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On the propagation of acoustic waves in quasi-two-dimensional conductors
in a quantizing magnetic field
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The damping of acoustic waves propagating perpendicular to the layers of a quasi-two-
dimensional conductor is analyzed for the case of low temperatures, at which the energy
quantization of the conduction electrons leads to an oscillatory dependence of the acoustic damping
coefficient on the inverse magnetic field. The acoustic damping decrement is found for
different orientations of the magnetic field with respect to the layers. It is shown that that a layered
conductor is most transparent for an acoustic wave in the case when the magnetic field is
perpendicular to the layers. ©2003 American Institute of Physics.@DOI: 10.1063/1.1596595#
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Acoustoelectronic effects in degenerate conduct
placed in a sufficiently high magnetic fieldH are extremely
sensitive to the form of the energy spectrum of the cha
carriers.1–3 The experimental study of these effects in met
in the case when the gyration frequencyV of the electrons in
the magnetic field is much higher than their collision fr
quency 1/t has permitted the complete recovery of the sha
of the Fermi surface, the main characteristic of the elect
energy spectrum.

At sufficiently low temperaturesT, when the distance
between electron quantum energy levelsD«5\V is signifi-
cantly greater than the temperature smearing of the Fe
distribution function of the charge carriers,f 0(«), the acous-
tic damping decrementG undergoes resonance oscillatio
with variation of the inverse value of the high magnetic fie
(Vt@1).

In degenerate conductors having a layered structure
electron energy spectrum is substantially anisotropic and
a rule, is quasi-two-dimensional. The energy« of the charge
carriers in quasi-two-dimensional conductors depe
weakly on the momentum projectionpz onto the normaln to
the layers.

The specifics of the quasi-two-dimensional electron
ergy spectrum of layered conductors are manifested in
enhancement of quantum oscillation effects in compari
with ordinary metals, since a rather large number of cha
carriers with the Fermi energy«F are involved in their for-
mation. At the same time, the low electronic conductivity
layered conductors along the normal to the layers lead
acoustic transparency for waves propagating perpendicul
the layers.4,5 In this connection let us consider the propag
tion of an acoustic wave in the easiest direction for
i.e., along the normal to the layers of a quasi-tw
dimensional conductor placed in a magnetic fieldH
5(0,H sinu, H cosu) inclined at an angleu to the wave vec-
tor k and the normaln.

At low temperatures the absorption of energy fro
sound waves in a degenerate conductor is mainly due to
6091063-777X/2003/29(7)/4/$24.00
s

e
s

e
n

i

he
as

s

-
n
n
e

f
to
to
-
,
-

he

interaction of the charge carriers with the wave and is de
mined by the dissipative function of the electrons,

Q5T
dS

dt
, ~1!

whereS is the entropy density of the conduction electron
which is related to the nonequilibrium density matrixf̂ by
the relation6,7

S5tr$ f̂ ln f̂ 1~12 f̂ !ln~12 f̂ !%. ~2!

The summation in~2! is over all variables specifying the
state of the conduction electrons except for the spin v
ables.

The density matrixf̂ must be determined with the aid o
the kinetic equation

] f̂

]t
1 v̂

] f̂

]r
1@Ĥ01Ĥ1 , f̂ #5Ŵcoll$ f̂ %, ~3!

whereŴcoll( f̂ ) is the collision operator of the charge carrier
which describes their scattering by impurity atoms and vib
tions of the crystal lattice, i.e., phonons;Ĥ0 is the Hamil-
tonian of the conduction electrons in the magnetic field, a
v̂ is their velocity operator, andĤ1 is a correction to the
unperturbed HamiltonianĤ0 to take into account the pertur
bation of the electron system by the acoustic wave.

In a vibrating lattice the electron energy spectrum is s
sitive to the strain of the crystal, and in the linear appro
mation in the small displacementu of the lattice ions the
energy of the conduction electrons acquires an additio
amount d«5l ik(p)uik , where uik5(1/2)(]ui /]xk

1]uk /]xi) is the strain tensor, andl ik is the deformation
potential tensor.8 It is natural to assume that the energy spe
trum of the charge carriers remains highly anisotropic a
renormalization by the sound wave. The components of
deformation potential tensor in the plane of the layers is
the same order of magnitude as the Fermi energy of
© 2003 American Institute of Physics
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electrons, while the components for which one or both of
indices isz are significantly smaller. It follows from conse
vation of the number of charge carriers that each of the
sor componentsl ik averaged over all states of the condu
tion electrons is equal to zero.

