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ELECTRONIC PROPERTIES OF METALS AND ALLOYS

High-temperature quantum size oscillations of the conductivity in thin metal films
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The longitudinal electrical conductivity of a thin conducting film in the presence of electron and
hole groups of charge carriers is calculated by the Kubo method under conditions such that
the carrier motion is spatially quantized. It is shown that in the case of elastic scattering on
impurities there are quantum high-temperature oscillations of the conductivity which are
relatively insensitive to the temperature smearing of the Fermi leveR0@3 American Institute

of Physics. [DOI: 10.1063/1.1630719

1. INTRODUCTION ent signs of the charge carriers the subbands will be shifted

in opposite directions. Of course, this condition must hold in
The quantum size effedQSB in thin films has been the region of temperature smearing of the Fermi level.

well studied both experimentally and theoretica(lﬂ;pe Ref. This mechanism is also used to exp|ain the h|gh-

1 and the literature cited therginin spite of this, several temperature oscillations in bismuth in a quantizing magnetic

experimentally observed phenomena have not been given ajld (the case of two valleys with different signs of the

exhaustive theoretical explanation. For example, experimerncharge carrier was studied in Refs. 13)-a6d in the case of

tal studies of the QSE in biSI’nl,?ﬁ'llS find evidence of the a quasi-two-dimensiona| dispersion re|ati18ﬁ_7

presence of quantum size oscillations of the conductivity at

T>AE (AE is the distance between adjacent subbands

formed by the size quantization, afdis the temperature in

energy unity while at the same time the theoretical calcula-

tion (see Refs. 6 and)predicts that they should be strongly We consider a thin metal film with mirrorlike bound-

attenuated. Interestingly, a similar situation also arises in tharies,z=0 andz=L,, and two groups of charge carriers:

case of magnetic quantization, as is attested to by a series efectron and hole. For simplicity we shall assume that the

experimental studies of the Shubnikov—de He@aH) effect  Fermi surface consists of two pockets with a quadratic dis-

in bismuth (see Refs. 8—10 and references cited thérein persion relation in each, i.e., the energyf the charge car-

These high-temperature oscillations cannot be explained iriers in the electrorz, and holes,, valleys is equal:

2. STATEMENT OF THE PROBLEM

the framework of the usual theory of the SdH effésete, 2,
Ref. 11 Px* Py 2
e.g., Ref. _ _ o= +an?,
In this paper we consider a mechanism for the appear- 2m
ance of quantum high-temperature oscillatig@HTOS in p2+ p2
the presence of an elastic scattering potential. This mecha- ¢ =¢,, — % —apn?, (1)
My

nism, which was proposed in Ref. 12 for semiconductors
placed in a quantizing magnetic field, consists in the follow-wherem, ,, are the masses of the electrons and holes, respec-
ing. In the case of two valleys, the electron density of statesively, ¢, is the value of the band overlap, and

has a feature at values of the energy corresponding to the 952

bottom of a subband.e., the point of the subband with the :l
lowest value of the energy for the electron valley and the e 2me,h|-§.

highest energy for the hole valleyThe intensity of interval- We shall take into account only the scattering on a short-
ley scattering increases substantially when the energies cofznqe impurity, the effective radius of which is much smaller

responding to the bottom of any two subbands in the differy, the de Broglie wavelength of an electron on the Fermi
ent valleys coincide. This condition of a maximum in the g, tace. and assume that the impurity centers are uniformly

scattering intensity will be sensitive to changes in the poSiysyipyted over the volume of the film with a density,y.
tion of the subbands. As the quantization conditions are varq gimplicity we shall assume that the matrix elements of
ied (i.e., the magnetic field strength in the case of quantizag,e jmpurity potential operator responsible for transitions

tion by a magnetic field or the thickness of the sample in th§y;ihin the electron and hole groups and for intervalley tran-
case of the QSEhe subbands from the different valleys will sitions are of the same order of magnitude, i.e.

shift along the energy scale with different rates, periodically A A
“overtaking” one another. In the case of valleys with differ- Vee=Vhn=Ven- 2
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\7R is the potential operator of an individual impurity center
N SA . at the pointR, and
A
a b c

1
E—e*ié ©®

FIG. 1. Examples of the diagrams taken into account in the averaging over
the distribution of impurity center&); a “crossing” diagram(b); a diagram s the Green’s function without the impurity taken into ac-
in which the velocity operator leads to vanishing of the corresponding O ount

