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We have theoretically studied the thermoelectric effect in layered conductors with a quasi-two-dimensional
electron energy spectrum of an arbitrary form in a quantizing magnetic field at low temperatures. Giant quan-
tum oscillations of thermoelectric field versus the inverse magnetic field have been predicted, which will fa-
cilitate the experimental study of quantum oscillatory effects. Thermoelectric force in a layered conductor is
shown to depend periodically upon the angle between the magnetic field direction and the normal to the
layers. This orientation effect arises from the quasi-two-dimensional character of the charge carriers energy
spectrum and is representative of layered conductors.
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Layered structures with sharply anisotropic metal type electrical conductivity have been in-
tensively studied recently. The strong anisotropy of the kinetic coefficients of such conductors is
attributed to the quasi-two-dimensional character of the energy spectrum for charge carriers. The
dependence of the energy of conduction electrons on their momentum depends weakly on the mo-
mentum projection p, = pn along the normal n to the layers and can be represented in the form
of a rapidly converging series

e(0) =3 e(parpy) co8 (Z2). 1)

k=0

Here a is the separation between layers, & is the Planck constant. The maximum values €}'** at
the Fermi surface decrease significantly with increasing k so that £*** = nep < ep where the
parameter of the quasi-two dimensionality 7 characterizes the anisotropy of the charge carriers
spectrum.

In many-layered conductors of organic origin placed in a strong magnetic field H Shubnikov-de
Haas oscillations have been observed [1]. This points to the presence of closed sections of the Fermi
surface and to the fact that charge carriers mean lifetime 7 is large enough and an electron can
perform many rotations with frequency €2 during 7. We shall assume that the Fermi surface has the
form of a weakly corrugated cylinder, which is in a good agreement with experimental investigations
of galvanomagnetic effects and Shubnikov-de Haas oscillations in many tetrathiafulvalene-based
complexes with charge transport.

In present paper we consider thermoelectric phenomena in layered conducting structures placed
in a strong quantizing magnetic field H = (0, H sin 9, H cos ). In the quasi-classical approximation,
when the interval between quantized energy levels of charge carriers is much less than the Fermi

*The paper submitted to the Proceedings of the conference “Statistical physics 2005: Modern problems and new
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energy e, the electron energy spectrum can be determined making use of the rule of quantizing

areas kel 1
e
(e = T8 (n ). )

2

where n are nonnegative integers, e is the electron charge, ¢ is the velocity of light, S(e,pg) is the
area of the section of the isoenergetic cut by the plane py = pH/H = const.

The linear response of electron system to weak perturbation by electric field E and temperature
gradient VT

oT

Ji = oyEj—oi; o—, (3)
it J B,
oT

@G = /BijEj_fﬁij% (4)

should be determined by means of the solution of the kinetic equation for the statistical operator f

Represent statistical operator f in the form f f0—|— f1 + f2 where fo is the equilibrium operator
whose diagonal matrix elements f'" are equal to the Fermi distribution function fo{e,(pg)}, and
operators fl and fg describe the weak perturbations of electron system by the electric field and
the temperature gradient. Then the kinetic equation takes the form [2,3]:

7; ’ N ~ En) — En/

w1 W (i) = By, P 2N Q
{ nn’ P < af En’

ﬁ(En - En/) 2 nn {f2} = Vo VT T (;FE ’ ) ’ (6)

where v,/ are the matrix elements of the electron velocity operator v, W{f,} and W{f,} describe
the momentum and energy relaxation of charge carriers, respectively. Under strong magnetic field
conditions (27 > 1), which can be realized at low temperatures, charge carriers are scattered
mainly by impurities and crystal defects, and we may not consider the kinetic equation for nonlinear
phonons. At low temperatures the dominant scattering mechanism is elastic scattering, and the
collision operators can be taken into account in the T-approximation. In this case the relaxation
times 7. and 7, are of the same order of magnitude, and if one does not distinguish them, the
kinetic coefficients satisfy the Kelvin-Onsager relations and the Wiedemann-Franz formula.

