/ ld'

1/2,
only d' depends considerably onw for w>r / l :

d i5r 1/3~d0 /h!2/3, d'5w2/5d0
6/5r 21/5. ~4.32!

In the absence of open electron orbits, conduction e
trons carry information on the field in the skin layer to th
bulk of the conductor in the form of narrow spikes predict
by Azbel.41 The transport of electromagnetic field to the bu
of the conductor and the screening of the incident wave
the surfacexs50 are mainly accomplished by charge car
ers moving in phase with the wave almost parallel to
sample surface. Forh<d/r , almost all of charge carriers
participate in the formation of electromagnetic field spikes42

The intensity of the spikes at distances from the sample
face multiple to the diameter of the electron orbit in t
direction of thex-axis has the same order of magnitude in t
collisionless limit. The inclusion of scattering of conductio
electrons in the bulk of the conductor leads to field atten

FIG. 3. Dependence of surface impedance on the magnitude of a st
magnetic field (r ! l ) parallel to the surface of the conductorxs50. The
width w of the indicatrix of charge carrier scattering at the sample surf
can be determined from the position of the minimum.
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tion in a spike at distances of the order of the mean free p
of charge carriers. Thus, there are two scales of electrom
netic field attenuation length under the conditions of anom
lous skin effect. Apart from the skin depth, the electroma
netic field penetrates into the bulk of the sample to a dept
the order of the mean free path of charge carriers.

For h@d/r , only an insignificant fraction of charge ca
riers of the order of (d/rh)1/2 participates in the formation o
spikes. The spread in the diameters of orbits of such carr
in the vicinity of the extremal diameter is comparable w
the skin depth. As a result, with increasing distance from
surfacexs50, the intensity of each next spike acquires
additional small factor (d/rh)1/2 apart from the exponentia
factor exp$2x/l% taking into account attenuation of waves
the spike over the mean free pathl .

As the angleu approachesp/2, closed electron orbits
become strongly elongated along thex-axis, and the spike
mechanism of penetration of electromagnetic field in
bulk of the sample is replaced by the electron transport of
varying field in the form of Reuter–Sondheimer weakly
tenuating quasi-waves39,43–46when the diameter of the orbit
in this direction exceeds the mean free pathl .

4.3. Weakly attenuating Reuter–Sondheimer waves

The drift of charge carriers along the normal to t
sample surface facilitates the transport of electromagn
field from the skin layer to the bulk of the conductor over
distance smaller than or of the order of the mean free pal
of charge carriers. Foru5p/2, the drift of charge carriers
along open trajectories leads to penetration of electrom
netic field over a distancex< l even in a magnetic field par
allel to the surfacexs50.

In order to determine the electric field in the bulk of th
sample with the help of inverse Fourier transformation

Ej~x!5
1

2p E
2`

1`

dkEj~k!exp$2 ikx% ~4.33!

we continueEj (k) analytically to the entire complexk-plane
and close the integration contour in formula~4.33! with an
arc of infinitely large radius in the half-plane where Imk
>0. The skin depth is determined by the poles of the in
grand in formula~4.33!, while weakly attenuating waves ar
associated with integration along the cuts drawn from
branching point of the functionEj (k). It can easily be veri-
fied that the tensor components i j (k) for indefinitely smallh
display a root singularity of the form

szz~k!5~v0
2h2/n!$~a1

2 21!21/21~a2
2 21!21/2%;

~4.34!

Dsyy~k!5n~v0 /kv !2$~kv/n!211%1/2, ~4.35!

wherev0 is the frequency of plasma oscillations of char
carriers,v5vx

max>vF , anda65 i (kv6V)/n. For h!1, the
time variation of the electron velocityvx in the magnetic
field H5(0,H,0) does not exceedvh1/2 so that away from
the saddle points on the Fermi surface, charge carriers m
in the momentum space along thepz-axis virtually without
acceleration over a distance equal to the period of a unit
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during the timeT52phc/aeHvx . In this case,V appearing
in the expression fora6 is equal toaeHv/hc.

The kernel of the integral operatorQi j (k,k8) as a func-
tion of k also possesses a similar singularity.

The electromagnetic field decreases in proportion
x23/2exp(2x/l) over distances from the sample surface wh
exceed considerably eitherr 5v/V, or the displacement o
an electron during the wave period 2pv/v. For V@v, the
slowly decreasing varying electric field

Ez~x!5Ez~0!h24/3~c/v0!4/3~v/v!2/3r 21/2x23/2

3exp$ ix/r 2x/ l % ~4.36!

oscillates upon variation ofH at large distancesx@r .
The attenuation of the electric fieldEy(x) over the mean

free path of charge carriers forh!1 has the form

Ey~x!5Ey~0!~c/v0!4/3~v/v!2/3~n/v !1/2x23/2

3exp$2x/ l 1 ixv/v%,

v/v!x!v/vh ~4.37!

and is independent of the magnetic field.
The oscillatory dependence ofEy(x) on the magnetic

field is manifested only in small corrections proportional
h2.

For values ofh that are not small in zero magnetic field
the functionssyy(k) andszz(k) have a logarithmic singular
ity for k15 in/v1 and k25 in/v2 , wherev1 is the electron
velocity at the reference point on the Fermi surface in
x-direction andv2 the projection of the velocityvx at the
saddle point of the Fermi surface, at which connectednes
the linevx5const changes.44 For indefinitely smallh, these
branching points of the rf conductivity tensor component b
come closer, and the logarithmic singularity changes int
root singularity forh50.47 For smallh, we choose the inte-
gration contour in thek-plane along the cut lines drawn from
the branching pointsk1 andk2 parallel to the imaginary axis
so that we can bypass both branching points simultaneou
In this case, the electric fieldEz(x) away from the skin layer
assumes the form

Ez~x!522Ez8~0!H E
k1

k11 i`

dkFk22
v2

c2 2
4p iv

c2 szz1~k!G21

3exp~ ikx!1E
k21 i`

k2
dkFk22

v2

c2

2
4p iv

c2 szz2~k!G21

exp~ ikx!J . ~4.38!