In evaluating the serie) we can use the analogy with

the expression for th&* operator:

A severalfold difference in the values of these quantities will

not qualitatively influence the result but will only affect the Tr(E)=Vr+ VG (E)Vgt... . (7)
amplitude ratio of the various modes of oscillation while | tol10ws from the explicit form of the Green’s functiof),

preserving the qualitative picture of the QSE. (6) that the relatioré\f(E)=éi(E—ii(E)). Thenié(E)
can be expressed through the equation

G*(E)=

tribution after averaging over the position of the impurity cerftr

3. CONDUCTIVITY AT ZERO TEMPERATURE

We write the expression for the conductivity in the  >r(E)=TR(E-X7(E)). ®
18
form In solving equation(8) we can assume that the operator
2mh (= S*(E) is diagonal:3*(E)=3*(E)i, wherel is the unit
— 2 0 __$0
Txx="7 € f_wdEf (E)(1—f%E)) operator. )
. ~ For the operatoll ~(E) the expression proposed in Ref.
X(Troy6(H=E)0x6(H—E))imp, (3) 21 is valid (with a correction for the form of the spectrum
where f(E) is the Fermi—Dirac distribution functiort (D):
=&+3,V(f—R;) is the energy operator with the impurity TfM(E)ztt(E)@:(R)cpM(R), 9
taken into accountthe impurity contribution to the energy
operator is equal to the sum of the potentials of the indi- ( )= >
vidual impurity centers, which are randomly distributed at ’ 1-SG,(E,2)’

the pointsR;), the summation in the trace Tr is done over the

whereR=(X,Y,Z) is the coordinate of the impurity center,
one-electron complete quantum setR, ,P,), and the angle ( ) purty

brackets denote averaging over the distribution of impurity 1 2 ip ip, [®@NZ
centers. eu(N=5 -\ & el sin -
In averaging over the distribution of impurity centers we ‘ ‘
use the standard diagram technique, given, e.g., in Ref. 19 or  ¥=(N,Py,Py), (10

in more detail for the case of an elastic impurity in Ref. 20.i5 the eigenfunction of the unperturbed energy operafor
Simple estimates show that in expressi@n the contribu-

tions containing “crossing” diagramg¢see Fig. 1b can be
neglected® The contribution of expressions of the form in

Fig. 1c, which contain the velocity operator between the im-IS the renormalized strength of the impurisee Refs. 16 and

purity potential operators generated by the same impurit)él)’ Wo(r) is determined by Dyson’s equation
center, also turn out to be negligiblihne contribution can be

neglected after averaging the expression over the impurity
coordinate. This makes it possible to replace the average of
the product of delta functions over the distribution of impu-
rity centers in expressiof8) by the product of the averages:

S= f V(1) o(r)d3r (11

wo(r)=1+f Ga(r,rIV(r ) iho(r')dr’,

V(r) is the impurity potential, an(Bj(E,Z) is the Green’s
function after subtraction of the singular contribution
(6;8(H—E)3;8(H—E))imp GC|(r,r’)~_1/|r— r'| and is given by the following relation in
. . the coordinate representation:
:Ui<5(H_E)>impvj<5(H_E)>imp- ) L _E QDV(Y)(Pﬁ(f')
The latter can be represented in the fof@(H—E))inp GHErr=2 E—s,%i0
=i/2mw (G} (E)— Gy (E)), where

=G(r—r')+Gy(E,2) (12)
- 1 1
Gy (E)= — = ~ (4) (Gg(r,r") is equal to the real part of the Green’s function
E-H=xié imp E-&—3*(E) G*(E;r,r") (6) without the quantization taken into account,

- andL,—«; Ref. 2]). In the case under consideration, that of
is the total Green's function, the quanti=(E) a short-range impurity, the dependenceGyf (E;r,r') on
=(2Rr(E))imp by definition(see Refs. 19 and 2s the self- [r—r’| can be neglected, but in contrast to the case of mag-
energy part averaged over the impurity distribution, netic quantization considered in Ref. 21, there is dependence

- o, A A on thez component of the coordinate=r’.
SR(E)=Vr+VRGy (E)Vg+..., ©) It follows from the definition of the Green’s function that
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G§(E,z)=G§(E,z)+G§(E,z), (13)  smallness is that the velocity operator appears under the
. o ~Tr sign in expressior(3), and its eigenvalues are close to
where the subscripesandh indicate whether the summation zerg in the vicinity of the pointp= (0,0, pg) which deter-
in (12) is done only over the electron valley or only over the mine the oscillation frequency. Therefore express@ncan
hole valley. Taking into account the explicit form of the en- pe replaced by its classical analog, the quantization being
ergy spectrun{l) and the definition of the Green’s function, taken into account only in the evaluation of expres<ibé).

