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The propagation of electromagnetic waves in layered conductors is investigated by the method of
the quantum kinetic equation. The quantum oscillations of the impedance for elastic

scattering on impurities is calculated. An expression is obtained for the low-frequency oscillations
of the impedance over a wide range of frequencies of the electromagnetic wa2802
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By studying the propagation of waves in organic con-wheren andn’ are any integers; is the speed of lighte is
ductors placed in a high magnetic fiddd one can investigate the charge of the electron, ardis Planck’s constant.
in detail the energy spectrum and relaxation properties of the  The distribution of the electric field of frequeney in
charge carrier$.In conductors having a layered structure thethe conductor is easily found from Maxwell's equations
electron energy spectrum has a quasi-two-dimensional char- 2 2
acter, and the electron energyp) depends weakly on the —+ w_2
momentum projectiop,=p- n on the normah to the layers. Jz= ¢

Layered conductors at low temperatures exhibit the clearegfupplemented by the constitutive relation connecting the cur-
manifestations of the de Haas—van AlphéfHvA) and  rent densityj(z,t) with the electric field. To determine the
Shubnikov—de Haa$SdH) quantum oscillation effec™  current density

The study of the SdH oscillations of the dc resistivity of ve?B

layered conductors is the subject of a great number of theo- . az <€ 2

retical and experimental pape(see, e.g., the reviewsand j=eTr(vh = c(2mh)? nz/:o dpzVnnfon @

the references cited therginrhe experimental study of the '

propagation of electromagnetic waves in organic conductor A i . .
has received much less attentidn” even though the ki- e quantum kinetic equatiori;herev,, is a matrix element

netic phenomena in alternating fields carry rich informationOf the velocity operator. Solely for the sake of brevity in the

about the electron systems in conducting media. Among th alculation we vyill use a rather simple dispersion relation for
papers mentioned is a study of tetrathiafulvalene-based conI\—e charge carriers, in the form
pounds of the form (BEDT-TTEX (X stands for a set of
various aniongin which the wave vectok and the static en(P2)=
magnetic field were directed along the normal to the layers. . . .
Below we shall examine the propagation of electromagneti¢Vherea is the distance between laye@,=eB/mc is the
waves in quasi-two-dimensional layered conductors in a geyclotron frequencym is the effective mass of the conduc-
ometry used in some of the studies cited, i.e., in which thdion electrons,A=z»s, and the quasi-two-dimensionality
Poynting vector and the magnetic field are parallehtdn ~ Parametery will be assumed not too small,
this case the alternating electromagnetic field is orthogonal %0
to the vector of the quantizing magnetic field, and it is ex- —<7<1,
tremely important to take into account the quantum oscilla-
tions of the kernel of the scattering operator for the chargeo that there are sufficient Landau levels on the Fermi sur-
carriers. Here the amplitude of the SdH oscillations of thefacee(p)=e¢; that one may use a quasiclassical approxima-
surface impedance is of a substantially different order otion for calculating the impedance. We limit consideration to
magnitude than in the approximation in which a magneticthe case of the normal skin effect, when the relation between
field-independent relaxation timeis used in the quantum the current density;=eTr(3;f) and the electric field& can
kinetic equation for the collision integr&i.In contrast to the  be treated, to sufficient accuracy, as local:
dHVA oscillations, the period of which is determined by the .
: : ji(r, )=y Ej(r,0).
extremal-areaQ.y,) Ccross sections of the Fermi surface, the 1=l
SdH oscillations contain combination frequencies of the type  The approximation of a local relation is completely ad-
missible when the drift of the conduction electrons along the
wave vectork over the mean free time of the charge car-
(NSaxt N’ Spin)C riers is much less than the skin depthi.e.,

eh nuT<d. 3)

Aiw
Eot —21a=2E4(0),

E[his necessary to find the density matfix,, with the use of
t

1 ap,
n+§ AQ—Aco il n=0,1,2,3..., (2)
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Thanks to the symmetry of the spectrum it is sufficient to . . eEr
consider only the components of the conductivity tensor in ~ Wx*ivy=v =y — om’ )
the plane of the layers. For circular polarization of the wave,
Ei=ExtiEy, the conductivity tensor becomes diagonal. where