We can neglect the integral along lines connecting
branching pointsk1 and k2 and assume thatszz1(k) is the
value of the functionszz(k) at the left bank of the cut drawn
from the pointk1 , while szz2(k) is its value at the right band
of the cut drawn from the pointk2 . For definiteness, we
assume thatv1 is greater thanv2 . If we disregard anisotropy
of the dispersion relation~2.1! for charge carriers in the
plane of the layers, the diagonal components of the rf e
trical conductivity tensor fork1<k<k2 assume the form
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syy~k!5
v0

2h

p3 E
0

p

daE
0

p/2

dw
sin2 w

n1 ikv cosw~11h cosa!1/2,

~4.39!

szz~k!5
v0

2h2

p3 E
0

p

sin2 a da

3E
0

p/2

dw
1

n1 ikv cosw~11h cosa!1/2. ~4.40!

It can easily be seen that the rf electrical conductiv
componentszz(k) is proportional to (n1 ikv)21/2, for h
!1, while syy(k) is proportional to (n1 ikv)1/2, i.e., both
component have a root singularity fork5 in/v. In the case of
a considerable corrugation of the Fermi surface, whenh
>1, the root singularity is replaced by a logarithmic sing
larity for k5 in/v(11h)1/2 andk5 in/v(12h)1/2. After the
integration with respect tow, the integrands in~4.39! and
~4.40! have a root singularity fork5 in/v(11h cosa)1/2. As
a result of simple calculations, we arrive at the followin
expression for the electric field component weakly attenu
ing at large distances from the skin layer:

Ey~x!5Ey~0!~c/v0!4/3~v/v!2/3x23/2~n/v !1/2

3E
0

p

da expH 2
nx

v~11h cosa!1/2J . ~4.41!

At large distances from the sample surface, the elec
field along the normal to the layers can be described by
same formula if we supplement the integrand in the integ
with respect to a with the factor h24/3sin2 a. For x
@v/vh, the integrand in formula~4.41! is a rapidly oscil-
lating alternating function, and the main contribution to th
integral comes from small neighborhoods of the station
phase pointa5(0,p). As a result of simple calculations, w
obtain

Ey~x!5Ey~0!~c/v0!4/3~v/v!2/3x22h21/2

3FexpH 2
nx

v~11h!1/2J 1expH 2
nx

v~12h!1/2J G ,
x@v/vh. ~4.42!

In the above formulas, we have omitted insignificant n
merical factors of the order of unity. The pre-exponent
factor in formula~4.42! is inversely proportional tox2 as in
normal metals. Such an asymptotic behavior in quasi-tw
dimensional conductors is observed only in the range of h
frequencies, where vt>1/h. Essentially different
asymptotic forms of electric fields at such frequencies can
explained by tracing the phase of the wave carried by c
duction electrons with different velocity componentsvx from
the skin layer. At the instantt, electrons carry over a dis
tance x the information on electromagnetic wave with
phase lagvDt5vx/vx . Averaging over different values o
vx by the formula

E~x!;E dvx exp$2 ivt1 ivx/vx% ~4.43!
-
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we can easily see that a weakly attenuating wave wh
propagates with the electron velocityv1 at the reference
point of the Fermi surface is formed by charge carrie
whose velocityvx differs from v1 by the quantityDvx

<v1
2/vx. If v12v2>vh is smaller thanDvx , i.e., x

<v/vh, formula ~4.37! is valid for Ey(x), while in the op-
posite limiting case, whenDvx!vh, weakly attenuating
waves described by formula~4.42! are formed by electrons
from small neighborhoods on the Fermi surface near
saddle and reference points.

In a magnetic field, charge carriers belonging to one
the ‘‘banks’’ of the central open cross section of the Fer
surface, on which the velocityvx varies with time periodi-
cally in the interval betweenv2 andv1 , move most rapidly
to the bulk of the sample. Weakly attenuating waves pro
gate at a velocity equal to the extremal valuev̄x and are
described by formulas~4.36! and ~4.37!.

Weakly attenuating waves in a magnetic field tilted fro
the plane of the layers have a similar form. If the magne
field lies in thexy plane, i.e.,u5p/2, a weakly attenuating
wave withw differing noticeably from zero propagates at
velocity v̄x equal to the drift velocity of charge carriers b
longing to the open cross section of the Fermi surface c
taining the reference point along thepx-axis. The asymptotic
form of the electric fieldEy(x) is described by~4.37!, and its
oscillatory dependence on the magnetic field orthogona
the axis of the corrugated cylinder is manifested, as bef
only in small corrections proportional toh2.

When electromagnetic waves propagate along the n
mal to the layers~along thez-axis!, charge carriers can carr
information on the field in the skin layer to the bulk of th
sample only over a distance of the order oflh, which ex-
ceeds the skin depth only for very small values ofh.

The weakly attenuating electric field component can e
ily be determined with the help of relation~4.33! in which x
should be replaced byz. Without a loss in generality of the
given problem, we shall confine our analysis only to the fi
two terms in expression~2.1! for «(p), assuming that
«1(px ,py) is a constant quantity equal tohv0h/a, wherev0

coincides in order of magnitude with the characteristic fer
velocity vF of charge carriers along the layers.

If the magnetic field is orthogonal to the layers, the Fo
rier componentss i j (k) of the electrical conductivity tenso
assume the form

s i j ~k!5
2e2

~2ph!3

3(
n
E dpz2pm*

v i
~2n!v j

~n!

n1 ikvFh sin~apz /h!1 inV
.

~4.44!

