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The propagation of spin waves in layered conductors in the presence of an external magnetic
field is studied theoretically. It is it is shown that for certain orientations of the magnetic

field with respect to the layers of the conductor there is no collisionless absorption, and weakly
damped collective modes can propagate even under conditions of strong spatial
dispersion. ©2005 American Institute of Physic§DOI: 10.1063/1.1820379

In recent years there has been a significant increase imave shown that such a Fermi surface is possessed by a con-
interest in layered structures with a metallic type of conduc-siderable number of organic conductors based on tetrathi-
tivity and a quasi-two-dimensional electron energy spectrumafulvalene salts.

These include organic conductors of the family of tetrathi-  In normal metals at low temperatures in a magnetic field,
afulvalene salts, transition metal dichalcogenides, graphitesarious weakly damped collective modes of the Bose type
etc. In the absence of external magnetic field the conductivean exist: electromagnetic, sound, and spin waves. In layered
ity of these substances along the layers, is several orders conductors the propagation of collective modes differs in a
of magnitude greater than the conductivity across the layersjumber of features due to the topology of the Fermi surface.
o, . The marked anisotropy of the kinetic coefficients of For certain orientations of the magnetic field relative to the
layered conductors is a consequence of the quasi-twdayers of the conductor the projection of the electron velocity
dimensionality of their electron energy spectrum. The maxi-on the direction 0B, averaged over the period of motion of
mum velocity of electrons with the Fermi energy along  an electron along the cyclotron orbit, is negligible. For those
the normaln to the layerspy,=v-n, is much less than the directions ofB, collisionless absorption is absent, and the
characteristic velocity of electrons in the plane of the layerspropagation of weakly damped waves is possible even under
ve, and their energy can be written in the form of a rapidly conditions of strong spatial dispersion. In this communica-

converging series: tion we report an investigation of spin waves in layered con-
ductors with a quasi-two-dimensional electron energy spec-

- np, trum. Collective modes involving oscillations of the spin
S(D):So(vapy)’Lzl 8n(vapyv’?)cosﬁ- (D density of the conduction electrons in quasi-isotropic con-

ductors lacking magnetic order were predicted by 3iind
The functionse,(py,py,7) fall off substantially with in- observed experimentally in alkali metals by Schultz and

creasing index: Dunifer?
In the case when the conditiodhwg=T< 7eg is met
ent1(Px:Py, 1) <en(Px,Py,7),&1(Px,Py, 1)~ neE. (where T is the temperature angg is the cyclotron fre-

guency of a conduction electrprthe density matrixp is an
Here = (o, /o))" is the quasi-two-dimensionality param- operator in the space of spin variables and a quasiclassical
eter,pp=#/a, i is Planck’s constant, ana is the distance function of the coordinates and momenta, while the addi-
between layers. Formuld) corresponds to the tight binding tional energy of the quasiparticle due to electron—electron
approximation, when the overlap of the electron shells ofinteraction effects can be written in the framework of the
atoms belonging to different layers is small and the distanc@ andau—Silin theory of the Fermi liquid:
between layers is much greater than the interatomic distance
within a layer. The Fermi surfacg(p) =& correspondingto d3p’ R R R
dispersion relation(1) is open, with a slight corrugation 56(p,l‘,t)=TrUrf(277—ﬁ)3L(p,0',p’,0’)5p'(p',r,o",t),
along thep, axis; it can be multisheet and consist of topo- 2
logically different elements, e.g., cylinders and planes. It will
be assumed from here on that the Fermi surface of the laywhereL(p,o,p’,6")=N(p,p’)+S(p,p’)dd’ is the Landau
ered conductor is a slightly corrugated cylinder, all sectionsorrelation function,ép is the nonequilibrium admixture to
of which by the planepg=(p-By)/By=p,cosd+psind  the density matrix, and are the Pauli matrices.
=const are closed for w/2—9>%n; here By For anglesd between vector8, andn not too close to
=(Bgsin,0,Bycosd) is the external magnetic induction. /2, the closed electron orbits in momentum space are al-
Numerous experimental studies of magnetic oscillationgnost the same for different values of the momentum projec-
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tion on the magnetic field direction, and the aBa,pg) of  Here®= £+ (S£), the angle bracket denotes averaging over
the section of the Fermi surface by the plang=const and the Fermi surface,
the components, andv of the velocityv= de(p)/Jp of the
conduction electrons in the plane of the layers depends 2d3p’ c?fo(s )
weakly on pg, with an order of smallnesg tand. This (S§)= J 27h)3 ( )
means that the energy of the quasiparticles in the one-
electron approximation and the Landau correlation function