At low temperature there exist giant oscillations of the thermoelectric field that are caused by
quantization of arbitrary motion of charge carriers in layered conductors [4]. Consider thermoelec-
tric field E induced by the temperature gradient oriented along the normal to the layers

Ei= py oy o ™)
Here p;; is the resistivity tensor.

The asymptotic expression for the thermoelectric field E, for n < 1 and (Q7)7! < 1 is
determined by non-diagonal components of the resistivity tensor. In the lowest order approximation
with respect to the small parameter 1/Qr the components p,, and p,. are the same as in the
classical consideration. The quantum oscillations of these components appear in the highest order
terms in expansion in 1/Qr that thus can be neglected [2].

The oscillatory dependence of E, upon 1/H is determined by the quantum oscillations of the
thermoelectric coefficients oy .

In the quasi-classical approximation the component «;; can be obtained by making use of the
Poisson formula and replacing integration with respect to n by integration with respect to energy.
Straightforward calculations yield the following asymptotic expression

_ _ n—e 9fole)
0y, =z tand = 2”53,62;00 /de T ER Te

95 % (sing)? ikeS(e,pm)
X/de {3pH} 050z eXp{ cHh } (8

~—
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where g is the chemical potential of electrons. Here we have taken into consideration that

95/0pu 11 (9)
05/0e

where vy is the drift velocity of charge carriers along the magnetic field averaged over the states
of electron orbit € = const, py = const.

When calculating a,., it is necessary to allow for quantum oscillations of the relaxation time
7 that result from the summation over the electron states in the incoming term of the collision
integral. The quantum oscillations of the scattering amplitude of electrons by impurities in layered
conductors have been obtained in [5-8]. If the condition

Uy =V, tanf = vy sinf =

T < hQ) < nep (10)

is satisfied the relaxation time in the Born approximation is given by

1 1 1 hH O\ Y2 25, |72
- - = 1+(6 > Zaf g (11)
Tp(€) T(e) 7 m*ce — | Oy
ku keS, T Tkm*
= —1)kE—1/2 S+ - .
g ;ak( ) sinh ku o8 ehH + 48 o8 m

Here ap are the numerical coefficients depending on the form of the dispersion law for charge
carriers, 7y is their mean free path time in the absence of a magnetic field,

e 108
21 0Oe
is the cyclotron effective mass of charge carriers, m is the free electron mass,
22T
u =
hQ

and
828,

s = sign e,
The main contribution into the oscillatory part of 7.s. is made by a small part of electrons near
the extreme cross-sections S, of the Fermi surface, and the summation over all sections S, should
be taken.

The oscillating part of «, .,

osc 2e E—p 8f0(5)/ o5 ? cos20
Y= T (27n)3 / = o | Y\ G | 5)0:

s 98 1? cos?0 ikeS (e, prr)
— k ?
X {TOSC+2R€ E ( 1) To/de {8}71.1} 35/86 exp [ oHA :| (12)

k=1

is determined mainly by the oscillatory dependence of 7os.. The terms with k& # 0 in the formula
(12) are less than the first term by a factor hQ)/p.
After straightforward calculations we obtain the following asymptotic expression:

mon eTTO 0 *=2
=_=10° d 13
Qs 6h3 8u —p m v,dpH, ( )
where
1/2 2 —-1/2 oo
ae = Tl ( ! ) 08| S (c)Fahdr
3h hQu — | 9% pot sinh(ku)
rkm* . (keSe w o
X €08 ——— sin (eﬁH + 43) /vzde. (14)
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As is easily seen the amplitude of a2 is greater than o°" by a factor of (uu/nh€2)/2.

The Dingle factor Ip = exp(—1/7) is omitted in the above formulas because at () > 1 this
factor is close to unity. However, as the angle 9 increases, the period of electron rotation in the
magnetic field grows and D decreases. At ¢ close to +m/2 the amplitude of quantum oscillations
decays exponentially.