After simple calculations, we obtain

s i j ~k!5v0
2 (

n
Ci j

~n!$~kv0h!21~gnV!2%21/2, ~4.45!

where

gn5g1 in,
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v ~n!5~1/T! E
0

T

dt v i~ t,pz!exp~2 inVt !,

and Ci j
(n) are numerical factors of the order of unity. Fori

5 j , all these factors are real-valued and positive, while
Hall’s nondissipative components they are imaginary a
rule and change sign upon inversion ofi and j so that a
helicoidal wave attenuating over a distancel hel5d0(Vt)3/2

is formed in a strong magnetic field forV@kv0h.
For moderate magnetic fields in whichkrh>1, Hall’s

nondissipative Fourier componentss i j (k) are of the same
order of magnitude as the dissipative diagonal compone
and all of them possess a root singularity fork5k65(v
6V1 i /t)/(vFh). In this region of magnetic fields, electro
magnetic field penetrates in the bulk of the sample only
the form of a Reuter–Sondheimer quasiwave

E~z!5E~0!S c

v0
D 4/3S nh

v D 1/6

z23/2exp$ ik6z%,

z@vh/v. ~4.46!

4.4. Cyclotron resonance

In all organic conductors synthesized at present,
mean free pathl of charge carriers is not large (l<10mm)
so that the frequency of electromagnetic waves in the rf
microwave regions is much lower than the electron collis
frequency 1/t, and the time dispersion can be disregard
while calculating the skin depth. However, the frequency
electromagnetic wave in the millimeter and submillime
regions at low temperatures can be comparable to the c
sion frequency for charge carriers, and the interaction of c
duction electrons with electromagnetic field is of reson
type, when the wave frequencyv is equal or multiple to the
frequencyV of their rotation in a magnetic field.

In a magnetic field orthogonal to the sample surfacezs

50, cyclotron resonance can take place at multiple frequ
cies v5nV in the case of essentially anisotropic spectru
of charge carriers in the plane of the layers. The shape of
resonance curve can be determined easily by using form
~4.45! for s i j (k). Resonance takes place forrh!d0 , but it
is manifested most clearly whenlh<d0 . If lh!r in this
case, all charge carriers with a quasi-two-dimensional ene
spectrum participate in the formation of resonance effect
the case of an isotropic spectrum of charge carriers in
plane of the layers, i.e., for«0(px ,py)5«0(p'), wherep'

5(px
21py

2)1/2, we have only one resonance value of t
magnetic field satisfying the conditionv5V.

Diagonalizing the tensors i j (k), we obtain the following
expression for the diagonal components of surface imp
ance:

Zm52
8iv

c2 E
0

` dk

k224p ivc22sm~k!
. ~4.47!

Under favorable conditions for cyclotron resonance, i
for lh!$r ,d0%, the resonance value of the impedance
Zm

res58pvd0 /c2, and the resonance line width is (H
2H res)/H res>g. Away from the resonance we haveZm
n
a

ts,

n

e

d
n
d
f
r
li-
n-
t

n-

he
la

gy
n
e

d-

.,
s

>g21Zm
res. If lh>d0 , both terms in the braces of formul

~4.45! have the same order of magnitude, and the resona
line is ‘‘blurred.’’

The detection of cyclotron resonance at multiple fr
quencies would make it possible to analyze in detail the
ergy spectrum of charge carriers, but the observation of
effect requires long mean free paths of charge carriers.
cyclotron resonance observed by Polisskiet al.6 in
~BEDT–TTF!2ReO4~H2O! for only one resonance value o
magnetic field cannot be regarded as an evidence of isotr
spectrum of charge carriers in the plane of the layers. T
information on the dispersion relation of charge carriers
this compound can be refined by analyzing the Azbel–Ka
resonance48 in a magnetic field parallel to the sample surfac
at which the cyclotron resonance at multiple frequenc
takes place for any shape of the electron energy spectru

5. PROPAGATION OF ACOUSTIC WAVES

In an analysis of sound absorption in ordinary meta
the inclusion of electromagnetic waves accompanying
acoustic wave is essential in the range of strong magn
fields, when the radius of curvaturer of charge carrier tra-
jectories is much smaller than not only the mean free path
the carriers, but also the acoustic wave lengthk21. If, how-
ever, the inequality

1!kr!kl. ~5.1!

is satisfied, the attenuation of sound in a metal is mai
determined by the deformation mechanism associated
the renormalization of electron energy in the field of t
wave. In low-dimensional conductors, the role of elect
magnetic fields excited by sound is significant in a wid
range of magnetic fields, including fields satisfying the
equality ~5.1!. In this region of magnetic fields, the soun
absorption coefficientG oscillates upon a change in recipro
cal magnetic field. If the magnetic field is orthogonal to t
wave vectork, and the trajectories of charge carriers in t
momentum space are closed, the amplitude of oscillation
a normal metal is small in comparison with the smooth
varying component ofG since oscillations are formed by
small group of charge carriers with a diameter of orbits clo
to the extremal diameter. This effect predicted by Pippar49

is associated with periodic repetition of the conditions
effective interaction of a charge with an acoustic wave, wh
the number of wave lengths corresponding to the diamete
the electron orbit changes by unity. If the vectorsk and H
are not orthogonal, the average velocity of a charge in
direction of propagation of the sound differs from zero f
any shape of the Fermi surface, i.e., charge carriers drif
the direction of wave propagation. The existence of points
which the interaction with the wave is most effective on su
a trajectory leads to a resonant dependence of the sound
sorption coefficient on reciprocal magnetic field. In ordina
metals, periodic variations ofG with 1/H, which are not
associated with quantization of the motion of charge carr
with an amplitude much larger than the minimum value ofG,
are possible only in the presence of drift alongk.50
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In contrast to conventional metals, the formation of P
pard oscillations in low-dimensional conductors involves v
tually all charge carriers on the Fermi surface since the
ameters of their orbits are close in value. As a result,
amplitude of periodic variations of electrical conductivi
and other acoustoelectronic coefficients with 1/H increases
abruptly, and absorption is of the resonant type.51–54 In this
case, we cannot obtain even an order-of-magnitude estim
of the sound absorption coefficient without taking into a
count electromagnetic fields correctly.