we can writeGy, (E,2)=—G, (soL—E,2)|c_n- After sub- At T=0 the conductivity will be proportional to the relax-
stituting ¢, (r) in the explicit form(10) into expression12) ation time:

and using Poisson’s formulghe divergent contribution of

the zeroth harmonic is renormalized By(r—r’)], we ob- Oxx~ T(EF)- (17)
tain To make the resulting expression for the conductivity
5. o i less awkward, we shall restrict discussion to the limiting case
Gi(Ez)=7T 2m |me2 |E 1723 | eissE  of a weak impurity with a scattering amplitude much less
L(27h)° N ae =1 JEBS than the de Broglie wavelength at the Fermi level. Then
B L (14 1S R Y RE<E>>, (18)
T« JE|BY : (E) 7o k=1 k=1

where

where B"= 2kl g, BE"= (27 \agr) (K+2ZIL,).
In making the transition t& *(E) we must perform the . 1 \/CTe wkh _ \/E
average off 5 (E) over theZ coordinate of the impurity cen- Rk(E)=5—\/ Fexp — ﬁ 5'”( 2mk a_)’
ter. The series in formul&l4) contains a singularity with Tovde ¢ (19)
respect toz, and therefore in the expansion in the small
parameter W~ Vae/er, Vap/(eoL—eg)<1 (ng is the in- N
dex of the highest-numbered subband that overlaps the Ferrﬁk(E) T omk
surface it is more convenient to leave the singular part in the
denominator of expressiof®). The off-diagonal matrix ele- wkh . goL—E
ments of the operatoTiV(E) after averaging oveZ are xexp — ZTox/m sin| 27k :
smaller by a factor of b than the diagonal ones for both _ _ h
the monotonic part and oscillatory part, and they can be néelf follows from the assumptions made earlier thgt | R
glected. In solving Eq(8) it is sufficient to use the approxi- ~1/Ne<1, i.e., the oscillatory part of the relaxation time is
mationié(E)%'Al'é(E—Ej), whereE§ is the nonquantum, much smaller than the classical pagt Thus the expression

monotonic part of *(E), since the last terms of the expan- for the conductivity can be written in the form

ap

SOL_E

dp

sion are small in the parametetreg, il (e —eg)<1.1n ~ - -1

the equation for the conductivity, Rg, can be taken into Tyx=0° 1+k21 Rﬁ(SF)JFl(Zl RE(SF))

account by a simple renormalization of : N -
er=Tr=ep~RES(Fr) as ~of{1- 3, Riten - 3, Rlten

(as is shown in Refs. 20 and RZFrom here ongg will be ! !

understood to mean the latter, renormalized quantity. The - . N

Im3, in the argument of thd matrix leads to the Dingle "'ZKZl Ri(er)Ri(gF) |, (20)

factor. '

Let us consider expressidB) for T=0 with allowance Where in the terms of second-order smallness in: Wwe
for the renormalizatior(15) of . After some transforma- have kept only the contributions responsible for the QHTOs;
tions the impurity potential will appear in expressi@only o is the classical part of the conductivits .
in the combination

1 i B
7(E) :%[EJr(E)_E (B)1, (16) The Fermi-Dirac distribution function appears in ex-
pression(3) for the conductivity only in the combination

4. CONDUCTIVITY AT FINITE TEMPERATURE

which plays the role of the relaxation tinfie the framework 0

of the approximations made, this is the same as the method EfO(E)(l—fO(E))z _ df>(E)

of the quantum kinetic equatié. T JE
Conductivity oscillations not due to scattering on impu-

rities (i.e., oscillations that survive wher(E) is replaced by

Thus we can write

a constant in the expression for the conductivityich arise _ B af%E) FEVAE 21
in evaluating the trace Tr in formul@), have the same fre- Txx JE (E)dE, (21)
guency as in(16) but a substantially smaller amplitude, . . .

