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The spectrum of weakly damped eigenmodes of the electromagnetic field in metals in a
quantizing magnetic field are determined under conditions such that a magnetic domain structure
exists. © 2003 American Institute of Physic§DOI: 10.1063/1.1542469

At low temperatures the thermodynamic and kinetic K2E|1_47TX(BO)|<1, 2
characteristics of a metal placed in a quantizing magnetic
field H=(0,0,Hy) have an oscillatory dependence on thewherer is the radius of curvature of the orbit of the charge
inverse magnetic field. The cause of these oscillations is thearriers in the uniform field,=(0,0,B,), v is their Fermi
presence of features of the density of states of the charggelocity, andw andk are the frequency and wave vector of
carriers due to the energy quantization in the magnetic fieldthe alternating fieldB(y,z,t). The integral expressions for
Here the charges are actually acted upon by a field averagefle current density and magnetization can be reduced to local
over regions of the order of the Larmor radius, i.e., a magform, i.e., they can be written in the form of an expansion in
netic inductionB. As long as the magnetic susceptibilipis  powers of the alternating electric and magnetic fields and
small, the difference betwee® andH can be neglected. If their derivatives. Fok?=|1—4my(By)|<1 the linear term
the distance between energy levéls=7%() of the charge of the expansion of the magnetic figtlin powers ofB(r,t)
carriers in the magnetic field is much larger than the carriecan turn out to be of the same order of magnitude as the
temperaturd and the level widthi/ 7 but much smaller than nonlinear terms, and the wave processes become substan-
the Fermi energy g, i.e., /7, T<h <gg, the oscillatory tially nonlinear. For small-amplitude waves it is sufficient to
part of the magnetic susceptibility can reach values of theake into account only the nonlinear correction to the mag-
order of unity, and the magnetizatidh(B) and the magnetic netization, which is proportional to the third powerf In
field H=B—47M(B) become functions of the magnetic in- the expression for the current density one can stop at the
duction. Herefi, (), and 7 are Planck’s constant, the cyclo- linear approximation in the electric field and neglect the
tron frequency, and the mean free time of the conductiogyradient terms, which are proportional to powers of the small
electrons, respectively. In this case the problem of taking th@arameter Kr,)?, and the quantum oscillatory correction,
magnetism of the medium into account is a self-consistenihich is proportional to £Q/e¢)¥2 The current density’
problem even in conductors that do not have magnetic ordeinduced by the magnetic field is determined by the magneti-
ing. If x>1/4w the state of the system becomes unstablezation componenM,, since the vectoM is directed pre-
and the sample separates into alternating domains with didominantly along3,. The expression far =(j,,0,0) can be
ferent values of the magnetic inductibf. written in the forni=>

In this paper we investigate the weakly damped eigen-

modes of the electromagnetic field in uncompensated metals ; oM, 9B, (933
under conditions such that the distribution of the magnetic ~ jx=c(curl M),=c—===cx(Bo) —== —4mCS— =
) : . ; ) y ady ay
induction has a stationary domain structure. The alternating
electromagnetic field in the metal is determined by the sys- °B,
. +Amacri— (3
tem of Maxwell's equations 0 gy3
A1 1B 5 . .
curl B= ?J, curl E=— P divB=0, (1) whereB={(ep/hQBy)“, and« and are numerical coeffi-

cients of the order of unity which depend on the concrete
wherec is the speed of light in vacuund=j+j’ is the total  form of the dispersion relation for the charge carriers.
current density, consisting of the conduction current defjsity In the stationary case in the absence of electric field the
due to the electric fiel and the magnetization current den- solution of systen(1) for x(Bg)> 1/4sr has the form

sity j'=c curlM induced by the magnetic field.