5.1. Longitudinal wave propagating along the layers

Let us consider a longitudinal acoustic waveu
5(u,0,0)) propagating along the layers in a quasi-tw
dimensional conductor in a magnetic fieldH. Using formulas
~3.19!–~3.21!, we can write the system of equations~3.18!
after elimination of the fieldẼx in the form

~ ãyxkj1 iH z /c!vu1~jsyy21!Ẽy1js̃yzẼz50,

~ ãzxkj2 iH z /c!vu1js̃zyẼy1~jszz21!Ẽz50,

~v22s2k2!ru1@ ikc̃xx1c21~ ãyxHz2ãzxHy!#kvu

1@ ikb̃xy1c21~ s̃yyHz2s̃zyHy!#Ẽy1@ ikb̃xz

1c21~ s̃yzHz2s̃zzHy!#Ẽz50, ~5.2!

where

s5~lxxxx/r!1/2, j54p iv/~k2c22v2!,

s̃ab5sab2
saxsxb

sxx
, ãa j5aa j2

ax jsax

sxx
,

b̃ib5bib2
bixsxb

sxx
, c̃5ci j 2

bixax j

sxx
;

a,b5y,z.

For vt!1, the root of the dispersion equation describing
acoustic wave is close tov/s, and we can write it in the form

k5v/s1k1 . ~5.3!

In the case of weak corrugation of the Fermi surfaceh
!1), the expression fork1 has the form

k15
ik2

2rs

1

12js̃yy
H j~ ãyxb̃xy2 c̃xxs̃yy!1@ c̃xx2 i ~ ãyx

2b̃xy!#
Hz

kc
1s̃yy

Hz
2

k2c2J U
k5v/s

. ~5.4!

VectorsH and k are orthogonal. In a magnetic fieldH
5(0,H sinu,H cosu) orthogonal to the direction of wav
propagation, the solution of the kinetic equation in t
Fourier representation can be written in the form

c5
* t2T

t dt8g~ t8!exp$ ik@x~ t8!2x~ t !#1n~ t82t !%

12exp~2nT!

[R̂g, ~5.5!
-
-
i-
e

te
-

-

n

whereT is the period of rotation of charges in the magne
field. In the range of magnetic fields for which the inequal
~5.1! is satisfied, the interaction with the acoustic wave
most effective for charge carriers moving in phase with
wave. Such carriers make the main contribution to the co
ponents of acoustoelectronic tensors which can easily be
culated with the help of the stationary phase method. T
amplitude of their oscillations with 1/H is large if the quasi-
two-dimensionality parameterh satisfies the conditionkrh
!1 for which the spread in the diameter of electron orb
DD>2rh becomes much smaller than the acoustic wa
length. Let a charge pass through two stationary phase po
at which kvx5v during the period of motionT. Then the
following expressions hold55 for syy andayx for h→0:

syy~k!5~G/kD!~12sinkD!;

ayx~k!52 i ~GLxx /evkD!coskD, ~5.6!

whereD5cDp /(eH cosu), Dp being the averaged diamete
of the Fermi surface along the py axis, G
54vDpe2t/@ac(2ph)2#, andLxx the value of the quantity
Lxx(p) at the stationary phase points.

It can easily be verified that the value ofs̃yy is mainly
determined by thesyy component, and hence the denomin
tor in formula ~5.4! for k1 decreases significantly forkD
52p(n11/4). This leads to the emergence of sharp pe
of the sound absorption coefficientG, which are repeated
periodically with the period

DS 1

H D5
2pe cosu

kcDp
. ~5.7!

The height

G res5
vt

D
5

v

v
Vt ~5.8!

of these resonance peaks is proportional toH for l !kr2.
Regions of high acoustic transparency in which the

sorption coefficient has the form

G5
vt

D F S D

l D 2

1~kDh!2G . ~5.9!

are situated away from the resonance~in regions where
sinkD differs considerably from unity!.

We can easily obtain explicit expressions forG for arbi-
trary krh. Let us consider by way of an example a layer
quasi-two-dimensional conductor for which the dispers
relation for charge carriers has the form

«~p!5
px

21py
2

m
1h

h

a
v0 cosS apz

h D , v052«F /m,

~5.10!

and the deformation potential tensor componentsL ik(p) can
be represented in the form

L ik~p!5L ik
~0!~p!1hLik cosS apz

h D , ~5.11!

where
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L ik
~0!~p!52

1

mF px
22m«F pxpy 0

pxpy py
22m«F 0

0 0 0
G ,

the matrix componentsLik coinciding the Fermi energy in
the order of magnitude.

Let us write the expressions for some components
acoustoelectronic tensors obtained in the main approxi
tion in the small parametersg5(Vt)21 and (kD)21 for a
magnetic field orthogonal to the layers:52,53

syy5
4Ne2

mnpkD
@12J0~z!sinkD#,

syx52sxy
~2!5

4Ne2

mnpkD
J0~z!coskD,

cxx5
Nmv0

npkD
@11J0~z!sinkD#, ~5.12!

where N is the number density of charge carriers with
quasi-two-dimensional dispersion relation,J0 Bessel’s func-
tion of z5kRh, andR52hc/(eHa). The diameterD of the
electron orbit in the case under investigation has the fo
D52cv0m/(eH).

For z@1, the corrugation of the Fermi surface is qu
strong, and absorption coefficient behaves as in an ordin
isotropic metal:

G5G0V0tF11S 2

pz D 1/2

cosS z2
p

4 D sin~kD!GU
k5v/s

,

~5.13!

whereV05eH/(mc); G05Nmvv0 /(4prs2) is the energy
absorption coefficient for acoustic waves in zero magn
field.

For z!1, specific features of the quasi-two-dimension
conductor are manifested, andG is given by

G5G0V0t

3ReF ~pg!21z2/21 im@11sinkD#

12sinkD1~pg!2/21z2/219/8~kD!221 imGU
k5v/s

,

~5.14!

where m5pv0c2v/2s3v0
2Vt), v0 being the frequency o

plasma oscillations. If the latter is comparable with the va
typical of ordinary metal (1015– 1016s21), the parameterm in
the ultrasonic frequency range is quite small, and perio
variations ofG(1/H) have the form of giant resonance osc
lations ~Fig. 4!. Such a behavior ofG is typical of any con-
ductor with a quasi-two-dimensional dispersion relation
charge carriers.