In addition to renormalization of the energy of th
charge carriers a sound wave generates an accompan
electromagnetic wave. The electric field of this wave in
reference frame moving with the vibrating crystal latti
with a velocity u̇ has the form

Ẽ5E1
1

c
~ u̇3H!2

mû

e
, ~5!

where E is the electric field in the nonmoving laborato
reference frame, which must be determined from Maxwe
equations

curl curl E52
4p

c2

] j

]t
2

1

c2

]2E

]t2 , div E54pr8,

supplemented by the constitutive relations linking the curr
j to the electric field of the wave. Herec is the speed of light
in vacuum, andr8 is the uncompensated charge dens
which is asymptotically vanishing in the expansion in po
ers of 1/Ne in conductors with a high density of conductio
electronsNe . To the same accuracy the charge conserva
law has the form

div j50. ~6!

The damping of a low-amplitude sound wave can
analyzed with the aid of the solution of the kinetic equati
~3!, linearized with respect to the deviation of the dens
matrix from the equilibriumf̂ 0 , and the entropy production

dS

dt
5tr Ŵcoll~ f̂ !ln

12 f̂

f̂
~7!

is a quadratic function off̂ 15 f̂ 2 f̂ 0 and can be represente
in the form

dS

dt
52tr Ŵcoll~ f̂ 1!

f̂ 1

f̂ 0~12 f̂ 0!
. ~8!

The diagonal matrix elements of the equilibrium density m
trix f̂ 0 are equal to the Fermi distribution function of th
charge carriersf 0nn5 f 0(«n(pH)), where«n(pH) are the ei-
genvalues of the HamiltonianĤ0 , andpH5p"H/H.

In a magnetic field the kinematic momentump in the
expression for the energy«~p! should be replaced byP̂
2(e/c)A, where P̂52( i /\)(]/]r ) is the generalized mo
mentum of the electron andA is the vector potential. If the
latter is chosen in the Landau gauge,A5(0,Hx cosu,
2Hxsinu), then the Hamiltonian

Ĥ05«S P̂x ,P̂y2
e

c
Hx cosu,P̂z1

e

c
Hx sinu D ~9!

will depend on only one coordinate,x. In this gauge for the
vector potential the solution of the Schro¨dinger equation

Ĥ0C5«C, ~10!
e
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which essentially contains only one differential operator,P̂x

52 i\(]/]x), should be sought in the form

C~x,y,z!5exp~ iPyy/\1 iPzz/\!c~x!. ~11!

The energy of the electrons on closed orbits in the magn
field will depend on the generalized momentaPy and Pz ,
which are ‘‘good’’ quantum numbers, and on the discre
quantum numbern50,1, 2, 3, ... .

In the summation in~2! over all the electron states
which are specified by the quantum numbern and the gen-
eralized momentaPy and Pz , it is more convenient to use
combinations ofPy and Pz in the form an integral of the
motion: pH5Py sinu1Pzcosu. Here is is necessary to
specify an additional quantum number, e.g.,Py , which in the
quasi-classical approximation determines the position of
center of the electron orbit in the magnetic field. ForT
@\V one usually uses the time of motion of the charge
the magnetic field,tH , instead ofPy as the additional vari-
able along with« andpH , in accordance with the equation

]px

]tH
5

eH

c
~vy cosu2vz sinu!,

]py

]tH
52

eH

c
vx cosu,

]pz

]tH
5

eH

c
vx sinu. ~12!

In the quasi-classical approximation, when the main r
in the electronic absorption of sound waves is played by
charge carriers at energy levels with large values ofn, the
wave function of the electrons can be found under the m
general assumptions about the form of the Hamiltoni
However, in certain particular cases one can find the ene
spectrum and the wave function of the conduction electr
for arbitrary values of the high magnetic field, including th
ultraquantum limit. As an example of such a case we c
sider the simplest quasi-two-dimensional electron ene
spectrum:

«~p!5
px

21py
2

2m
2hv0

\

a
cos

apz

h
. ~13!

Herea is the distance between layers,v05(2«F /m)1/2 is the
characteristic velocity along the layers for the electrons w
the Fermi energy«F , m is the mass of an electron, andh
!1 is the quasi-two-dimensionality parameter of the char
carrier spectrum.