. . : : 0
can be expanded in an asymptotic series, the leading term of Je = Sle—egp),
which is independent gbg . In the zeroth approximation in
the small parametey; the functionsN(p,p’) and S(p,p’)
can be represented as Fourier series:

S(p,p")&(p’,r,t)

B~ (r,t) is the rf field, e is the electron charge, ardis the
speed of light. The collision integral,, determines two re-

_ ) laxation times:7; and 7,, the momentum and spin-density
N(p,p’)= 2 Ny(ep)ehte=e), relaxation timesz,> ;. For processes corresponding to the
T frequency regiorkc> o> 1=, '+ 7, [the wave vector
k=(k,,0k,)], the asymptotic behavior of the spectrum of

S(p.p')= 2 Sa(ep)ente=e") (3)  collective modes is completely independent of the specific
e form of the collision integral.
with coefficients coupled by the relations_,,=N,, S_, Expanding the function®=£+(S&) and £ in Fourier

=S, . As variables inp space we chose the integrals of mo- series in the variable and substituting the results into Eq.
tion £ andpg of the charge carriers in the magnetic field and(4), we find that the circular components of the renormalized
also the phase of the electron velocify= wgt;, wheret; is  spin densityd(*)=d,; +i® ~exp(-iwt+ik-r) of the con-
the time of motion along the trajectos/=¢g, pg=const. duction electrons satisfy the integral equatfons
Taking the next terms of the expansion of the correlation
function in powers ofy into account leads only to negligibly (+) ¢ , iofe
small corrections to the spectrum of the collective modes. @ :J_ de’ ex f de"(@*Q

The paramagnetic spin modes are space—time perturba-

tions of the spin densityy(r,p,t)=Tr,(op). For small Mo B
deviations from the equilibrium state the spin density can _k‘V(GD"’pB))> 'w_B(k'V(ﬁD'va)iQ)B:

be written as the sum of the equilibrium part

Oo= — uBgo(dfp/de) and a small nonequilibrium admixture

—(afol3e) &(r,p,t), wherefy(e) is the Fermi functionu —i w—Bpr A CI)( Jdpe’ ) 5

=uo/(1+Sy), mo is the magnetic moment of a conduction

electron,S; =v(eg)Sy, andv(eg) is the density of states at q)
the Fermi level. The integral Qiygy(e) over the unit cell in
p space gives the magnetizatiovip= xoB, in a uniform — ,
static magnetic field with inductionB,, and y, TSp), ®=w+i0, ®y=(e P?®)/(1), B:=B, *iB, O

=, cosv—d,sin, thex, axis is directed perpendicu-
lar to they axis and to the vectoB,, where\,=S;/(1

= uomv(eg) is the static paramagnetic susceptibility. =ws/(1+Sy), and ws=—2uoBg/% is the spin paramag-
According to Ref. 2, the linearized kinetic equation in netic resonance frequency.
the case when the perturbation of the spin dengity per- Multiplying Eqg. (5) by exp(~in¢) and integrating with
pendicular toB, has the form respect to the variable8= pg/pg cos? and ¢, we obtain an
ag 9 3 2 infinite system of linear equations for the coefficiedss™)
0t v—+ (v>< Bo) — ) 7[Bo><<l)] of the Fourier series of the function
_Mov%‘f' ZMMO[B()XB ]—lco“ (4) <q)(+)>ﬁ__ﬂ_J‘7ﬂ_qu)(i)(8FIB!(P)

Em ( 5np_)\pw_a;<fnp(,8)>,6> (I_)pi)

: (6)

1 [37[2"dede[kv(B,e— @1) FQlexdi(p—n) —ip<p1+iR<<p,<p1>]>
B

=— B+ <277| 1—exd 2@iR(2m,2m)]

1 [57f5Tdedes exdi(p—n)e—ipei+iR(¢,¢1)] ,
fop(B)= 2 l-—exd2#iR(2m,2m)] ' @)




92 Low Temp. Phys. 31 (1), January 2005 D. I. Stepanenko

Here R(¢,¢q)= 1/wa$_‘pld<p’[5)19—k~V(,8,<,D’)], and responding to the dispersion relatighl) are easily found