VectorsH and k are not orthogonal. Let us now con-
sider the case when the magnetic fieldH
5(H sinw,0H , cosw) is not orthogonal to the vectork. In
this case, the value of the velocity componentv̄x along the
direction of the wave vector averaged over the period diff
from zero, and the solution of the kinetic equation has
form
f
a-

ry

ic

l

e

ic

r

s
e

c5
* t2T

t dt8g~ t8!exp$ ik@x~ t8!2x~ t !#1n~ t82t !%

12exp@2nT2 ikv̄xT#

[R̂g. ~5.15!

It follows from the equation of motion~3.9! for a charge
with the dispersion relation~2.1! that its velocity components
averaged over the periodT satisfy the relation

v̄x5tanw v̄z ; v̄a5
1

T E
0

T

va~ tH!dtH . ~5.16!

The displacement of an electron over the period of mot
along the wave vector is given by

v̄xT52tanw (
n51

`
an

h E
0

T

dt «n~ t,pH!sin
anpz

h

52tanw (
n51

`
an

h E
0

T

dt «n~ t,pH!sinH anpH

h cosu

2
1

h
anpx~ t,pH!tanwJ . ~5.17!

If we take into account the fact thatpx and py , and
hence «n depends weakly on the integral of motionpH

5px sinw1pzcosw in a magnetic field, the drift velocity of
electrons alongk in the main approximation in the sma
parameterh of quasi-two-dimensionality of the electron en
ergy spectrum assumes the form

v̄x52tanw Im (
n51

`
an

h
expH ianpH

h coswJ I n~ tanw!, ~5.18!

where

I n~ tanw!5
1

T E
0

T

dt «n~ t !expH 2
i

h
anpx~ t !tanwJ .

~5.19!

These relations are valid forVt>(eHt cosw/mc)@1, i.e.,
when cosw differs from zero considerably.

It can be easily seen that the main term in formula~5.18!
proportional toI 1(tanw) vanishes for certain values of tanw,
and there exists a large number of values of the anglew
5wc in the vicinity of zeros of the functionI 1(tanw), for

FIG. 4. Dependence of the absorption coefficient of a longitudinal acou
wave on the reciprocal magnetic fieldD}1/H in relative units.
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which the drift velocity v̄x of charge carriers along th
acoustic wave vector coincides with the velocitys of propa-
gation of the acoustic wave, and their interaction with t
wave is most effective. As a result, we can expect the p
ence of narrow peaks in the dependence of the damping
rement of acoustic waves on the anglew.

Using the stationary phase method, we can easily ca
late the acoustoelectronic tensor components in the pres
of electron drift alongk also. For example, for the dispersio
relation ~5.10! for charge carriers, we obtain the followin
expression forsyy for small h:

syy5
4Ne2

pmnkD H 12sinkD

~11a2!1/21
~pg!2

3 S 11
1

2
sinkDD

1pg sinkDS 12
1

~11a2!1/2D J . ~5.20!

Here D52v0 /V, a5klh tanwJ0(ah21mv tanw). The com-
ponentsyy oscillates with reciprocal magnetic field, and i
complex periodic dependence on the anglew can be de-
scribed in terms of the quantitya. The remaining acousto
electronic coefficients behave similarly.

For ag!1, we can easily obtain the following expre
sion for k1

56,57:

k15
ivNmv
4prs2

3
2p sin2 kD@12~11a2!21/2#1p2g

12sinkD1@~pg!2/2#~11a2!1/21pg@~11a2!1/221#
.

~5.21!

If a!1, we obtain

k15
ivNmv
4prs2

pa2 sin2 kD1p2g

12sinkD1~pg!2/21pga2/2
. ~5.22!

For g1/2!a!1, the oscillating terms exceed th
smoothly varying terms not only in the denominator, but a
in the numerator of formula~5.21!. This leads to giant oscil-
lations of the sound absorption coefficientG5Im k1 upon a
variation of the reciprocal magnetic field as well as the an
w betweenH and n. In the case, when the displacement
charge carriers alongk during their mean free time is muc
larger than the acoustic wave length, these oscillations
take place. Then we can write the following expression
k1 :

k15
ivNmv
4prs2

2p sin2 kD1p2g

12sinkD1pga
, 1!a!1/g. ~5.23!

Thus, the existence of even a small displacement
charge carriers alongk affects significantly the sound ab
sorption G. For sinkD51, the function G(H) attains its
maximum value

Gmax5
G0Vt

~11a2!1/2. ~5.24!

A slight deviation of sinkD from unity leads to a strong
decrease inG which has the minimum valueGmin5G0 /Vt for
sinkD521 if a2!g!1. Forg<3a2/2!1, the minimum of
G(H) is shifted towards the values ofH for which sinkD is
e
s-
c-

u-
ce

o

e
f

so
r

f

close to zero, and the functionG(H) has a local peakG
5G0a2 for sinkD521. This peak increases witha and at-
tains the valueG0 of the sound absorption coefficient in ze
magnetic field fora>1. At the same time, the main pea
decreases with increasinga and approaches the local max
mum. For sinkD521, the absorption coefficient oscillate
with a large amplitude exceeding the minimum value ofG by
a factor ofVt.

Figures 5, 6, and 7 show the dependence of absorp
coefficient on the quantityh5H0 /H (H052vv0mc/se)

FIG. 5. Dependence of the absorption coefficientG/G0 on h5H0 /H (H0

52vcmv0 /es) for kl5103, h51022, x5tanw51.531022. The upper
and lower figures differ in scale.

FIG. 6. Dependence of the absorption coefficientG/G0 on x5tanw for kl
5102, h51022. The upper and lower figures differ in scale.
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and on tanw.
It can easily be seen that the dependence ofG on 1/H

and tanw described above remains valid for an arbitrary fo
of the quasi-two-dimensional electron energy spectrum
the electron orbit contains only two stationary phase poi
the value ofD5cDp /eH is determined by the diameterDp

of the Fermi surface in a direction orthogonal to the vect
k andH.