Substituting~11! into Eq. ~10!, we easily find that for
anglesu that are not too large, specifically forh tanu,1, in
the leading approximation in the small parameteraeH/cmv0

the electron energy levels have the form

«n5S n1
1

2D\VA11h
v0am

\
tan2 u cosz

2h
v0\

a
cosz2h2

mv0
2 tan2 u sin2 z

2@11h~v0am/\!tan2 u cosz#
,

~14!

wherez5apH /(\ cosu) andV5eH/(mccosu). If the spin
splitting is not taken into account,«n depends only on two
variables: the continuously varyingz, and the discrete quan
tum numbern, which enumerates the electron energy lev
in the magnetic field.
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The kinetic equation linearized with respect to the we
perturbation of the charge carriers by the acoustic wave
the form

F2 iv1
i

\
~«n2«m!G f 1nm1 ik"vnl f 1lm2$Ŵcoll~ f̂ 1!%nm

5
f 0~«m!2 f 0~«n!

«m2«n
~eẼ"v1vl i j uikj !nm , ~15!

wherek is the wave vector of the acoustic wave.
Using the solution of the kinetic equation, one can c

culate the dissipative function and, dividing it by the acous
energy flux density, obtain the damping coefficient for t
sound wave:

G5
T

ru2v2s/2

dS

dt
. ~16!

Here r is the density of the crystal, ands is the sound ve-
locity.

We consider the propagation of a linearly polarized lo
gitudinal waveu5(0,0,u) along the normal to the layers o
the conductor in the case when the following inequa
holds:

T!\V!hm, ~17!

wherem is the chemical potential.
In the quasi-classical approximation the entropy prod

tion in the electron system can be written in the form

dS

dt
52

2eH

c~2p\!2 (
n,m

E dpHŴcoll~ f̂ 1!nm

3
f 1

nm

f 0~«n!@12 f 0~«m!#
. ~18!

The diagonal matrix elements of the operatorsf̂ 1 and
Ŵcoll( f̂ 1) are quantities averaged over the different phase
the quasi-classical electron trajectoryw5VtH . In the case of
closed electron orbits the off-diagonal matrix elementsv i

nm

of the electron velocity operator are proportional to perio
functions of the form cos(n2m)w.

If collisions of electrons with phonons are extreme
rare, and the conduction electrons are scattered mainly
impurity atoms, then the dissipative processes in the sys
of charge carriers can be taken into account with the aid
the relaxation-time~t! approximation for the collision inte
gral. Applying the Poisson equation to expression~18! and
changing from integration overn to integration over«, we
can write the oscillatory~in the magnetic field! part of the
acoustic absorption coefficient in the form

Gosc5
4p

ru2v2s

2eH

c~2p\!3 2 Re(
N51

` E d«S 2
] f 0~«!

]« D
3E dpH expb2p iNn~«,pH!c 1

2pVt

3E
0

2p

dwU 1

V E
2`

w

dw8g~w8!

3expH 2ikz~w8!2 i
v

w81
w8 J U2

. ~19!
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Here g(w)5eẼ"v1lzzuvk. The component of the de
formation potential can be described by the expression

lzz5hl cos
apz

\
, l5

mv0
2

2
. ~20!

With the aid of Maxwell’s equations~5! and formulas~4!
one is readily convinced that in the case of a strong exte
magnetic field (Vt@1) and forkv0th!1 andvt!1 the
components of the field of the electromagnetic wave gen
ated by the sound wave have the form

Ẽx5
iv

c
uH sinu

12 ibg2

12~bg!222ibg2 ,

Ẽy52
iv

c
uH sinu

ibg2

12~bg!222ibg2 . ~21!

Here g51/(Vt)!1, and the parameterb5(svp /cv)2vt
can be quite large if the plasma frequencyvp has a value
comparable to the typical value for an ordinary metal. T
assumption is based on the fact that the conductivity in
plane of the layers of organic conductors is of the same o
as that of good metals. The formulas given for the elect
magnetic field of the wave do not take into account t
Shubnikov–de Haas oscillations of the conductivity, the a
plitudes of which are a factor of (hm/\V)1/2 smaller than
the part of the conductivity that varies monotonically wi
the magnetic field.

Substituting expressions~20! and~21! into formula~19!,
we obtain

Gosc5
2m3v0

2

rsta~2p\!2 Re (
N51

` E d«S 2
] f 0~«!

]« D
3E

0

2p

dz exp@2p iNn~«,z!#

3H ~kv0th!2

2
J0

2S amv0

\
tanu D cos2 z1F~g!tan2 uJ .

