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High-temperature quantum size oscillations of the conductivity in thin metal films
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The longitudinal electrical conductivity of a thin conducting film in the presence of electron and
hole groups of charge carriers is calculated by the Kubo method under conditions such that
the carrier motion is spatially quantized. It is shown that in the case of elastic scattering on
impurities there are quantum high-temperature oscillations of the conductivity which are
relatively insensitive to the temperature smearing of the Fermi level. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1630719#
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1. INTRODUCTION

The quantum size effect~QSE! in thin films has been
well studied both experimentally and theoretically~see Ref.
1 and the literature cited therein!. In spite of this, severa
experimentally observed phenomena have not been give
exhaustive theoretical explanation. For example, experim
tal studies of the QSE in bismuth2–5 find evidence of the
presence of quantum size oscillations of the conductivity
T@DE (DE is the distance between adjacent subba
formed by the size quantization, andT is the temperature in
energy units!, while at the same time the theoretical calcu
tion ~see Refs. 6 and 7! predicts that they should be strong
attenuated. Interestingly, a similar situation also arises in
case of magnetic quantization, as is attested to by a serie
experimental studies of the Shubnikov–de Haas~SdH! effect
in bismuth ~see Refs. 8–10 and references cited there!.
These high-temperature oscillations cannot be explaine
the framework of the usual theory of the SdH effect~see,
e.g., Ref. 11!.

In this paper we consider a mechanism for the appe
ance of quantum high-temperature oscillations~QHTOs! in
the presence of an elastic scattering potential. This me
nism, which was proposed in Ref. 12 for semiconduct
placed in a quantizing magnetic field, consists in the follo
ing. In the case of two valleys, the electron density of sta
has a feature at values of the energy corresponding to
bottom of a subband~i.e., the point of the subband with th
lowest value of the energy for the electron valley and
highest energy for the hole valley!. The intensity of interval-
ley scattering increases substantially when the energies
responding to the bottom of any two subbands in the diff
ent valleys coincide. This condition of a maximum in th
scattering intensity will be sensitive to changes in the po
tion of the subbands. As the quantization conditions are
ied ~i.e., the magnetic field strength in the case of quanti
tion by a magnetic field or the thickness of the sample in
case of the QSE! the subbands from the different valleys w
shift along the energy scale with different rates, periodica
‘‘overtaking’’ one another. In the case of valleys with diffe
1011063-777X/2003/29(12)/5/$24.00
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ent signs of the charge carriers the subbands will be shi
in opposite directions. Of course, this condition must hold
the region of temperature smearing of the Fermi level.

This mechanism is also used to explain the hig
temperature oscillations in bismuth in a quantizing magne
field ~the case of two valleys with different signs of th
charge carrier was studied in Refs. 13–15! and in the case of
a quasi-two-dimensional dispersion relation.16,17

2. STATEMENT OF THE PROBLEM

We consider a thin metal film with mirrorlike bound
aries,z50 and z5Lz , and two groups of charge carrier
electron and hole. For simplicity we shall assume that
Fermi surface consists of two pockets with a quadratic d
persion relation in each, i.e., the energy« of the charge car-
riers in the electron«e and hole«h valleys is equal:

«e5
px

21py
2

2me
1aen

2,

«h5«OL2
px

21py
2

2mh
2ahn2, ~1!

whereme,h are the masses of the electrons and holes, res
tively, «OL is the value of the band overlap, and

ae,h5
p2\2

2me,hLz
2 .

We shall take into account only the scattering on a sh
range impurity, the effective radius of which is much smal
than the de Broglie wavelength of an electron on the Fe
surface, and assume that the impurity centers are unifor
distributed over the volume of the film with a densitynimp .
For simplicity we shall assume that the matrix elements
the impurity potential operator responsible for transitio
within the electron and hole groups and for intervalley tra
sitions are of the same order of magnitude, i.e.,

V̂ee.V̂hh.V̂eh . ~2!
9 © 2003 American Institute of Physics
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A severalfold difference in the values of these quantities w
not qualitatively influence the result but will only affect th
amplitude ratio of the various modes of oscillation wh
preserving the qualitative picture of the QSE.