Noticeable manifestation of the effect of drift of charg
carriers on the oscillatory dependence ofG on 1/H at ultra-
sonic frequencies (v>108 s21) is determined by certain re
quirements. For example, we must use perfect samples
a large mean free path of charge carriers and strong mag
fields of the order of 10 T. In this range of magnetic field
the Shubnikov–de Haas effect is manifested clearly in co
pounds of tetrathiafulvalene, which indicates that the con
tion Vt@1 is satisfied, and at the same time the separa
between quantized electron energy levels is much sma
than not only the Fermi energy, but also the quantityh«F .
Under these conditions, a semiclassical description of n
equilibrium processes is valid. In stronger magnetic fiel
the quantization of electron energy levels is significant,
the effects described above must also be observed.

Presence of a quasi-one-dimensional group of cha
carriers. In order to clarify the role of a quasi-one
dimensional group of charge carriers in attenuation of aco

FIG. 7. Dependence of the absorption coefficientG/G0 on h andx5tanw
for kl5103, h51022. The upper and lower figures differ in scale.
If
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tic waves, we consider a simple model of the energy sp
trum for a two-band conductor. We assume that
dispersion relation~5.10! is valid for one group of charge
carriers, while the other group has a quasi-one-dimensio
dispersion relation of the form

«1~p!56p–Nv11h1

h

a
v1 cosS anpz

h D . ~5.25!

Here h1!1 andv1 is the velocity of an electron with the
Fermi energy on a quasi-one-dimensional sheet of the Fe
surface. The vectorN5(cosb,sinb,0) is oriented in the
plane of the layers and forms an angleb with the direction of
wave propagation.

In this case, for calculating acoustoelectronic tensors,
must carry out integration in formulas~3.21! over all sheets
of the Fermi surface, and each component is the sum of
contributions from quasi-two-dimensional and quasi-on
dimensional (s i j

(1) ,ai j
(1) ,bi j

(1) ,ci j
(1)) groups of charge carriers

The existence of preferred direction of the velocities
charge carriers in the quasi-one-dimensional group is m
fested in the dependence of their deformation potentialL i j

(1)

on the angleb. If crystal deformation does not lead to
redistribution of charges between electron groups, we
naturally assume@bearing in mind relation~3.12!# that L i j

(1)

vanishes in the main approximation in the small parame
h1 . If we putLxx

(1)5h1«F cosb, the expressions for the con
tributions to acoustoelectronic coefficients from the electro
of the quasi-one-dimensional group assume the form

s i j
~1!5hb

N1
2e2v1

2

n«F
NiNj , i , j 5x,y;

cxx
~1!5h1

2hb

N1«F cos2 b

n
,

axx
~1!5bxx

~1!5 ih1hb

N1ev1

n
kl cos3 b,

ayx
~1!5bxy

~1!5 ih1hb

N1ev1

n
kl cos2 b sinb,

hb5@11~kl !2 cos2 b#21. ~5.26!

Here l 5v1t andN1 is the number density of charge carrie
with the quasi-one- dimensional dispersion relation. T
contribution to the acoustoelectronic coefficients from t
quasi-two-dimensional group of charge carriers have
form of ~5.12! and similar relations.

In the main approximation in the small paramete
(Vt)21, (kD)21, the absorption coefficient for a longitud
nal acoustic wave has the form58
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G5G0V0t
12J0

2~z!1kDgb@11J0~z!sinkD#1h1
2kD fb

2 cos2 b@12J0~z! sinkD#

12J0~z!sinkD1kDgb
U

k5v/s

. ~5.27!
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f b5
N1

N

~kl !2cos2 b

11~kl !2cos2 b
and gb5

N1

N

sin2 b

11~kl !2cos2 b

do not exceed unity when the number densities of cha
carriers of both electron groups are equal. In express
~5.4!, we have neglected unity in comparison with the qua
tity ujs̃yyu. This corresponds to the inequalit
c2v2D/s3v0

2t!1 which is satisfied in the ultrasonic fre
quency range if the frequency of plasma oscillationsv0 in a
quasi-two-dimensional conductor is of the same order
magnitude as in an ordinary metal. Insignificant numeri
factors in formula~5.27! have been omitted.

The presence of a group of charge carriers with a qu
one-dimensional dispersion relation leads to considerable
isotropy in attenuation of an acoustic wave in the plane
the layers. If the wave propagates along the preferred di
tion of velocities of electrons belonging to this group (b
50), the sound absorption coefficient can be represente
the form

G5G0S V0t
12J0

2~z!

12J0~z!sinkD
1h1

2 N1

N2

vt

s
v0DU

k5v/s

.

~5.28!

For z!1, the corrugation of the quasi-two-dimension
cavity on the Fermi surface is quite small, and the first te
in formula ~5.28! assumes the form of sharp resonan
peaks. The resonant dependence ofG on H21 can be ob-
served by measuring the derivative ofG with respect of re-
ciprocal magnetic field. In this case, charge carriers belo
ing to the quasi-one-dimensional group make a contribu
to the ‘‘background’’ component ofG.

When the angleb deviates from zero, the resonant n
ture of the dependenceG(H21) is preserved as long as th
inequality p/22b.(kD)1/2/kl is satisfied. When the valu

FIG. 8. Dependence of the absorption coefficientG/G0 on h5H0 /H (H0

52vcmv0 /es) andx5cosb for h5h151022, N1 /N251, andkl5102.
e
n
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f
l

i-
n-
f
c-

in

l
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of the angleb approachesp/2, the resonant behavior of th
sound absorption coefficient changes for giant oscillatio
which assume the following form forb5p/2:

G5G0V0t$11J0~z!sinkD%>G0V0tH 11sinkD

2
z2

4
sinkDJ U

k5v/s

. ~5.29!

For sinkD521, the absorption coefficientG assumes its
minimum value which is the smaller, the weaker the cor
gation of the Fermi surface.

Figures 8 and 9 show the dependence of absorption
efficient onh and cosb.