In the case of weak temporal and spatial dispersion n y
Bi(y)=by——=s S @
w<Q, Kkrog<l, kuppr<li, V1t p N1+
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and describes a periodic domain structure with period pi(ja) it is sufficient to keep only the leading, Hall components
=451+ u’K(n) and domain-wall  thickness & Pxy= — Pyx=Bo/ce(ne—ny), wheren, andny, are the elec-
=\4marylk. Here tron and hole densities, arelis the absolute value of the

_.2 12 electron charge.
bo=(x*/2mB) "= kBo(A M 2p), Under these conditions the system of equati@dakes

1 ) - P the form
K :fdt 1-t2)(1—p?t?)] V=K
() . [( )(1—pot9)] B gy (ﬁH; aB;)
is a complete elliptic integral of the first kind. The modulus 9t 4m o9z\ dy 9z
wu of the Jacobi elliptic function sn determines the perbd %o [ 32 92
and is found from the condition that the total thermodynamic +—|-=+(l-iwr)—=|B;,
S . . 4 \ 9y 0z
potential, including the surface energy at the boundaries of
the domam_s, b_e minimized with respgct‘t’o I|_‘| a case of 9By Cpry By c2p, _ g [H; By
more practical importance, when the linear dimensiorsf = an o2 an (1—|w7)5 N oz )
the sample are significantly larger than the Larmor radius of y
the electron, the estima¥~ \/KerL is valid® Without loss 9B, Cszy 325; c?po _ a [oH; (95;
of generality one can assume that the domain sizes are Iarg%t—Z 4 dzdy + ype (1-iw7) @ ay e
compared toj, i.e., Y> 6, or )
K> 7. (5  EliminatingB; andB; from these equations and neglecting

terms proportional toQ 7) ~2, we obtain the following equa-

Then it is easily noted that is close to unity, since the
tion for b(y):

asymptotic expressio~ — 2 In(1—x?) holds fork>1.

B We  set EZ(y’f’t).: Bl(y)+B”(y,z,t)_, where , . A7 2(92b(y)
B~ (y,z,t)=b(y)e "'k is a small space—time perturba- K;—iy(l-ionw o) | < ay?
tion. Linearizing the system of Maxwell’s equatiofis with X
respect tdB~ (y,z,t) and eliminating the electric fiel#, we 9? 5 ) *b(y)
obtain the following equation for the time-dependent field —1217,8&—3/2(b(y)81(y))+47mr0 ay°
B7(y,zt):

5 ] ( 4 )62b(y)+ ( 4 )2 2yt
dB~ c =—lyw| 3 2 2 WK,
o o= - ~ c J c

e aocurl (p curl HO). (6) lpxyl ] dy |pxyl
. . o[ 4w
Here +2iy(l-iwr)wks| —7| |b(y). (8)
c |ny|
(ﬁ curl HN)i=pij(Cur| HN)J', HXN:BXN, H;:B;, Here
2 ~
Ne— Ny

d
H;Z—K28;+12wﬂBi(y)B;—4warSV;. y=(aolpx) "~ (7)1 (Qr) <l

Ne+ny

The resistivity tensor can be written in the form of a sum of  This equation determines the amplitude and frequency of
symmetric and antisymmetric part$:ij5pi(js)+pi(f). The  the eigenmodes of the electromagnetic field in the presence
componentspi(js) are of the same order of magnitude and tendof a periodic domain structure.

toward constant values f@,— . We shall assume that the The case when the expression in square brackets on the
tensorpi(js) is reduced to its principal axes. Generally speak-right-hand side of Eq(8) equals zero corresponds to a wave
ing, this is valid only in the case when the magnetic field iswith frequency

directed along an axis of symmetry of the crystal. However,
taking the off-diagonal components of the resistivity tensor e U
: > ; ® ——(1-iy), 9
into account does not lead to a qualitative change in the wave 4me[ne—ny|

spectrum but only gives rise to additional terms in the wave,.,naqating along the direction of the external magnetic
damping decrement which do not alter its order of magni<iald. In this case Eq(8) goes over to a Lamequation, and

tude. . o its solution is expressed in theta functidns.
In the leading approximation in powers of the small pa- |, the limiting casey< «? the solution of this equation
rameter (17) ! the diagonal components of the resistivity has the form