3. CONDUCTIVITY AT ZERO TEMPERATURE

We write the expression for the conductivity in th
form18

sxx5
2p\

T
e2E

2`

`

dE f0~E!~12 f 0~E!!

3^Tr v̂xd~Ĥ2E!v̂xd~Ĥ2E!& imp , ~3!

where f 0(E) is the Fermi–Dirac distribution function,Ĥ
5 «̂1( iV( r̂2Ri) is the energy operator with the impurit
taken into account~the impurity contribution to the energ
operator is equal to the sum of the potentials of the in
vidual impurity centers, which are randomly distributed
the pointsRi), the summation in the trace Tr is done over t
one-electron complete quantum set (n,Px ,Py), and the angle
brackets denote averaging over the distribution of impu
centers.

In averaging over the distribution of impurity centers w
use the standard diagram technique, given, e.g., in Ref. 1
in more detail for the case of an elastic impurity in Ref. 2
Simple estimates show that in expression~3! the contribu-
tions containing ‘‘crossing’’ diagrams~see Fig. 1b! can be
neglected.20 The contribution of expressions of the form
Fig. 1c, which contain the velocity operator between the
purity potential operators generated by the same impu
center, also turn out to be negligible~the contribution can be
neglected after averaging the expression over the impu
coordinate!. This makes it possible to replace the average
the product of delta functions over the distribution of imp
rity centers in expression~3! by the product of the average

^v̂ id~Ĥ2E!v̂ jd~Ĥ2E!& imp

5 v̂ i^d~Ĥ2E!& impv̂ j^d~Ĥ2E!& imp .

The latter can be represented in the form^d(Ĥ2E)& imp

5 i /2p (ĜV
1(E)2ĜV

2(E)), where

ĜV
6~E!5K 1

E2Ĥ6 id
L

imp

5
1

E2 «̂2Ŝ6~E!
~4!

is the total Green’s function, the quantityŜ(E)

5^ŜR(E)& imp by definition~see Refs. 19 and 20! is the self-
energy part averaged over the impurity distribution,

ŜR
6~E!5V̂R1V̂RĜV

6~E!V̂R1..., ~5!

FIG. 1. Examples of the diagrams taken into account in the averaging
the distribution of impurity centers~a!; a ‘‘crossing’’ diagram~b!; a diagram
in which the velocity operator leads to vanishing of the corresponding c
tribution after averaging over the position of the impurity center~c!.
ll

i-
t

y

or
.

-
ty

ty
f

V̂R is the potential operator of an individual impurity cent
at the pointR, and

Ĝ6~E!5
1

E2 «̂6 id
~6!

is the Green’s function without the impurity taken into a
count.

In evaluating the series~5! we can use the analogy wit
the expression for theT̂6 operator:

T̂R
6~E!5V̂R1V̂RĜ6~E!V̂R1... . ~7!

It follows from the explicit form of the Green’s function~4!,

~6! that the relationĜV
6(E)5Ĝ6(E2Ŝ6(E)). ThenŜR

6(E)
can be expressed through the equation

ŜR
6~E!5T̂R

6~E2S6~E!!. ~8!

In solving equation~8! we can assume that the operat

Ŝ6(E) is diagonal:Ŝ6(E)5S6(E) Î , where Î is the unit
operator.

For the operatorT̂6(E) the expression proposed in Re
21 is valid ~with a correction for the form of the spectrum
~1!!:

Tnm
6 ~E!5t6~E!wn* ~R!wm~R!, ~9!

t6~E,R!5
S

12SGq
6~E,Z!

,

whereR5(X,Y,Z) is the coordinate of the impurity cente

wn~r !5
1

2p\
A 2

Lz
e

i
\Pxxe

i
\Pyy sinS pnz

Lz
D ,

n5~n,Px ,Py!, ~10!

is the eigenfunction of the unperturbed energy operator«̂,

S5E V~r !c0~r !d3r ~11!

is the renormalized strength of the impurity~see Refs. 16 and
21!, c0(r ) is determined by Dyson’s equation

c0~r !511E Gcl~r ,r 8!V~r 8!c0~r 8!d3r 8,

V(r ) is the impurity potential, andGq
6(E,Z) is the Green’s

function after subtraction of the singular contributio
Gcl(r ,r 8);1/ur2r 8u and is given by the following relation in
the coordinate representation:

G6~E;r ,r 8!5(
n

wn~r !wn* ~r 8!