Snp is the Kronecker delta. The dependence of the cyclotroiiSing the standard methods of nonlinear mechanics

frequency onpg should be taken into account only in the _ (0) (1 0)s y—

expressiork,w,/ wg in the argument of the exponential func- Uxlt) =oi (1) F oy (t) vy (L) =, coswg(B)ty,

tion, under th_e_condition thavkx_v,:~w_B. vil)(tl) = e tandJo(@)sin B
The coefficients of the Fourier series of the smooth func-

tion v(eg)S(p,p’) fall off rapidly with increasing summa-

[

Jn(a)sin(B—n/2)

tion index, and it is therefore sufficient to keep a finite num- ~MUE ta”ﬁzz n2—1
ber of terms of the series in Eg®) and (6). The system of
equations(6), together with Maxwell’s equation, relates the X cosnwg(B)ty, (12

variable magnetic field and the magnetization and describes _
the natural oscillations of the spin density in layered conduc- v(t1) = nuE SiN(B— a coswg(B)t1).

tors with an arbitrary energy spectrum and correlation fU”CHerewB(,B)=wB[1+(ntanﬂJl(a)cosﬁ)/2] is the cyclotron

tion. It is easy to see that for finding the spin-wave Spec”“”?requency of quasiparticles with energyd) in a field
it is sufficient to use the homogeneous version of the system

of equations(6). We shall neglect ir6) the small inhomo- Bo=(Bysin9,0B,cos?), wg=(|e|By/mc)cosd,
geneous term proportional taoB=, which takes into ac-
count the influence of the self-consistent fi@d . The dis-
persion relation for the “free” oscillations of the spin density J () is the Bessel function,
has the form

a=(Mmvg/pg)tand,

(1)
Uy (0) 7Po
+ m—vFCOS(,B— a)

) ©® v, =ve| 1-
D(w( )1k)Ede 5np_)\pw_8<fnp(,3)>ﬁ =0. 8) UF
is the amplitude of the first harmonic of(t), and the initial

Up to terms proportional tqo~ wiv(ef) the frequencyw of  phase is chosen such tha(0)=0.
the natural oscillations of the magnetization is equal to the |t follows from relations(12) that

frequencyw(® of the “free” oscillations of the spin density. .
At that frequency the magnetic susceptibility has a sharp  (KV),=kvg=7vedo(a)(kctand +k,)sing. (13

max"’*.‘“m- and the determinabt(w,k) is equal in order of £ 156 directions dB,, for which « is equal to one of the
magnitude toyg.

h diti hat th b lision! q ) fzeros(;ziz(va/po)tam‘}i of the Bessel functiody(«) the
. The condition that t ere be no collisioniess damping o average(k-v) ,~ 7%, and the asymptotic expression for the
spin waves reduces to satisfaction of the inequality

coefficientsf,,(8) takes the form
|o—nwgT Q>max(k-v),|. 9

Outside the region ob, k values corresponding to condition 1 m(w+ Q) ™

(9) the functionsf,,(8) have a pole, and after integration fp(B)= Koo COtQ,—BCOSE(”_p)
over pg the dispersion relation acquires a imaginary part
responsible for strong absorption of the wave. In layered
conductors the electron drift velocity along the magnetic T
field, ve=(v),, oscillates as a function of the angtebe- Ri(91)+ 5 (n+p)

tween the magnetic field and the normal to the layers. For + ) : (14
certain directions ofB, with respect to the layers of the sin
conductonvy is close to zero, and the damping of the wave is

governed by collision processes. Here the existence of colyhere

lective modes is possible even under the conditighv
=Zwg. In the region ofw and k values such thak-v,,
>wg, o+ Q<k-v,, wherev,, is the maximum value of the
velocity in thek direction, there exist solutions of the dis-
persion relation(8) in the neighborhood of the resonance

sin

wp

_ w2 k'V(‘P) _ kva
Rl(ﬂi)_f—w/z on(B) 372 ou(B)

0o=Nwg*Q+Aw,Av<wg,n=0,1,2.... (10

Keeping only the first two terms in formuld) and ne- + n%tanﬁi cospB; 2 ‘]2“;—1(2“')1
glecting anisotropy in the plane of the layers, we write the wg n=1n(n+1)(2n+1)

energy of a quasiparticle in the one-electron approximationy he struve function,g=vr/wg, andB;=pg/py cosd . In

as the case when the correlation function is determined by the
2, 2 zeroth and first Fourier harmonics
e(p)= 2 2 pgcos 1 , ,
2m Po S(p,p")=Spt2S, code—¢’),

wherevg=+2e/m. The asymptotic solutions accurate to the solution of dispersion relatio{8) is determined by for-
terms of ordery for the system of equations of motion cor- mula (10) with
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Nwg* ) gous type of excitations exists in quasi-isotropic metals only
W= Tk Y12 when the direction of wave propagation is strictly perpen-
dicular toBy.

It is easy to obtain front8) a quadratic equation foy, ,, the
roots of which are
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