tensor have the valueg,,=B1po(l—iw7), pyy=PB2po(1

—iw7), andp,,= B3po- Herepozaal, o= wp7/4m is the b(y)= A ( y y
static electrical conductivity of the metal in the absence of y)=A CN ~————, 1 ~ M
magnetic fieldw, is the frequency of plasma oscillations of oNLtu oIt u
the charge carriers, ané;, B,, and 85 are dimensionless where cn and dn are Jacobi elliptic functions. By virtue of
coefficients of the order of unity which depend on the con-inequality(5) the functionb(y) is substantially nonzero only
crete form of the dispersion relation of the charge carriersn the region of a domain wall, i.e., in the vicinity of the
and for simplicity will be assumed equal to unity. In the pointsy,=2nK3&y1+ u?, wheren is an integer. In the re-
expression for the antisymmetric part of the resistivity tensogion |y=y,|> é the time-dependent fielB~(r,t) is a heli-

dn , (10
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coid wave propagating along the directionRy. If dissipa-

tive effects are neglected, the remaining components of the

magnetic field have the values

—iwt+ikz

(5 omcran;
B, =—koA(1+ u?) i |s

y
r(a\/lﬂﬁ’”

(11)

V. G. Peschansky and D. I. Stepanenko

Y(n)=(n+\)4+2

1 v +2\)? W
7 (n+N\) 7
In the case & ¢,<K the solution of equatioif13) can

be written in the form of a series in powers &fe

[

uﬁn”@m,x):e*z“‘mgo a,(\)e 2ném (16)

We consider the case of arbitrary propagation direction

of the wave. We introduce a new unknown functioy)
such thatb(y)=d?u(y)/dy?. The equation for this function
can be written as

.y Vv
W) +| ~ PSR (£,0) + (14 12) 1+|;7”
z
XU"(€)=(1+p?)?Wu(é), 12
where
2_ 4 v
z . .
W={ ——— 1+|y(1—|wOTV)—2}
Mz 77
+2iy(1—iw07V)V},
k,6 ® cByk? c?Qk?
n,=—, V=—, wo= 2T 77 -
K g 4me|ln,—ny| 8 w6

When condition(5) holds and the variablélies in the inter-
val

(2m—1)K=sé<s(2m+1)K

the elliptic sine can be replaced by the hyperbolic tangent:

sn(¢,1)=tanh& Assumingu =1 in Eq.(12), we obtain

Ui (€m) + ng 4+ 20w [up(£m) = 4Wty(&n).

(13
Here {,=£&—2mK, wherem is an integer,— K<¢,<K,
and v=(y/k?) (VI 72).
In the region—K=<¢,<0 the solution of this equation
can be sought in the form of a series in powers ¥e

©

Ut (ém M) =€ 2, an(h)eé, (14

where\ is a parameter which is not a negative integer.

Substituting expressiofi4) into Eq.(13) and collecting
the coefficients of equal powers d¥e, we obtain an infinite
system of linear equations for the unknovayg\):

®(0)ay=0,
27 (0)ag+®(1)a; =0,
®(0)ag+2V¥(1)a; +P(2)a,=0,

d(n—-2)a,_,+2¥(n—1)a,_,+P(n)a,=0, n=2,

)
where

iv) , W
CaIURIN

<I>(n)E(n+)\)4—<1— 7

with the same coefficienta,(\) that satisfy the system of
equationg15), wherea, can be specified arbitrarily and the
remaining coefficients are found from the recursion relations

¥(0) W(1)
a1=—2aom, ar,=— 1@,...

_,®d(n— _¥(n—
an:_an >, P(n—2)+2a, ¥(n-1) 17

®(n)

A simple numerical analysis shows that for- the coef-
ficientsa, have the following properties:

an+1 an+1

—1-0, sgnRea— -1,

a,—0,

n

an+1
sgn Ima— —-1.

