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The propagation of spin waves in layered conductors in the presence of an external magnetic
field is studied theoretically. It is it is shown that for certain orientations of the magnetic
field with respect to the layers of the conductor there is no collisionless absorption, and weakly
damped collective modes can propagate even under conditions of strong spatial
dispersion. ©2005 American Institute of Physics.@DOI: 10.1063/1.1820379#
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In recent years there has been a significant increas
interest in layered structures with a metallic type of cond
tivity and a quasi-two-dimensional electron energy spectru
These include organic conductors of the family of tetrat
afulvalene salts, transition metal dichalcogenides, graph
etc. In the absence of external magnetic field the conduc
ity of these substances along the layers,s i , is several orders
of magnitude greater than the conductivity across the lay
s' . The marked anisotropy of the kinetic coefficients
layered conductors is a consequence of the quasi-t
dimensionality of their electron energy spectrum. The ma
mum velocity of electrons with the Fermi energy«F along
the normaln to the layers,vz5v•n, is much less than the
characteristic velocity of electrons in the plane of the laye
vF , and their energy can be written in the form of a rapid
converging series:

«~p!5«0~px ,py!1 (
n51

`

«n~px ,py ,h!cos
npz

p0
. ~1!

The functions«n(px ,py ,h) fall off substantially with in-
creasing index:

«n11~px ,py ,h!!«n~px ,py ,h!,«1~px ,py ,h!;h«F .

Hereh5(s' /s i)1/2 is the quasi-two-dimensionality param
eter,p05\/a, \ is Planck’s constant, anda is the distance
between layers. Formula~1! corresponds to the tight bindin
approximation, when the overlap of the electron shells
atoms belonging to different layers is small and the dista
between layers is much greater than the interatomic dista
within a layer. The Fermi surface«(p)5«F corresponding to
dispersion relation~1! is open, with a slight corrugation
along thepz axis; it can be multisheet and consist of top
logically different elements, e.g., cylinders and planes. It w
be assumed from here on that the Fermi surface of the
ered conductor is a slightly corrugated cylinder, all sectio
of which by the planepB5(p•B0)/B05pz cosq1px sinq
5const are closed for p/22q.h; here B0

5(B0 sinq,0,B0 cosq) is the external magnetic induction
Numerous experimental studies of magnetic oscillatio
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have shown that such a Fermi surface is possessed by a
siderable number of organic conductors based on tetra
afulvalene salts.1

In normal metals at low temperatures in a magnetic fie
various weakly damped collective modes of the Bose ty
can exist: electromagnetic, sound, and spin waves. In laye
conductors the propagation of collective modes differs in
number of features due to the topology of the Fermi surfa
For certain orientations of the magnetic field relative to t
layers of the conductor the projection of the electron veloc
on the direction ofB0 , averaged over the period of motion o
an electron along the cyclotron orbit, is negligible. For tho
directions ofB0 collisionless absorption is absent, and t
propagation of weakly damped waves is possible even un
conditions of strong spatial dispersion. In this communic
tion we report an investigation of spin waves in layered co
ductors with a quasi-two-dimensional electron energy sp
trum. Collective modes involving oscillations of the sp
density of the conduction electrons in quasi-isotropic co
ductors lacking magnetic order were predicted by Silin2 and
observed experimentally in alkali metals by Schultz a
Dunifer.3

In the case when the condition\vB&T!h«F is met
~where T is the temperature andvB is the cyclotron fre-
quency of a conduction electron!, the density matrixp̂ is an
operator in the space of spin variables and a quasiclas
function of the coordinates and momenta, while the ad
tional energy of the quasiparticle due to electron–elect
interaction effects can be written in the framework of t
Landau–Silin theory of the Fermi liquid:

d«̂~p,r ,t !5Trs8 E d3p8

~2p\!3 L~p,ŝ,p8,ŝ8!dr8~p8,r ,ŝ8,t !,

~2!

whereL(p,ŝ,p8,ŝ8)5N(p,p8)1S(p,p8)ŝŝ8 is the Landau
correlation function,dr̂ is the nonequilibrium admixture to
the density matrix, andŝ are the Pauli matrices.

For anglesq between vectorsB0 andn not too close to
p/2, the closed electron orbits in momentum space are
most the same for different values of the momentum proj
© 2005 American Institute of Physics
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tion on the magnetic field direction, and the areaS(«,pB) of
the section of the Fermi surface by the planepB5const and
the componentsvx andvy of the velocityv5]«(p)/]p of the
conduction electrons in the plane of the layers depe
weakly on pB , with an order of smallnessh tanq. This
means that the energy of the quasiparticles in the o
electron approximation and the Landau correlation funct
can be expanded in an asymptotic series, the leading ter
which is independent ofpB . In the zeroth approximation in
the small parameterh the functionsN(p,p8) and S(p,p8)
can be represented as Fourier series:

N~p,p8!5 (
n52`

`

Nn~«F!ein~w2w8!,

S~p,p8!5 (
n52`

`

Sn~«F!ein~w2w8! ~3!