~22!

HereJ0 is the Bessel function, and

F~g!5
11b2g21b2g4

b12~bg!2c21b2g4 .

The second term in curly brackets in formula~22! deter-
mines the Joule losses due to the electromagnetic fields
cited by the sound wave. The functionF(g) is of the order of
unity over a wide range of magnetic fields, and only und
conditions of resonance coupling of the acoustic and elec
magnetic waves, when the wavelength of the helicoidal w
excited by the sound is comparable to the wavelength of
acoustic wave, i.e.,bg51, does the functionF(g) become
of the order ofg22@1. In the case considered here, the Jo
losses are much greater than the absorption due to the re
malization of the electron energy directly on account of t
deformation of the crystal, when the external magnetic fi
deviates from the normal to the layers by an angleu@klh.

Performing the integration overz and« in ~22!, we ob-
tain
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Gosc5
G0

kl (
N51

~21!NF~NL!cosS 2pNm

\V D
3H S k/h

2 D 2

J0
2S amv0

\
tanu D @J0~2pNx!

2J2~2pNx!#1F~g!J0~2pNx!tan2 uJ , ~23!

whereG05mNcv0v/4prs2, Nc is the density of charge car
riers in the conductor,l 5v0t, m is the chemical potential
F(z)5z/sinhz, L52p2T/\V, and x5(hv0 /\V)@(\/a)
1(ma/2\)tanu# is equal in order of magnitude tohm/\V.

At temperatures that are not too low, whenL.1, the
amplitudeGosc is smaller by a factor of (hm/\V)1/2 than the
part of the acoustic damping coefficients that var
smoothly with magnetic field,

Gmon.
G0

kl F S k/h

2 D 2

J0
2S amv0

\
tanu D1F~g!tan2 uG . ~24!

In the quasi-classical approximation, whenhm@\V,
the following asymptotic expression is valid forGosc:

Gosc.
G0

kl (
N51

~21!NF~NL!

~Nx!1/2 cosS 2pNm

\V D
3cosS 2pNx2

p

4 D F S klh

2 D 2

J0
2S amv0

\
tanu D

1F~g!tan2 uG . ~25!

The use of the rather simple model~13! of the dispersion
relation for conduction electrons in the calculation permit
correct description of the character of the propagation
sound waves in a quantizing magnetic field~Fig. 1!.

In the quasi-classical approximation it is not difficult
generalize the results obtained to the case of a quasi-
dimensional electron energy spectrum of arbitrary form.
in the case of the dispersion relation~13!, a longitudinal
sound wave propagates a considerable distance into the
rior of the sample along the normal to the layers if the m
netic field deviates from the normal by a small ang
u,klh.9

If the Fermi surface for such an orientation of the ma
netic field has only two different extremal values of its cro
s

a
f

o-
s

te-
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-
s

section on a planepH5const, viz.,Smin and Smax, then the
ratio Gosc/Gmon can be written in the form

Gosc

Gmon
.A\V

hm (
N51

~21!N

AN
C~NL!

3cosS Nc~Smax1Smin!

2eH\
2pND

3cosFNc~Smax2Smin!

2eH\
2

p

4 G . ~26!

This case of anomalous acoustic transparency does
take place for transverse polarization of the sound wa
u'k, the damping of which is determined mainly by th
Joule losses for any orientation of the magnetic field.
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40, 214 ~1961! @Sov. Phys. JETP13, 147 ~1961!#.

3V. L. Gurevich, V. G. Skobov, and Yu. D. Firsov, Zh. E´ksp. Teor. Fiz.40,
786 ~1961! @Sov. Phys. JETP13, 552 ~1961!#.

4I. V. Kirichenko and V. G. Peschansky, JETP Lett.64, 903 ~1996!.
5O. Galbova, G. Ivanovski, O. V. Kirichenko, and V. G. Peschansky, F
Nizk. Temp.23, 173 ~1997! @Low Temp. Phys.23, 127 ~1997!#.

6E. M. Lifshitz and L. P. Pitaevski�, Statistical Physics, Part. 2, Nauka,
Moscow ~1965!.

7D. N. Zubarev,Nonequilibrium Statistical Thermodynamics, Consultants
Bureau, New York~1974!, Nauka, Moscow~1971!.
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FIG. 1. Acoustic absorption coefficient in a layered conductor as a func
of H0 /H (H05hmmc/e\) in relative units for h50.01, T/hm55
31023, u50.