If the magnetic field noticeably deviates from the normal to the layers, both o and a3’
oscillate with the angle ¥ between the magnetic field direction and the normal. These oscillations
result from the periodic dependence of U, upon the angle ¥ and are characteristic of the kinetic
coefficients of layered conductors [9-12].

Using classical equations of motion for electron whose dispersion law is described by the for-
mula (1), in the main approximation in the small parameter n one can easily obtain

. ka kapptand\ . kapy
.= — — erpdo | ———— , 15
Y 1;1 n °k 0< h >sm (hcosﬁ) (15)

where J,, is the Bessel function and the coefficients €, are assumed to be independent of p,,py.
Considering, for example, the monotonously varying part of the field

T doeafop O

E, = : 16
3e o 0z 16)
where
e2ram* cos V) o= o 5 ( akpr tan?
k=1
we obtain
7w Ttand Yo, kPe; Jo(kB)J1 (k) (18)

27 3ehwp Yoo k22 I3 (kD)

Here 8 = (aprtand)/h. The functions .J,, do not vanish simultaneously, and the more rapid the
series in the formula (17)converges the sharper the maxima on the curve E,(9) are. The analysis
of the angle dependence of the thermoelectric field in layered conductors makes it possible to
determine the degree of decreasing of harmonics in the expansion in the Fourier series of the
electron energy dependence on the momentum projection on the normal to the layers. It is easy
to make sure that the extremum of the thermoelectric field, as a function of tan, does not
coincide with the maximum of the magnetoresistance. The shift of these extreme values contains
an important information about the electron energy spectrum of a layered conductor.
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TepMmoMarHiTHi sBULLA Yy LLApPYBaTUX NPOBiAHUKAX

0.B.Kupnyenko?, B.T.Miwaxcbkuin!, O.ran6osa?, IIsaHoscki?, [.KpcToscbka?

1 disnko-TexHiunmit IHCTUTYT HU3bKNX TemnepaTyp HAH Ykpainu im. Bepkina,
np.JleHiHa 47, 61103 Xapkis, YkpaiHa

2 dakynbTeT NPUPOA03HABUYNX HAyK Ta MaTteMaTuku, IHCTUTYT Pisunku,
P.C. 162, 1000, Cxon’e, MakepoHis

OtpumaHo 11 nunHa 2005 p., B ocTaTto4HOMY Bumnaai — 25 TpasHa 2006 p.

TeopeTnyHO BMBYEHO TEPMOENEKTPUYHI Ta TEPMOMArHIiTHI SIBMLLA Yy LLapyBaTUX NPOBIOHMKAX 3 KBA3iABO-
BUMIPHUM €NeKTPOHHMM E€HEepPreTUYHMM CNEKTPOM AO0BINIbHOro BUAY B KBAHTYIOHOMY MarHiTHOMY nosi npu
HU3bKNX TemnepaTtypax. [lepeadayeHo iCHyBaHHS FiraHTCbKUX OCLUMNALIA TEPMOENIEKTPUYHOIO Mons K
DYHKLIT 06epHEHOI BENYMHM MaArHiTHOrO MoJis, WO Monerwye ekcrnepMMmeHTasibHe BUBYEHHS KBAHTOBMX
ocumMnauinHmx s, MNMokasaHo, Wo TepMoenekTpuYHi KoedilieHTn WwapyBaToro npoBigHuKa € nepioam-
YHO 3a/IEXHMMU Bif, KyTa MiX HANPsIMKOM MarHiTHOro nons Ta HopmManso Ao wapis. Liein opieHTauinHum
edeKT NoB’s3aHnii 3 KBa3iABOBUMIPHICTIO @HEPreTUYHOr0 CNeKTPy HOCIIB 3apsay i € XapakTepHUM ojs
LapyBaTMX NPOBIOHWUKIB.

Knio4yoBi cnoBa: TepmoenekTpuyHe noJsie, LwapyBatuii NpoBigHVK, KBAHTOBI ocuMasLii

PACS: 72.15.Jf
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