with coefficients coupled by the relationsN2n5Nn , S2n

5Sn . As variables inp space we chose the integrals of m
tion « andpB of the charge carriers in the magnetic field a
also the phase of the electron velocity,w5vBt1 , wheret1 is
the time of motion along the trajectory«5«F , pB5const.
Taking the next terms of the expansion of the correlat
function in powers ofh into account leads only to negligibl
small corrections to the spectrum of the collective modes

The paramagnetic spin modes are space–time pertu
tions of the spin densityg(r ,p,t)5Trs(ŝr). For small
deviations from the equilibrium state the spin density c
be written as the sum of the equilibrium pa
g052mB0(] f 0 /]«) and a small nonequilibrium admixtur
2(] f 0 /]«)j(r ,p,t), where f 0(«) is the Fermi function,m
5m0 /(11S0

;), m0 is the magnetic moment of a conductio
electron,S0

;5n(«F)S0 , andn(«F) is the density of states a
the Fermi level. The integral ofm0g0(«) over the unit cell in
p space gives the magnetizationM05x0B0 in a uniform
static magnetic field with induction B0 , and x0

5m0mn(«F) is the static paramagnetic susceptibility.
According to Ref. 2, the linearized kinetic equation

the case when the perturbation of the spin densityj is per-
pendicular toB0 has the form

]j

]t
1S v

]

]r
1

e

c
~v3B0!

]

]pDF2
2m

\
@B03F#

2m0v
]B;

]r
1

2mm0

\
@B03B;#5I coll . ~4!
s

e-
n
of

n

a-

n

HereF5j1^Sj&, the angle bracket denotes averaging ov
the Fermi surface,

^Sj&5E 2d3p8

~2p\!3 S 2
] f 0~«8!

]«8 DS~p,p8!j~p8,r ,t !

] f 0

]«
52d~«2«F!,

B;(r ,t) is the rf field,e is the electron charge, andc is the
speed of light. The collision integralI coll determines two re-
laxation times:t1 and t2 , the momentum and spin-densit
relaxation times;t2@t1 . For processes corresponding to t
frequency regionkc@v@t215t1

211t2
21 @the wave vector

k5(kx,0,kz)], the asymptotic behavior of the spectrum
collective modes is completely independent of the spec
form of the collision integral.

Expanding the functionsF5j1^Sj& and j in Fourier
series in the variablew and substituting the results into Eq
~4!, we find that the circular components of the renormaliz
spin densityF (6)5Fx16 iFy;exp(2ivt1ik•r ) of the con-
duction electrons satisfy the integral equations4

F~6 !5E
2`

w

dw8 expS i

vB
E

w8

w

dw9~ṽ6V

2k"V~w9,pB!! D S i
m0

vB
~k"v~w8,pB!6V!B6

;

2 i
v

vB
(

p52`

`

lpF̄p
~6 !eipw8D , ~5!

Fx1
5Fx cosq2Fzsinq, thex1 axis is directed perpendicu

lar to the y axis and to the vectorB0 , where lp5Sp
;/(1

1Sp
;), ṽ5v1 i0, F̄p5^e2 ipwF&/^1&, B6

;5Bx1

; 6 iBy
; , V

5vs /(11S0
;), and vs522m0B0 /\ is the spin paramag

netic resonance frequency.
Multiplying Eq. ~5! by exp(2inw) and integrating with

respect to the variablesb5pB /p0 cosq andw, we obtain an
infinite system of linear equations for the coefficientsF̄n

(6)

of the Fourier series of the function

^F~6 !&b[
1

2p E
2p

p

dbF~6 !~«F ,b,w!
(
p52`

` S dnp2lp

v

vB
^ f np~b!&bD F̄p

~6 !

52m0B6
;K 1

2p i

*0
2p*0

2pdwdw1@kv~b,w2w1!7V#exp@ i ~p2n!w2 ipw11 iR~w,w1!#

12exp@2p iR~2p,2p!# L
b

, ~6!

f np~b!5
1

2p i

*0
2p*0

2pdwdw1 exp@ i ~p2n!w2 ipw11 iR~w,w1!#

12exp@2p iR~2p,2p!#
. ~7!
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Here R(w,w1)[ 1/vB *w2w1

w dw8@ṽ7V2k•v(b,w8)#, and

dnp is the Kronecker delta. The dependence of the cyclot
frequency onpB should be taken into account only in th
expressionkxvx /vB in the argument of the exponential fun
tion, under the condition thathkxvF;vB .

The coefficients of the Fourier series of the smooth fu
tion n(«F)S(p,p8) fall off rapidly with increasing summa
tion index, and it is therefore sufficient to keep a finite nu
ber of terms of the series in Eqs.~5! and ~6!. The system of
equations~6!, together with Maxwell’s equation, relates th
variable magnetic field and the magnetization and descr
the natural oscillations of the spin density in layered cond
tors with an arbitrary energy spectrum and correlation fu
tion. It is easy to see that for finding the spin-wave spectr
it is sufficient to use the homogeneous version of the sys
of equations~6!. We shall neglect in~6! the small inhomo-
geneous term proportional tom0B6

; , which takes into ac-
count the influence of the self-consistent fieldB6

; . The dis-
persion relation for the ‘‘free’’ oscillations of the spin densi
has the form

D~v~0!,k![detFdnp2lp

v~0!

vB
^ f np~b!&bG50. ~8!