In order for the quantum oscillations to be substantial,

the mean free time of the charge carriers must be much  + =_f<298h n,)mé
greater than the period of gyration of the electron along its Yonn' m| ¢ n+1ln’:
orbit (A 7>1). We shall take into account only the elastic _

scattering on impurities, assuming that the range of the scat- - ﬁ

2eBh |12
c n n—-1n’

tering potential is much less than the de Broglie wavelength Yonn' ~'m
of the electrons. This allows us to calculate the conductivity ) o
tensor without having to assume that the interaction potential NUS: taking the electric field into account through the use of
of the electron with the impurity is small. The calculation is & Vector potential allows one to avoid an additional summa-
done by the method of the quantum kinetic equation, follow-lion in the expressions for the density matrix and substan-
ing Refs. 18—20. tially S|mp.I|f|es the calculau.ons. .

The electron gas is described by a density matrix which ~ Equations(4) can be written in the form
satisfies the quantum kinetic equation. We write the latter in i
the form proposed in Ref. 19: —iwX+ %[é+\7;f<]=\?, (6)

" | R i o R s, . . . >, .
Ciwf, g[éiflﬁ gnimpTra[V;Fo(fl)] whereX is the operator which we are seeking, ands the

right-hand side of the equation. It was shown in Ref. 19 that
Eq. (6) has a solution of the form

i ..
7l e 1O _%nimpTra[V;Fl]; 4 A R © \ea © .
X:_deG+ z+=+V|YG | z— =+V]. (7
2 2 2
aF(;Jt(f) n fii_[§+\7;r:°(f)]:_ fii_[\?;ﬂ; The Green’s functiofG~ satisfies the relation
G (z—V)=G*(20+G*(2)T*(20G*(2), (8)
oF, i O I =15 A (o |V i iX . i i )
—1+—[§+V;F1]=— =V (RO vyhereT,,M (cpvl_\/|4,//,f> is theT matrix, ¢, is the e|ge_nfunc
a h AN tion of the Hamiltonian without the impurity, and, is the

wave function of the electron in the presence of the impurity.

We now calculate the Green'’s function for a layered con-
ductor. Following Ref. 20, one can show that for a short-
range impurity at

wheref(© is the Fermi—Dirac distribution functiorf is the
correction linear in the field to the density matri,is the
impurity operator,F=F,+F, is the binary correlation op-
erator of the electron and one impurityy,, is the impurity
concentration, the trace Jris taken over the states of the
impurity, ande is the set of quantum numbers characterizing
the state of the impurity; from now on, the subscripwill ~ Wheren;=g/(£() andr_ is the Larmor radius, the Green’'s
be dropped from all notations except,TrThe system of function can be written in the form

equationg4) is a chain of Bogolyubov equations broken off .

at the two-impurity correlation operator. The impurity is as- GE(r.r! E):E d),,(r)cﬁv(.r )

sumed to be uniformly distributed and infinitely heavy. We v v E—e,*ié

th 0
use the gauge =d(r,r")[Gy(r—r',E)+G, 1, (10

re
X,y<—, z<a, 9)
Nt

cE where
A=(0,Bx,0)+ o ¢=0.

ific
@(r,r'>=ex;{@<x+x'><y—y'> ;
The energy of the electron in the field of the wave has
the formH,= — (eE-¥)/(iw) and contains the velocity op- G is the real part of the Green’s function in the absence of
erator, which we write in thegn,P,,P,) representation, magnetic field, and the dependenceGyfon (r—r’) can be
which is the natural one for the given gaudg,. determines  neglected. In the case of a quasi-two-dimensional spectrum,
the coordinate of the center of the electron orBf G is rather complicated for explicit calculation. Unlike the
=(cPy)/(eB), andP, is the same as the kinematic momen-case of the quadratic spectru@, depends orE and also
tum componentp,. Unlike the coordinate operator, which depends onr(—r') in a complicated way. However, the ex-
enters the Hamiltonian through the use of the gadge plicit form will not be needed in the calculations that follow.
=(0Bx,0), ¢=—E-r, the matrix elements of the velocity For calculatingG, we use the Poisson summation formula,
operator do not depend d? : as a result of which the expression 18y, takes the form
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N B of the combinatioreE- V/i w, but because the diagonal com-
Gq(e)= T oK2a ponents of the velocity are linear in the fielt] the corre-
sponding correction td will be quadratic in the field. Since
we are neglecting the diagonal component$ of the equa-
tion for the current, we will be interested only in the off-