which, after calculation of3) is smaller in order of magni- ¥ieOreF(E) is a function ofE that is independent of. At

tude by a factor of I@ than the monotonic part of the con-
ductivity, and they can be neglected. The reason for their o,,|t—o=F(&p), (22
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which makes it possible to obtain the explicit formBfE) where
from the dependence of the conductivity ep (20). After

that it remains only to substitute it into expressi@i), the V(x)=
evaluation of which will give the temperature dependence of

the conductivity. The derivation given here is analogous tcExpressiong26)—(28) for ¢®" anday | are given for anyT,
the calculation of the temperature dependence of the thermene contributiono,| is determined by expressia@8) if at

dynamic potential) in Ref. 11. least one of the following two conditions is met:
The nonclassical part of the conductivity Bt 0 in for-

sinhx’

mula (20) behaves as an oscillatory function ef . At a T<[Ewi—e¢l, (29
certain valuesg = Ey T<min{ag"EYY, af(soL—Ex ¥4 (30
apk? Condition (30) describes the region ned@r=0 in which the

Ek,l =& (23)

Ola k?+ al?’ temperature dependence @, can be neglected.

. . . In the opposite case, when the condition
the conditionkAE] =1AEf is satisfied, wheré and| are PR

integers. Here T>|Ey — &gl (31)
AEgzz\/a, AEEZZM (24) holds along with at least one of the inequalities

is the distance between adjacent subbands with positions T "Byl T>apeol—E) ™ (32)
close to the Fermi level in the electron and hole valleysthe expression fow,, will have the form
respectively. That is, atg=E the frequency of the con-
ductivity oscillations(for one of the harmonigsas a function o= g 1 I
of ¢ goes to zero, which leads to a softer than exponential ~ ©' 8m°kIT VEy, Veo —Ey
1

temperature dependence. In the calculation of the tempera-
ture dependence of the conductivity we shall distinguish two

limiting cases: the energy levEl | lies far outside the limits 8 VKINaES | +11an(soL —Ey)?

of the temperature smearing of the Fermi level, making it

possible to neglect the unequal spacing of the energy spec- mh K |

trum, and the opposite limiting case WillE, ;—eg|<T, ex;{—z—m JaEr + Jan(eoL—Enp)

when the unequal spacing determines the region of energy

values that gives the main contribution to the intedgAl). =% leoL—Exy

Substituting the expressiq@0) for the conductivity into the X cog 2mk ao +2ml an T4 (33

integral (21), we obtain o o
gral(21) The oscillation frequency of the contributiot6)—(28),

as in the cas@ =0, is determined byr(eg) (but the coeffi-

oo

Tyx= 0%+ 0"+ o+ kzl (ot o), (25 cients of proportionality in formuld17) for T#0 will be
T different for different harmonigs The oscillation frequency
wheres® is the monotonic part of the conductivity, of contribution(33) is determined byr(E, ) and is not nec-
w 5 essarily a combination of the frequencies of the low-
o= — o i ﬁw( 2m kT) temperature contribution®6) and(27).
e 2wk Ve AE; In formulas (25)—(28) and (33) and in conditions(29)

and (31) one can restrict consideration to the case of small

mkh /8F>
xXexp — sinl 27wk \/—/, 26 ) . .
p( ToA EE) ( m e (26) pressed by the Dingle factor as these indices increase.

k,I, since the quantum oscillations are exponentially sup-

b a1 an 2m°kT CONCLUSIONS
o'=—c v =
& 27k Veg—eg AE}

wkh 3 SOL_SF)
X - — .
ex% TOAEE)Sm( 21k an

Expressiong26) and (27) agree with the results of Refs. 6

and 7:

o :Ia-C'—l \/E \/—ah V| 27T L
kil 4’7T2k| EE EoL— €F AE
k

o wkh L
“aEf) ¥ T o | AEE T AEF

le l[eoL— €
XCO{Z’]T —FiZTrl “ot °F F),
(e (o0

(27)

=
e

(28)

We have shown that the presence of an elastic short-
range impurity can give rise to high-temperature oscillations.

Unlike the case of valleys with the same type of charge
carrier, when QHTOs would be expected only at values of
AE at the Fermi level which are close to multiples, in the
case of two types of charge carriers the high-temperature
character of the oscillations is manifested at any values of
AE, and AE,,, reaching a maximum amplitude at values
which are multiples. Indeed, the presence of electron and
hole valleys leads to a difference in the signs in the tempera-
ture factor and in the argument of the cosine in form@sa),
i.e., the contributiona;”I will be simultaneously higher-
temperature and higher-frequency in comparison with the
contributions(26) and(27) (as in the case of magnetic quan-
tization; see Refs. 13-15In the case of two groups of
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