The peaks on the experimentally observed depende
of G on the magnitude and orientation of magnetic field a
considerably less sharp than those in Figs. 5–9 since
value ofkl in the layered conductors studied at present c
siderably exceeds unity only in the region of hypersonic f
quencies.

FIG. 9. Cross sections of the curve in Fig. 8 by the planesx51(a) andx
50(b).
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5.2. Transverse wave propagating along the layers

In the case of transverse polarization of an acoustic w
u5(0,uy ,uz), the magnetic fieldH5(0,H sinu,H cosu) ori-
ented perpendicularly to the wave vector appears in M
well’s equations

Ẽa5
mv2

e
ua1j j a ; a5y,z ~5.30!

only in expressions for acoustoelectric coefficients. Us
formulas~3.21!, we can write these equations in the form

j y~12js̃yy!2 j zjs̃yz5S kvãyy1
mv2

e
s̃yyDuy

1S kvãyz1
mv2

e
s̃yzDuz ,
b

fo
iz
s.

d

i-

ex
e

-

g

2 j yjs̃zy1 j z~12js̃zz!5S kvãzy1
mv2

e
s̃zyDuy

1S kvãzz1
mv2

e
s̃zzDuz .

~5.31!

Let us consider the propagation of a transverse acou
wave in a conductor with one group of charge carriers p

sessing a quasi-two-dimensional energy spectrum. Sup

menting Eqs.~5.31! with equations~3.2! from the theory of
elasticity, we obtain a system of equation whose compati

ity condition
U 12js̃yy 2js̃yz xyy xyz

2js̃zy 12js̃zz xzy xzz

~ ivm/e!1 ikjb̃yy ikjb̃yz ~v22sy
2k2!r1wyy wyz

ikjb̃zy ~ ivm/e!1 ikjb̃zz wzy ~v22sz
2k2!r1wzz

U50 ~5.32!
-

s in
f

of
of a

in
n-
the
is the dispersion equation of the problem. Heresy

5(lyzyx/r)1/2 and sz5(lzxzx/r)1/2 are the velocities of
acoustic waves polarized along they- and z-axes, respec-
tively, and

xab52kvãab2
mv2

e
s̃ab ,

wab5 ikFkv c̃ab1
mv2

e
b̃abG . ~5.33!

The elastic moduli tensor componentslyxzx andlzxyx vanish
if the xy plane is the symmetry plane of the crystal.59 Oth-
erwise, these components must be taken into account,
this does not change the final results significantly.

In view of strong anisotropy of the energy spectrum
charge carriers, the absorption of acoustic waves polar
along and across the layers has essentially different form
can easily be verified that the series expansion in smallh of
acoustoelectronic tensor components with at least one in
z starts with quadratic or higher-order terms inh. Retaining
only quadratic terms inh in Eq. ~5.31!, we obtain

H @~v22sy
2k2!r1wyy#~12js̃zz!xyyS i

vm

e
1 ikjb̃yyD J

3@~v22sz
2k2!r1wzz#S 12js̃zz2xzzi

vm

e D50.

~5.34!

The multiplicity of this equation implies that in the approx
mation quadratic inh, acoustic waves polarized along they-
andz-axes do not interact with each other. Equating the
ut

r
ed
It

ex

-

pression in the braces in~5.34! to zero, we obtain the disper
sion equation for the wave polarized along they-axis. Its
solution can be presented in the formk5v/sy1k2 , where

k25
i

2rsy
2~12js̃yy!

Fjkv~ ãyyb̃yy2 c̃yys̃yy!1
mv2

e
~ ãyy

1b̃yy!kv c̃yy1
m2v3

ke2 s̃yyG
k5v/sy

. ~5.35!

The denominator in this expression has the same form a
formula ~5.4! for k1 . It follows hence that the absorption o
a transverse acoustic wave polarized along they-axis in a
conductor with a single quasi-two-dimensional group
charge carriers is of resonance type like the absorption
longitudinal wave.

The deviation of the second root of Eq.~5.34! from s/s
is described by the formula

k35
i

2rsz
2 Fmv2

e S ãzz

12js̃zz
1b̃zzD1S mv

e D 2 szs̃zz

12js̃zz

1
v2

sz
c̃zzG

k5v/sz

. ~5.36!

It can easily be verified that the last term in the brackets
formula ~5.36! has the highest order of magnitude. Its co
tribution to the absorption coefficient is decisive and has
form

G>G0h2
l

D
~11sinkD!. ~5.37!



c
io

t
tio
ith

e

o
in

x-

le
he
he
-
n

o
t

d
he
th
un

i

a
s
s

s

m

m

tic

ion

er-

ng

he
r-
of

l is
-

r

nd
he
ex-
for

854 Low Temp. Phys. 25 (11), November 1999 O. V. Kirichenko and V. G. Peschansky
The peculiarity of quasi-two-dimensional energy spe
trum of charge carriers for waves with the above polarizat
is manifested in stronger magnetic fields also, whenkD
!1. In this case, the orientation magnetoacoustic effec
manifested in a strong oscillatory dependence of absorp
coefficient on the angle formed by the magnetic field w
the normal to the layers.53,60

Electron orbits in the momentum space are cross s
tions of the Fermi surface by the planepH5const, wherepH

is the momentum component along the magnetic field. C
sequently, integrating over the Fermi surface for calculat
acoustoelectronic tensors by formulas~3.21!, we can conve-
niently use the variables«,t, and pH . If we substitutepz

5pH /cosu2py tanu into the integrands containing the e
pressions

Lzz~p!5 (
n51

`

Ln~px ,py!cos
anpz

h
,

vz~p!52 (
n51

`

n«n~px ,py!
a

h
sin

anpz

h
, ~5.38!

it can easily be verified that the corresponding acoustoe
tronic coefficients are complex periodic functions of t
angleu formed by the directions of magnetic field and t
normal to the layers. All the orbits in a quasi-two
dimensional conductor are almost indistinguishable, a
hence the momentum componentspx and py depend onpH

weakly. This allows us to obtain explicit dependence
acoustoelectronic coefficients onu and to make sure tha
they vanish for certain values of the angleu5uc in the ap-
proximation quadratic in the parameterh. When tanu@1,
but cosu@1/Vt, the values ofuc are repeated with a perio
D(tanu)52ph/Dp . These oscillations are associated with t
motion of charge carriers in strongly elongated orbits in
momentum space, which intersect a large number of
cells in the reciprocal lattice, and the period of oscillations
connected with a change in this number by unity.