(11) diagonal part of the density matrix As was shown in Ref.
) ) ) o 19, for the off-diagonal components of the density matrix the
whereJ, is the Bessel function. The series appearing in Eqcqjlision integralingnTra[ V. ;Fo(f1) lnm/% appearing in the

when the Dingle broadening of the Landau levels is takeryyantity

into account, a small factaZX = exp(—k/Q7) will appear in )
the oscillatory part of the Green’s function, and then the i=|—n< [t (s+ho)—t (s,—hw)] (15)
series becomes absolutely convergent. Tom BT " A '

As was shown in Ref. 20, the electron wave function in
the field of the impurity satisfies Dyson’s equation

X

1+2§ 1)k +271'iks 2m7kA
& (Threxp =—ra— ol g

The right-hand side of the equation fét, in system(4)
contains the commutator with the impurity operator. There-
¢V(r)=¢v(r)+J G(r,r" E)V(r" )y, (r")d3r’. fore, in the explicit expression fdF,, the operatoV/ will

appear together with the matrix, but it can be canceled out
When the Green’s function in the forfl) is substituted by reduction with Dyson’s equation:
in, the wave functiony,(r) in the region specified by in-
equalities(9) can be represented in the form

(PV( Rimp)
1-(2mwh?m)fim,Gq (E)

where ¢(r) satisfies the equation

[EEAR VS S S (16)

where now the expression fét, can be written as

()= tho(T), (12

ﬁo=2i—wf dZ -G (2T (296 (2)

¢o(r):1+J Gy(r,r" E)V(r")go(r)d3r, +GT(2f 9T (206G (2)
Rimp is the coordinate of the impurity; the total scattering -G ' @T " @1G 2T (96 (2)
amplitudefirr:lp is given by the expression LB ()T (26 (21O (26~ (2)]. 17
fimp:ﬁj MOIIGERE 13 We note that=o(f(?)) has the meaning of an impurity cor-

Gg(r,E) is a smooth function oE and varies substantially rection to the Fermi—Dirac function:

over energy intervaldE~¢;. However, for calculating the FOE+V)=FO(8)+Fo(FO).

galvanomagnetic coefficients, only the energy region near R

the Fermi level is important, where The calculation of ; can be reduced to the evaluation of
AE=E—g~maxihQ,hw)<e;. IA:1. For this we WriteIE1 andf1 in the form of a sum:

Thus the dependence dn of Gy(r,E) and ¢y(r) can be Fi=F,+F,, f,=F.+1,

neglected, takinge=¢;. The expression for th& matrix in . . .
the case of a quasi-two-dimensional spectrum can be writteWr which the system of equatiorid) will take the form

in the form i lA:+i[AlA:] i eE~\7|E
= + —lw 7 8; =z _1 1
T, (E)=t"(E)¢%(Ro)¢,(Ro), AT ] e O
(B (2mh2Im) finp (14 P R i
B = - 2t ZIm) T GE(E) TleRptplER]=mgIViR,
which agrees with formuld7) of Ref. 20 for the case of a . [ .12 i |eE-V 2 0)
quadratic dispersion relation. Essentially, the energy depen- —lofat o[eifa]+ T Ha=p | 71T,
dence enters only in the kernel of tiiematrix. ) _
In calculating the oscillatory part of the conductivity ten- R T T T L ~ o
sor, only the off-diagonal elements of the velocity operator lofpt L& o]+ 7 == Z NimpTr[VIF4]. - (18)
are important. The contribution from the diagonal partof )
in the formula for the current, It is not hard to see that
. o e’E o e’E b _ —lot+i(en—em)lh b
jdiagzeTr(vdiagf):—%Tr(f):—%ne fnm__iw+i(8n_8m)/ﬁ+1/TnmnimpTraan' (19)

is expressed in terms of the electron densityand cannot |t can be shown thaf, corresponds to a shift of the energy
oscillate as the magnetic field varies. In the expression folevel due to the presence of the impurity and can be ne-
the density matrix the diagonal part of. can also be ne- glected. Indeed, the corresponding contribution to the con-
glected. In facty enter the expression fdronly in the form  ductivity