E2«n6 id

5Gcl~r2r 8!1Gq
6~E,Z! ~12!

(Gcl(r ,r 8) is equal to the real part of the Green’s functio
G6(E;r ,r 8) ~6! without the quantization taken into accoun
andLz→`; Ref. 21!. In the case under consideration, that
a short-range impurity, the dependence ofGq

6(E;r ,r 8) on
ur2r 8u can be neglected, but in contrast to the case of m
netic quantization considered in Ref. 21, there is depende
on thez component of the coordinater5r 8.

It follows from the definition of the Green’s function tha
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Gq
6~E,z!5Ge

6~E,z!1Gh
6~E,z!, ~13!

where the subscriptse andh indicate whether the summatio
in ~12! is done only over the electron valley or only over t
hole valley. Taking into account the explicit form of the e
ergy spectrum~1! and the definition of the Green’s function
we can writeGh

6(E,z)52Ge
7(«OL2E,z)ue→h . After sub-

stituting wn(r ) in the explicit form~10! into expression~12!
and using Poisson’s formula@the divergent contribution o
the zeroth harmonic is renormalized byGcl(r2r 8)], we ob-
tain

Ge
6~E,z!57

2p2ime

Lz~2p\!2AE

ae
F172(

k51

`
i

AEb0
e

e6 ib0
eAE

6 (
k52`

`
i

AEubz
eu

e6 i ubz
euAEG , ~14!

whereb0
e,h52pk/Aae,h, bz

e,h5(2p/Aae,h)(k1z/Lz).
In making the transition toS6(E) we must perform the

average ofT̂R
6(E) over theZ coordinate of the impurity cen

ter. The series in formula~14! contains a singularity with
respect toz, and therefore in the expansion in the sm
parameter 1/nF;Aae /«F, Aah /(«OL2«F)!1 (nF is the in-
dex of the highest-numbered subband that overlaps the F
surface! it is more convenient to leave the singular part in t
denominator of expression~9!. The off-diagonal matrix ele-
ments of the operatorTmn

6 (E) after averaging overZ are
smaller by a factor of 1/nF than the diagonal ones for bot
the monotonic part and oscillatory part, and they can be
glected. In solving Eq.~8! it is sufficient to use the approxi

mationŜR
6(E)'T̂R

6(E2Scl
6), whereScl

6 is the nonquantum
monotonic part ofS6(E), since the last terms of the expa
sion are small in the parameter\/t«F , \/t(«OL2«F)!1. In
the equation for the conductivity, ReScl can be taken into
account by a simple renormalization of«F :

«F⇒ «̃F5«F2ReS6~ «̃F! ~15!

~as is shown in Refs. 20 and 22!. From here on,«F will be
understood to mean the latter, renormalized quantity.
Im Scl

6 in the argument of theT matrix leads to the Dingle
factor.

Let us consider expression~3! for T50 with allowance
for the renormalization~15! of «F . After some transforma-
tions the impurity potential will appear in expression~3! only
in the combination

1

t~E!
5

i

\
@S1~E!2S2~E!#, ~16!

which plays the role of the relaxation time~in the framework
of the approximations made, this is the same as the me
of the quantum kinetic equation22!.

Conductivity oscillations not due to scattering on imp
rities ~i.e., oscillations that survive whent(E) is replaced by
a constant in the expression for the conductivity! which arise
in evaluating the trace Tr in formula~3!, have the same fre
quency as in~16! but a substantially smaller amplitude
which, after calculation of~3! is smaller in order of magni-
tude by a factor of 1/nF

2 than the monotonic part of the con
ductivity, and they can be neglected. The reason for th
l

mi

e-

e

od

ir

smallness is that the velocity operatorv̂x appears under the
Tr sign in expression~3!, and its eigenvalues are close
zero in the vicinity of the pointsp5(0,0,6pF) which deter-
mine the oscillation frequency. Therefore expression~3! can
be replaced by its classical analog, the quantization be
taken into account only in the evaluation of expression~16!.
At T50 the conductivity will be proportional to the relax
ation time:

sxx;t~«F!. ~17!

