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The damping of acoustic waves propagating perpendicular to the layers of a quasi-two-
dimensional conductor is analyzed for the case of low temperatures, at which the energy
quantization of the conduction electrons leads to an oscillatory dependence of the acoustic damping
coefficient on the inverse magnetic field. The acoustic damping decrement is found for

different orientations of the magnetic field with respect to the layers. It is shown that that a layered
conductor is most transparent for an acoustic wave in the case when the magnetic field is
perpendicular to the layers. @003 American Institute of Physic§DOI: 10.1063/1.1596595

Acoustoelectronic effects in degenerate conductorsnteraction of the charge carriers with the wave and is deter-
placed in a sufficiently high magnetic field are extremely mined by the dissipative function of the electrons,
sensitive to the form of the energy spectrum of the charge
carriers' 3 The experimental study of these effects in metals Q:Td_S (1)
in the case when the gyration frequerfeyof the electrons in dt’

the magnetic field is much higher than their collision fre-here s is the entropy density of the conduction electrons,
quency 1# has permitted the complete recovery of the Shap%vhich is related to the nonequilibrium density matfbby
of the Fermi surface, the main characteristic of the electroqnhe relatiofi”

energy spectrum.

At sufficiently low temperature§, when the distance S=tr{fInf+(1-F)In(1-F)}. 2
between electron quantum energy levals=#4() is signifi- o ] ) o
cantly greater than the temperature smearing of the Fermjin® Summation |n(2). is over all variables spemfymg the _
distribution function of the charge carriefig(¢), the acous- State of the conduction electrons except for the spin vari-
tic damping decrement undergoes resonance oscillations ables. _ . . . .
with variation of the inverse value of the high magnetic field ~ The density matri¥ must be determined with the aid of
(Qr>1). the kinetic equation

In degenerate conductors having a layered structure the . R
electron energy specFrum i; substantially anisotropic and, as ‘9_+\7‘9_f+[|:|0+ Ay, f]=\7Vcou{?}, 3)
a rule, is quasi-two-dimensional. The eneeggf the charge gt or

carriers in quasi-wo-dimensional  conductors dependg, i, (f) is the collision operator of the charge carriers
weakly on the momentum projectigory onto the normah to ) collt” . operat . g o
the layers, which describes their scattering by impurity atoms and vibra-

The specifics of the quasi-two-dimensional electron entions of the crystal lattice, i.e., phonons is the Hamil-
ergy spectrum of layered conductors are manifested in afpnian of the conduction electrogs in the magnetic field, and
enhancement of quantum oscillation effects in comparisoiY iS their velocity operator, anéi; is a correction to the
with ordinary metals, since a rather large number of chargeinperturbed Hamiltoniahl, to take into account the pertur-
carriers with the Fermi energyr are involved in their for-  bation of the electron system by the acoustic wave.
mation. At the same time, the low electronic conductivity of In a vibrating lattice the electron energy spectrum is sen-
layered conductors along the normal to the layers leads tsitive to the strain of the crystal, and in the linear approxi-
acoustic transparency for waves propagating perpendicular tmation in the small displacement of the lattice ions the
the layers*® In this connection let us consider the propaga-energy of the conduction electrons acquires an additional
tion of an acoustic wave in the easiest direction for it,amount dSe=A; (p)uy, Where u;=(1/2)(u;/Ixy
i.e., along the normal to the layers of a quasi-two-+du,/dx;) is the strain tensor, anl;, is the deformation
dimensional conductor placed in a magnetic fieltli potential tensof.lt is natural to assume that the energy spec-
=(0,H sin 6, H cosé) inclined at an angl® to the wave vec- trum of the charge carriers remains highly anisotropic after
tor k and the norman. renormalization by the sound wave. The components of the

At low temperatures the absorption of energy fromdeformation potential tensor in the plane of the layers is of
sound waves in a degenerate conductor is mainly due to ththe same order of magnitude as the Fermi energy of the
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electrons, while the components for which one or both of theyhich essentially contains only one differential operaf%;{,
indices isz are significantly smaller. It follows from conser- = —i#(4/9x), should be sought in the form

vation of the number of charge carriers that each of the ten- i ,

sor componenta,;, averaged over all states of the conduc- ¥ (X:¥:2) = eXp(iPyy/fi+iP /) (). 1D

tion electrons is equal to zero. The energy of the electrons on closed orbits in the magnetic
In addition to renormalization of the energy of the field will depend on the generalized momeritg and P,

charge carriers a sound wave generates an accompanyiagich are “good” quantum numbers, and on the discrete

electromagnetic wave. The electric field of this wave in aguantum numben=0,1,2,3,....