362 Low Temp. Phys. 28 (5), May 2002

o Tl Foli [ 4,3 (Y1 =i

~f dP,>, FO ~Tr(f@a+V)—1(3))

n
is proportional to the difference of the electron densities i
the presence and absence of the impurity, i.e.,
depend on the magnetic fieBl Thus we obtain

eE-¥ f(o)}

—iw
nm

(20

n,mpTraan.

i
—lw+ — — + —
lw ﬁ (3n Sm) Tnm
Since only some of the terms appearing-ihare important,
we write it in the following form:

. i -
Fb:ZJ' dzer

2

eE-Vv . .
—Fo(f)
)

oz +

it does n

O. V. Kirichenko and 1. V. Kozlov

The first term in(21) corresponds to a shift of the energy
level due to the presence of the impurity, and it can be ne-
glected. The next term contains an expression of the form
TOT, which vanishes upon summation ovey in (20) as a
consequence of the orthogonality of the Hermite polynomi-
als. For the same reason, only the part with the commutator
FE-O/iw;IEO] is important in the rest of the terms.

The expression foff; simplified in this way must be
substituted into the equation for the currébt We note that
the T matrix is nondiagonal i?, andP,, and each appear-
ance of it in formula(21) leads to the necessity of summing
over these quantum numbers. Thus, to simplify the calcula-
tions that follow it would be desirable to reduce expression
(21) to a form in which theT matrix enters each term only
once. This can be done by employing the following argu-
ments.

1. As we know, the scattering tensor obeys the optical
theorem, which in our case is conveniently written in the
form

THa)(G (a)-G (b)) T (b)=T*(a)—T (b);

—2#xiTHa)d(e—a)T (a)=T*(a)—-T (a), (22)

~ w ~ W\ ~ w
XG7 21_5)+G+(21+§)T+ Zl+§
which can easily be obtained from the Born expansion of the
. w\[eE- ¥ . . oA ® T matrix or by substituting the Green'’s function ahanatrix
XG™| zy+ 5) T Fo(f) |G -5 in explicit form.
2. It follows from the explicit form of thel matrix that
AL w|[eE-V . . it obeys the relation
+G' z1+ = Fo(f©)
2 i
& lz2- 213 | 2, 2|67 2- = s t@a,
X L5 L5 L5 T*(a)=t+(b)T (b), (23
o |, |~ ® ) . . . .
TGt S| T 2t 5 |Gt 5 which together with the optical theorem gives an efficient
way of simplifying the tensor expressions.
eE-V O | A 1) After all the transformations have been done, the expres-
X3 Fo(f™) |G 22— 5 sion for the density matrix becomes extremely awkward, and
lw 2
we will not write it out. After some calculations, the conduc-
N W\ ~ w Wi H H +_ * *
X T2, — 5)6(21 E)} 21) ;[Ilv\ﬂtgretensor can be written in the formr==o0, + oy ,
e? n[f e, x20)—fO(e
ety S fdp El (0= 0)—FO(ep)] | 0
wFQ— ”“p[t (entho)—t (e,—fiw)]
N ie? Nimp f n B |_ N
b~ 2772ﬁ2w(w (03 dp, |mp [ ZW(w_Q)
[t (enthw)—t (g~ ho)]
t"(2)—-t (2) fO%2)—fO [ tT(2)—t (z O(z)—1O(g
dz (_) (). (2) _(n) | iﬂ)fdz (2) ()_ (2) .(n)’ (25
entw+O—2z+i6 z—g,—i6 en—wxOD—2z2—i6 zZ—g,+ié
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wheren, is the electron density, angl; ando,, correspond cause the phase of the oscillations of the corresponding part

to f, andf,, in the density matrix. For brevity in the writing Of the conductivity tensor to be independentegf with the

of these formulas we have omitted certain terms which aréesult that its amplitude will not be suppressed by the usual
important for the classical part of~ but do not contribute to  temperature smearing but it will be hit twice by the Dingle
the oscillatory part of the conductivity. The given expressionfactor Cp . Thus, in the absence of resonanee-(>1/7)

can be used to calculate the conductivity for any values,of the quantum correction to the conductivity tensor due to the
although elementary estimates of the penetration depth of theresence of an impurity has the form

electromagnetic wave into the conductor show that for the 2e?n 1

layered conductors under study, the resonance region ( or="—_¢___~

—Q~1/7) corresponds to the case of the anomalous skin 1T mr (0¥Q)?