In the case when the dispersion relation for charge c
riers has the form~5.10!, and the deformation potential i
described by formula~5.11!, the absorption coefficient ha
the form

G5h2G0

vtv0

s
J0

2~j!. ~5.39!

wherej5(av0m/h)tanQ. At points where Bessel’s function
J0(j) vanishes, we must take into account the next term
the expansion in small parameterskD ands/v.

5.3. Acoustic wave propagating across the layers

In order to solve the system of equations~3.1!–~3.3! in
the case when a wave propagates across the layers, we
carry out Fourier transformations in the coordinatez consid-
ering that the solution of the kinetic equation has the for

c5E
2`

t

dt8g@~z1z~ t8!2z~ t !#exp@n~ t82t !#,
-
n

is
n

c-

n-
g

c-

d

f

e
it
s

r-

in

ust

z~ t !5E t

vz~ t8!dt8. ~5.40!

We consider the propagation of a longitudinal acous
waveu5(0,0,u) in a magnetic fieldH5(0,H sinu,H cosu).
The system of equations for the Fourier components of
displacement and electric field in this case has the form

~ ãxzkj1 iH y /c!vu1~jsxx21!Ẽx1js̃xyẼy50,

ãyzkjvu1js̃yxẼx1~jsyy21!Ẽy50,

~v22s2k2!ru1@ ikc̃zz1c21ãxzHy#kvu1@ ikb̃zx

1c21s̃xxHy#Ẽx1@ ikb̃zy1c21s̃xyHy#Ẽ50,

~5.41!

where

s̃ab5sab2
sazszb

szz
, ãaz5aaz2

azzsaz

szz
,

b̃zb5bzb2
bzzszb

szz
, c̃zz5czz2

bzzazz

szz
,

s5~lzzzz/r!1/2.

Acoustoelectronic coefficients are defined by formulas~3.21!
in which

R̂g5E
2`

t

dt8g~ t8!exp$ ik@z~ t8!2z~ t !#1n~ t82t !%.

We shall describe the results of analysis of the disp
sion equation of the system~5.41!, which is carried out for
vt!1 for an acoustic wave propagating, as before, alo
the layers.

If the magnetic field is directed along the normal to t
layers (u50), the absorption is mainly determined by reno
malization of the charge carrier energy under the action
deformation. In the case when the deformation potentia
described by formula~5.11!, the absorption coefficient satis
fies the following expression:

G5G0

1

kl
$@11~hkl !2#1/221%, ~5.42!

which has the form

G5G0h2kl. ~5.43!

for klh!1. Herel 5tv0 .
If, however, the angleu differs from zero, but is not very

close to (p/2)(cosu@1/V0t), the absorption coefficient fo
klh!1 is described by the formula

G5
G0

2 H h0
2klJ0

2~j!1
sin2 u

kl S V0vc2

v0
2s2 D J , ~5.44!

which coincides with formula~5.43! for u50.

The first term in formula~5.44! is determined by defor-
mation interaction of electrons with the acoustic wave a
describes angular oscillations of absorption coefficient. T
second term is associated with the electromagnetic field
cited by the acoustic wave and differs from zero even
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h→0. For values of angles for which Bessel’s functio
J0(j) does not vanish, the dependence ofG on kl has a
minimum for

klh5
sinu

J0~j!

V0vc2

v0
2s2 ,

associated with the competition between the two mec
nisms of absorption.

If the magnetic field is oriented along the plane of t
layers (u5p/2), almost all charge carriers move in ope
orbits, and the attenuation of the acoustic wave forkRh
!1 @R5hc/(aeH)# is described by the formula

G5G0h2kR. ~5.45!

Thus, the dependences ofG on the magnitude and direc
tion of the applied magnetic field are quite diverse and
give rich information for studying the properties of char
carriers in low-dimensional conducting structures.

6. CONCLUSION

Wave processes in layered organic conductors in
strong magnetic field are quite sensitive to the form of
electron energy spectrum, and their experimental study
provide detailed and reliable information on the dispers
relation and relaxation properties of charge carriers.

Organic conductors are also interesting for applicatio
owing to the diversity of high- frequency and magnetoaco
tic phenomena typical of conductors with low-dimension
electron energy spectra. The acoustic transparency st
lated by a magnetic field undoubtedly facilitates the perf
tion of acoustoelectronic devices. Such a strong depend
of the intensity of the wave penetrating in the bulk of t
sample on its polarization makes it possible to use even
plate of layered conductors, whose thickness is consider
larger than the skin depth, but smaller than or of the orde
the mean free path of charge carriers, as filters through w
waves with a definite polarization can pass. We shall c
sider our task to be fulfilled and the publication of this r
view as expedient if the variety of weakly attenuating wav
typical of quasi-two-dimensional conductors considered
us here draws the attention of experimenters.
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Fiz. 115, 205 ~1999! @JETP88, 114 ~1999!#.
20R. Rossenau, M. L. Doublet, E. Canadellet al., J. Phys.~Paris! 6, 1527

~1996!.
21K. Yamagji, J. Phys. Soc. Jpn.58, 1520~1989!.
22N. A. Zimbovskaya, Zh. E´ksp. Teor. Fiz.113, 2229 ~1998! @JETP 86,

1220 ~1998!#.
23V. G. Peschansky and D. I. Stepanenko, Zh. E´ksp. Teor. Fiz.112, 1841

~1997! @JETP85, 1007~1997!#.
24V. G. Peschansky and D. I. Stepanenko, Fiz. Nizk. Temp.25, 277 ~1999!

@Low Temp. Phys.25, 203 ~1999!#.
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