reference frame moving with the vibrating crystal lattice In the summation in(2) over all the electron states,

with a velocity i has the form which are specified by the quantum numineand the gen-
- eralized momentd, and P,, it is more convenient to use
~ 1 ma o Y . .
E=E+ —(UxXH)— —, (5  combinations ofP, and P, in the form an integral of the
c e

motion: py=P,sing+P,cosh. Here is is necessary to
where E is the electric field in the nonmoving laboratory Specify an additional quantum number, eRy,, which in the
reference frame, which must be determined from Maxwell'squasi-classical approximation determines the position of the
equations center of the electron orbit in the magnetic field. Fbr
>#() one usually uses the time of motion of the charge in

i 2
4md) 1 9°E the magnetic fieldty, instead ofP, as the additional vari-

curl curl E=- ? E_ ? W’ divE=4mp’, able along withe andpy, in accordance with the equation
supplemented by the constitutive relations linking the current @: ﬂ( cos6—uv,sin6) Py _ ﬁ oS0
j to the electric field of the wave. Heteis the speed of light gty ¢ Yy vz " dty c Ux ’
in vacuum, andp’ is the uncompensated charge density,
which is asymptotically vanishing in the expansion in pow- 9Pz _ ﬁvxsina. (12)

ers of 1N, in conductors with a high density of conduction gty
electronsN,. To the same accuracy the charge conservation

In the quasi-classical approximation, when the main role
law has the form

in the electronic absorption of sound waves is played by the
divj=0. (6) charge carriers at energy levels with large values othe
wave function of the electrons can be found under the most
The damping of a low-amplitude sound wave can begeneral assumptions about the form of the Hamiltonian.
analyzed with the aid of the solution of the kinetic equationqgwever, in certain particular cases one can find the energy
(3), linearized with respect to the deviation of the densityspectrum and the wave function of the conduction electrons
matrix from the equilibriumf,, and the entropy production for arbitrary values of the high magnetic field, including the
ultraguantum limit. As an example of such a case we con-

ds_ Wo(F I 1-f 7 sider the simplest quasi-two-dimensional electron energy
a_tr coll( )nT (7) spectrum:
2 2
is a quadratic function of; = —f, and can be represented  4(p)= PPy o R os2Pe. (13)
in the form 2m h
- Herea is the distance between layers,= (2e/m)*2is the
d_S_ —tr Wy (Fy) fy ®) characteristic velocity along the layers for the electrons with
dt coil f1 fo(1—To) the Fermi energyr, m is the mass of an electron, ang

<1 is the quasi-two-dimensionality parameter of the charge-
The diagonal matrix elements of the equilibrium density ma-carrier spectrum.

trix fo are equal to the Fermi distribution function of the Substituting(11) into Eq. (10), we easily find that for
charge carrierdg,,=fo(en(pn)), Wheree,(py) are the ei-  anglesd that are not too large, specifically fartan6<1, in

genvalues of the Hamiltonialﬁo, andpy=p-H/H. the leading approximation in the small parameteiH/cmo
In a magnetic field the kinematic momentymin the  the electron energy levels have the form

expression for the energy(p) should be replaced by 1 voam

—(elc)A, whereP=—(i/%)(a/dr) is the generalized mo- 8n:(n+ E)ﬁﬂ \/1+ n tan” 6 cos{

mentum of the electron anél is the vector potential. If the

latter is chosen in the Landau gaug&=(0,Hx cosé, voh 5 mutarf 6 sir? ¢

—Hxsin ), then the Hamiltonian N C0s{— 7 2[1+ 7(voam/h)tar? 6 cost]’

(14)
where=apy /(% cosf) andQ)=eH/(mccosé). If the spin

will depend on only one coordinate, In this gauge for the ~SPlitting is not taken into account,, depends only on two

vector potential the solution of the Sckinger equation variables: the continuously varying and the discrete quan-
tum numbem, which enumerates the electron energy levels

HoW=¢cV, (100 in the magnetic field.

N . . € . e
Ho=¢ PX,Py—Echosa,PZJrEHxsine 9
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The kinetic equation linearized with respect to the weak  Here g(<p)=eE~v+ A, Mwk. The component of the de-
perturbation of the charge carriers by the acoustic wave ha®rmation potential can be described by the expression
the form ,

a mo
N,,= 7\ cosﬁ A=—2. (20

) i . A F: ’
—low+ g(gn_sm) f1nmt TKVaif2im—={Wean(f1) fam f 2

With the aid of Maxwell’s equation) and formulag4)
_ fO(sm) O(Sn)

(eE-v+ O\ UK s (15  one is readily convinced that in the case of a strong external
€m™ &n magnetic field (A 7>1) and forkvg7n<1l andw7<1 the
wherek is the wave vector of the acoustic wave. components of the field of the electromagnetic wave gener-

Using the solution of the kinetic equation, one can cal-ated by the sound wave have the form
culate the dissipative function and, dividing it by the acoustic

i i 2
energy flux density, obtain the damping coefficient for the Ele_wuH sing 1 '2’87 —,
sound wave: c 1-(By)*—2iBy
T_9s 16 E - UHsing By 21)
pU’w?s/2 dt (16) Y c Uns 1—(By)?—2iBvy?