To make the resulting expression for the conductiv
less awkward, we shall restrict discussion to the limiting ca
of a weak impurity with a scattering amplitude much le
than the de Broglie wavelength at the Fermi level. Then

1

t~E!
5

1

t0
S 11 (

k51

`

Rk
e~E!1 (

k51

`

Rk
h~E!D , ~18!

where

Rk
e~E!5

1

2pk
Aae

E
expS 2

pk\

2t0AaeE
D sinS 2pkAE

ae
D ,

~19!

Rk
h~E!5

1

2pk
A ah

«OL2E

3expS 2
pk\

2t0Aah~«OL2E!
D sinS 2pkA«OL2E

ah
D .

It follows from the assumptions made earlier that(k51
` Rk

e,h

;1/nF!1, i.e., the oscillatory part of the relaxation time
much smaller than the classical partt0 . Thus the expression
for the conductivity can be written in the form

sxx5sclS 11 (
k51

`

Rk
e~«F!1 (

k51

`

Rk
h~«F!D 21

'sclS 12 (
k51

`

Rk
e~«F!2 (

k51

`

Rk
h~«F!

12 (
k,l 51

`

Rk
e~«F!Rl

h~«F!D , ~20!

where in the terms of second-order smallness in 1/nF we
have kept only the contributions responsible for the QHTO
scl is the classical part of the conductivitysxx .

4. CONDUCTIVITY AT FINITE TEMPERATURE

The Fermi–Dirac distribution function appears in e
pression~3! for the conductivity only in the combination

1

T
f 0~E!~12 f 0~E!!52

] f 0~E!

]E
.

Thus we can write

sxx5E S 2
] f 0~E!

]E DF~E!dE, ~21!

whereF(E) is a function ofE that is independent ofT. At
T50

sxxuT505F~«F!, ~22!
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which makes it possible to obtain the explicit form ofF(E)
from the dependence of the conductivity on«F ~20!. After
that it remains only to substitute it into expression~21!, the
evaluation of which will give the temperature dependence
the conductivity. The derivation given here is analogous
the calculation of the temperature dependence of the ther
dynamic potentialV in Ref. 11.

The nonclassical part of the conductivity atT50 in for-
mula ~20! behaves as an oscillatory function of«F . At a
certain value«F5Ek,l

Ek,l5«OL

ahk2

ahk21ael
2 , ~23!

the conditionkDEh
F5 lDEe

F is satisfied, wherek and l are
integers. Here

DEe
F52A«Fae, DEh

F52A~«OL2«F!ah ~24!

is the distance between adjacent subbands with posit
close to the Fermi level in the electron and hole valle
respectively. That is, at«F5Ek,l the frequency of the con
ductivity oscillations~for one of the harmonics! as a function
of «F goes to zero, which leads to a softer than exponen
temperature dependence. In the calculation of the temp
ture dependence of the conductivity we shall distinguish t
limiting cases: the energy levelEk,l lies far outside the limits
of the temperature smearing of the Fermi level, making
possible to neglect the unequal spacing of the energy s
trum, and the opposite limiting case withuEk,l2«Fu!T,
when the unequal spacing determines the region of en
values that gives the main contribution to the integral~21!.
Substituting the expression~20! for the conductivity into the
integral ~21!, we obtain

sxx5scl1sh1se1 (
k,l 51

`

~sk,l
2 1sk,l

1 !, ~25!

wherescl is the monotonic part of the conductivity,

se52sxx
cl (

k51

`
1

2pk
Aae

«F
CS 2p2kT

DEe
F D

3expS 2
pk\

t0DEe
FD sinS 2pkA«F

ae
D , ~26!

sh52sxx
cl (

k51

`
1

2pk
A ah

«OL2«F
CS 2p2kT

DEh
F D

3expS 2
pk\

t0DEh
FD sinS 2pkA«OL2«F

ah
D . ~27!