The first equation of systeifl5) implies a discrete rela-
tion betweem\ andV and #,:

4 iv 5 W
CI)(O)E)\ - 1—5 A —Z:O. (18)
The four roots of this equation,
+\fliv 1iV2W1/2
MmENZ\ T2 NI ) W)
(19

_+\F1iv /:Livzvvll2
)\3'4—_ E —E'i‘ —? +

together with expressiond4) and (16) determine the four
linearly independent solutions of equati¢iB):

4
Z AU (EmNi),  —K=En=O,
UnlEm=1 & 0
2, Gt (émN), 0=£n=K,
where
Uy (6m h) =iE0| 14+, an“i)ezng’“)’
(21)

Ul (Em A\ ) =6 2ifm

1+ an<xi>e2“fm),
n=1

ap(N\i)=1, and A, and C; are constants. Serig®1) con-
verges absolutely in the entire domain of definition except at
the pointé,,=0, where it converges conditionally. It follows
from formulas(21) thatu{”)(OX;)) =ul ) (0N)).
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The functions(20) form a fundamental system of solu-
tions of the differential equatiofl3). In the interval (2n
+1)K=é<(2m+3)K (or —K=§,,1<K) the solution of
equation(13) should be sought in the form

Un+1(Emr1.M) =CUun(En—2K,N\)),
whereC is a constant.

(22
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u(é)=€e%F(g), (27)
whereF(¢) is a periodic function with period R, and the
dimensionless wave numbeE\/ikyé has the value
arg 1+, _;a,(i ny))

K )

s=ny+ (28

If dissipative effects are neglected completely, i.e., forThe complex conjugate of functidi25) is also a solution of

y—0, the real value$V>0 correspond to imaginamy,, \,

and real\3, \,. The wave processes correspond to the so-

lutions u(éy,,Nq) and u(ém,Np). Assuming .= *in,/2,
wherex, is real, we find from Eq(21) in the limit y— 0 that

the frequency of the eigenmodes of the electromagnetic field

has the value

i
Ty
w=won \| 15+ 7+

Let us construct a solution of equati¢h2) in the interval
0=¢,=<2K in the form a traveling wave. In a neighborhood
of the point¢,,=K the sum in expression1) has order of
magnitude O(e ?X). Splicing the asymptotic expressions
Ul (ém.—imy) andu?y(émer.iny) for &,—K and using
relation (22), we obtain

U(fm)zuﬁnﬂ@m,_i ’r]y)=Czei77Y§m=U$n_+)1(§m+1,i 7]y)
=Cul, (&n—2K,in,) =CA N En=20 (29

Equating the coefficients of "&'m we find C,
=CAe 27X Summing the two asymptotic expressions
ulI(&,) and ul ) (éms1) and then subtracting off their
common part(24), we obtain a solution of equatiofl2)
which is valid on the interval & £,,<2K:

(23

0

U(Em)=C,€m| 14 > a,(—in,)e 2"m
n=1

+ 21 an(i ny)e2“<fm—2*<>) : (25)

It follows from relation(22) that the multiplicative factoC
has the value
Ee2iKs_

= u(zK) =exp{ 2i arg{
(26)

~u(0)
The solution of equatioi12) can be written in the form

0

1+, a,(in,) |+2ipK
n=1

equation(12).
Relation(23) implies the folowing dispersion relation of

the traveling wave:
O P T P

(29

where 7, is determined as a function &, by expression
(28).

In the case of weak spatial dispersikp <71, the
damping is due solely to the scattering of electronswim
~yw. When the opposite inequality holds; *<k,vr<Q,

)
52

n5(ky)
4

cBg
4relng—ny|

_ 2
w= >t

the eigenmode spectrum remains the same, while the expres-

sion for the damping decrement acquires additional terms
due to Grenkov absorption of the electromagnetic field by
electrons moving in-phase with the wave. In that case the
quantization of the energy levels of the electrons has a sub-
stantial influence on the damping of the wéve.
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