Here p is the density of the crystal, arglis the sound ve- Here y=1/(Q7)<1, and the paramete= (Swp/uu)zwr
locity. can be quite large if the plasma frequensy has a value
We consider the propagation of a linearly polarized lon-comparable to the typical value for an ordinary metal. This
gitudinal waveu=(0,0u) along the normal to the layers of assumption is based on the fact that the conductivity in the
the conductor in the case when the following inequalityplane of the layers of organic conductors is of the same order
holds: as that of good metals. The formulas given for the electro-

magnetic field of the wave do not take into account the
T<hQ<nu a7
. ' . . Shubnikov—de Haas oscillations of the conductivity, the am-
where is the chemical potential. plitudes of which are a factor ofyu/# Q)2 smaller than
In the quasi-classical approximation the entropy producthe part of the conductivity that varies monotonically with
tion in the electron system can be written in the form the magnetic field.
ds 2eH Substituting expression®0) and(21) into formula(19),
At C(2nh)?s 2 j dpyWeg(f)™™ we obtain
3 2
fgm s [rosc_ ZTZ ﬁ)z eE f d,g( (Qfo(S))
X . s7a
fo(en[ 1~ fo(om)] pRrEen
~ 2
The diagonal matrix elements of the operatéysand X dZexd 2miNn(e, )]
W, (1) are quantities averaged over the different phases of 0
the quasi-classical electron trajectasy Oty . In the case of (kvorm)2 [ amug
closed electron orbits the off-diagonal matrix elemenfts X[ > S 7 tané |cos ¢+ F(y)tarf 0).

of the electron velocity operator are proportional to periodic
functions of the form cosi—m)e. (22
If collisions of ele_ctrons with phonons are extre_mely HereJ, is the Bessel function, and

rare, and the conduction electrons are scattered mainly by
impurity atoms, then the dissipative processes in the system 1+ B2y + B2y*
of charge carriers can be taken into account with the aid of F(¥)= 1— 22+ g2

o o o [1=(BY) I+ By
the relaxation-timg ) approximation for the collision inte-
gral. Applying the Poisson equation to expressi@8) and The second term in curly brackets in formy®) deter-
changing from integration over to integration overe, we  mines the Joule losses due to the electromagnetic fields ex-
can write the oscillatoryin the magnetic fieldpart of the  cited by the sound wave. The functi6ify) is of the order of

acoustic absorption coefficient in the form unity over a wide range of magnetic fields, and only under
conditions of resonance coupling of the acoustic and electro-

[ose— ‘;”2 2eH 42 ReE f ( ‘9f0(8)> magnetic waves, when the wavelength of the helicoidal wave
puU-w’s c(2mh) excited by the sound is comparable to the wavelength of the

acoustic wave, i.e,8y=1, does the functio(y) become
f dpy exp27iNN(e,py) | =—— of the order ofy ?>1. In the case considered here, the Joule
2w QT losses are much greater than the absorption due to the renor-
malization of the electron energy directly on account of the

2m 1 (e
X f de ﬁf de'g(e’) deformation of the crystal, when the external magnetic field
0 o deviates from the normal to the layers by an anggek| 7.
_ ® o' ]2 _ Performing the integration overande in (22), we ob-
X ex 2|kz(go’)—|§qo’+m_ (19 tain
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r 27N r
rose= S (~1)Np(NA)co H
kl =1 Q) 3
k/?’] 2 2 amog
X((T) J5 7 tand |[Jo(27Ny) ol
—J,(2wNY) ]+ F(9)Jo(2mNy)tar? 9], (23) 1+
5 i . 0 1 1 I 1 ]

wherel'o=mNcvow/4mps, N, is the density of charge car- 10.17 10.18 10.19 10.20 10.21 10.22
riers in the conductol,=vy7, w is the chemical potential, Ho/H

®(2)=12z/sinhz, A=272T/hQ, and xy=(nvo/hQ)[(%/a) _ _ o _
+ (ma/Zﬁ)tan 0] is equal in order of magnitude to,u,/ﬁQ. FIG. 1. Acoustic absorption (_:oeﬁlae_nt ina !ayered conductor as a function
of Ho/H (Ho=numder) in relative units for =0.01, T/pu=>5
At temperatures that are not too low, whén=1, the 153 y—¢.
amplitudel'°*is smaller by a factor of fu/# Q)2 than the

part of the acoustic damping coefficients that variessection on a plan@y=const, viz.,Sy, and Sy, then the

smoothly with magnetic field, ratio I' oso/ " on CaN be written in the form
r [hQ (—1N
Lol (kIn\? . [amv osc /MR T (NA
mon— k—? 777 2 z %tang +F(y)tarf 6|. (24 [ mon i szl JN (NA)
. . . . NC( Smax+ Smin)
In the quasi-classical approximation, wheju>#(), Xco W_WN
the following asymptotic expression is valid fors©
NC(Smax—Smin) 7
pose To sy (ZDMR(NA) S(zm\w) XCO{ 2eHh 4 (29

kl N=1 (Ny)Y? hQ

This case of anomalous acoustic transparency does not
take place for transverse polarization of the sound wave,
ulk, the damping of which is determined mainly by the
Joule losses for any orientation of the magnetic field.

amu
h

w\[ [kl7)\?2 )
X co ZWNX_Z - Jo tang

+F(y)tar? 6

. (25) *E-mail: kirichenko@ilt.kharkov.ua
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