Expressions~26! and ~27! agree with the results of Refs.
and 7:

sk,l
6 57scl

1

4p2kl
Aae

«F
A ah

«OL2«F
CS 2p2TS k

DEe
F

7
l

DEh
FD DexpS 2

pk\

t0
S k

DEe
F 1

l

DEh
FD D

3cosS 2pA«F

ae
62p lA«OL2«F

ah
D , ~28!
f
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where

C~x!5
x

sinhx
.

Expressions~26!–~28! for se,h andsk,l
2 are given for anyT,

the contributionsk,l
1 is determined by expression~28! if at

least one of the following two conditions is met:

T!uEk,l2«Fu, ~29!

T!min$ae
1/4Ek,l

3/4, ah
1/4~«OL2Ek,l !

3/4%. ~30!

Condition ~30! describes the region nearT50 in which the
temperature dependence ofsk,l

1 can be neglected.
In the opposite case, when the condition

T@uEk,l2«Fu ~31!

holds along with at least one of the inequalities

T@ae
1/4Ek,l

3/4, T@ah
1/4~«OL2Ek,l !

3/4, ~32!

the expression forsk,l
1 will have the form

sk,l
1 52scl

1

8p2klT
A ae

Ek,l
A ah

«OL2Ek,l

3
1

Ak/AaeEk,l
3 1 l /Aah~«OL2Ek,l !

3

expS 2
p\

2t0
S k

AaeEk,l

1
l

Aah~«OL2Ek,l !
D D

3cosS 2pkAEk,l

ae
12p lA«OL2Ek,l

ah
2

p

4 D . ~33!

The oscillation frequency of the contributions~26!–~28!,
as in the caseT50, is determined byt(«F) ~but the coeffi-
cients of proportionality in formula~17! for TÞ0 will be
different for different harmonics!. The oscillation frequency
of contribution~33! is determined byt(Ek,l) and is not nec-
essarily a combination of the frequencies of the lo
temperature contributions~26! and ~27!.

In formulas ~25!–~28! and ~33! and in conditions~29!
and ~31! one can restrict consideration to the case of sm
k,l , since the quantum oscillations are exponentially s
pressed by the Dingle factor as these indices increase.

CONCLUSIONS

We have shown that the presence of an elastic sh
range impurity can give rise to high-temperature oscillatio

Unlike the case of valleys with the same type of char
carrier, when QHTOs would be expected only at values
DE at the Fermi level which are close to multiples, in th
case of two types of charge carriers the high-tempera
character of the oscillations is manifested at any values
DEe and DEh , reaching a maximum amplitude at value
which are multiples. Indeed, the presence of electron
hole valleys leads to a difference in the signs in the tempe
ture factor and in the argument of the cosine in formula~28!,
i.e., the contributionsk,l

1 will be simultaneously higher-
temperature and higher-frequency in comparison with
contributions~26! and~27! ~as in the case of magnetic qua
tization; see Refs. 13–15!. In the case of two groups o



m
c
t

on

ize

ic

iz
en
e
w

bl
O

or
ni
rg
b

.

,

k.

iz.

d

1023Low Temp. Phys. 29 (12), December 2003 I. V. Kozlov
charge carriers of the same type those signs will be the sa
and the high-temperature oscillations will be low-frequen
~see Ref. 16 for the case of magnetic quantization, where
role of the two groups of charge carriers is played by regi
near the extremal cross sections!.

Because of the unequal spacing of the size-quant
energy spectrum, the condition of multiples,lDEe5kDEh ,
can be satisfied only in regions of momentum space wh
are characterized by an energyEk,l . The latter, together with
«F , can determine the frequency and amplitude of the s
oscillations and the character of the temperature depend
of the conductivity. Here the frequency of the QHTOs ne
not be a combination of the frequencies of the lo
temperature modes of oscillation.
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