Up to terms proportional tox0;m0
2n(«F) the frequencyv of

the natural oscillations of the magnetization is equal to
frequencyv (0) of the ‘‘free’’ oscillations of the spin density
At that frequency the magnetic susceptibility has a sh
maximum, and the determinantD(v,k) is equal in order of
magnitude tox0 .

The condition that there be no collisionless damping
spin waves reduces to satisfaction of the inequality

uv2nvB7Vu.maxu^k"v&wu. ~9!

Outside the region ofv, k values corresponding to conditio
~9! the functionsf np(b) have a pole, and after integratio
over pB the dispersion relation acquires a imaginary p
responsible for strong absorption of the wave. In laye
conductors the electron drift velocity along the magne
field, vB5^v&w , oscillates as a function of the angleq be-
tween the magnetic field and the normal to the layers.
certain directions ofB0 with respect to the layers of th
conductorvB is close to zero, and the damping of the wave
governed by collision processes. Here the existence of
lective modes is possible even under the conditionhkvF

*vB . In the region ofv and k values such thatk"vm

@vB , v7V!k"vm , wherevm is the maximum value of the
velocity in thek direction, there exist solutions of the dis
persion relation~8! in the neighborhood of the resonance

v5nvB6V1Dv,Dv!vB ,n50,1,2... . ~10!

Keeping only the first two terms in formula~1! and ne-
glecting anisotropy in the plane of the layers, we write t
energy of a quasiparticle in the one-electron approxima
as

«~p!5
px

21py
2

2m
2hvFp0 cos

pz

p0
, ~11!

where vF5A2«F /m. The asymptotic solutions accurate
terms of orderh for the system of equations of motion co
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responding to the dispersion relation~11! are easily found
using the standard methods of nonlinear mechanics5

vx~ t1!5vx
~0!~ t1!1vx

~1!~ t1!,vx
~0!~ t1!5v' cosvB~b!t1 ,

vx
~1!~ t1!5hvF tanqJ0~a!sinb

2hvF tanq (
n52

`
Jn~a!sin~b2np/2!

n221

3cosnvB~b!t1 , ~12!

vz~ t1!5hvF sin~b2a cosvB~b!t1!.

HerevB(b)5vB@11(h tanqJ1(a)cosb)/2# is the cyclotron
frequency of quasiparticles with energy~11! in a field

B05~B0 sinq,0,B0 cosq!, vB5~ ueuB0 /mc!cosq,

a5~mvF /p0!tanq,

Jn(a) is the Bessel function,

v'5vFS 12
vx

~1!~0!

vF
1

hp0

mvF
cos~b2a! D

is the amplitude of the first harmonic ofvx(t), and the initial
phase is chosen such thatvy(0)50.

It follows from relations~12! that

^kv&w5kvB5hvFJ0~a!~kx tanq1kz!sinb. ~13!

For those directions ofB0 for which a is equal to one of the
zerosa i5(mvF /p0)tanqi of the Bessel functionJ0(a) the
averagê k"v&w;h2, and the asymptotic expression for th
coefficientsf np(b) takes the form

f np~b!5
1

kxr 0S cot
p~v7V!

vB
cos

p

2
~n2p!

1

sinS R1~q1!1
p

2
~n1p! D

sin
p~v7V!

vB

D , ~14!

where

R1~q i !5E
2p/2

p/2 k"v~w!

vB~b i !
dw52

kxv'

vB~b i !

2ph
kzvF

vB
H0~a i !cosb i

1h
kxvF

2vB
tanq i cosb i (

n51

`
J2n11~a i !

n~n11!~2n11!
,

is the Struve function,r 05vF /vB , andb i5pB /p0 cosqi . In
the case when the correlation function is determined by
zeroth and first Fourier harmonics

S~p,p8!5S012S1 cos~w2w8!,

the solution of dispersion relation~8! is determined by for-
mula ~10! with
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Dv5
nvB6V

pkxr 0
g1,2.

It is easy to obtain from~8! a quadratic equation forg1,2, the
roots of which are

g1,25
1

2
@l012l11~21!n~l022l1!g6~~l012l1

1~21!n~l022l1!g!218l0l1~211g21h2!!1/2#,

whereg5^sinR1(qi)&b , andh5^cosR1(qi)&b .
In the short-wavelength limit for the selected directio

of the external magnetic field there exist spin waves w
frequencies~10! close to the resonance frequenciesv r

5nvB6V. The correction~15! to the resonance frequenc
is a rapidly oscillating function of wave number. An anal
h

gous type of excitations exists in quasi-isotropic metals o
when the direction of wave propagation is strictly perpe
dicular toB0 .
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