effect and cannot be treated in the local-coupling approxima- [
X

2

tion. In the absence of resonance and ¥ 0 the main 2

contribution to the quantum oscillations of the conductivity
tensor is given by the correction linear inr1The second-
order correction in X becomes important only for the static +
casew<(), and therefore in the expressions quadratic in the

inverse relaxation time one can @t »=(. We note that

for taking the trace Tr in expressiof24) and(25), the den- %
sity of states/(e) appearing in the trace in the formula for the
current(1) is expressed in terms of the Green’s functiaf)

L3 § 2mika) ,(27kA
o0& TR Ta ) wo

30w (=DNQ  [27kes
1i§9_7)|;1 P COS( 0

Lo 27kA
eXL(ZWIkﬁ)—l)JO(W) CDCt]n (29

whereC,=[2mw%kg T/ (A Q) /[ Sinh(272ksT/(£)))] is a factor

as . .
causing temperature smearing,
eB S (4 1 q ) )
S | 9P g | verde 1_ 447 Cimplimpfimp
T ma
&
= f 5-71Cq —Gql... (26)  is the relaxation time due to the impurifyand is numeri-

cally equal to the nonoscillatory part of expressiah); fim,

To simplify the remaining calculations somewnhat, let us asis the total scattering amplitudé3), Cimp=1 if fimp<a and
sume that the oscillations of the scattering tensor are smalbimp:(a/fimp)Z if fimp>a.

i.e., As was noted in Ref. 20, the quantum oscillations of the
finp [, O 12 impedance and the quantities characterizing the propagation
o ﬁK) Cp<l, (27)  of an electromagnetic wave in a conductor are determined

mainly by the quantum nature of the collision integral asso-
and we will keep only the leading terms in the expansion inciated with scattering on impurities. In the collisionless limit
powers ofiQ)/e; and 1) 7, assuming that Qr>#0/e;. the impedance oscillations are due to oscillations of the mag-
After (11), (14), and(26) have been substituted int@4) and  netization. In Ref. 20 only the oscillations at the fundamental
(25), the expression for the conductivity will contain prod- harmonics were considered. Low-frequency oscillations at
ucts of series: the combination frequencies do not appear in the magnetiza-

o ik K tion oscillations. Thus, to a sufficient degree of accuracy one

D (_1)kexr<27ﬂ 8) 0(277 A) can assume that the total conductivity tensor has the form

K hQ) hQ) o =0y+0;, where og=neX[m(—iw*iQ+1/7)] is

the classical, nonoscillatory part of the conductivity tensor.

JO(ZWIA) Since we are considering only the case of the normal

(29} skin effect, the expressions given for the conductivity com-
pletely describe the process of electromagnetic wave propa-
gation. In the approximation of local coupling of the current
density with the electric field, the latter is damped exponen-
tially in the sample:

2il

xZI (—1)'ex;{ oo (et )

=; (—1)k*! exr{ZZ;A)ex;{Z&i}s (k+1)

27TkA) 2mlA
rQ ‘]0( hQ
the required absolute convergence of which, as we have saigihere
is ensured by the Dingle broadening of the Landau levels.
The terms of the series witk,1#0 in Eq. (28) contain the . [4miwo.|\M?
Bessel function, which gives an additional small factor of 2=\ 2 | -
VRQI/A. Thus the main contribution to the high-frequency
oscillations of the conductivity will come from the part of The impedance and the penetration depth of the field into the
the sum(28) with k#1=0 andl #k=0. In addition, we drop ~ conductor are related o, by the relations
the products wittkk+1=0, the phase of which does not de-

L . 47 w
pend one (they cause oscillations at the difference frequen- Z.=— —, o6.=(Imki)~L
cies. As will be seen from the calculations below, this will c” k;

X Jg ) A=0,*1how, (28)

E*(zt)=E, expik, z—iwt),



364 Low Temp. Phys. 28 (5), May 2002 O. V. Kirichenko and I. V. Kozlov

When the smallness of the amplitude of the quantum oscil*E-mail: kirichenko@ilt.kharkov.ua
lations is taken into account, the expression for the imped-
ance can be rewritten as
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