
Condensed Matter Physics 2006, Vol. 9, No 4(48), pp. 757–761

Thermoelectric effect in layered conductors in a strong
magnetic field ∗

O.V.Kirichenko1, V.G.Peschansky1, O.Galbova2, G.Ivanovski2, D.Krstovska2

1 B.I.Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine,
Pr. Lenina 47, 61103 Kharkov, Ukraine

2 Faculty of Natural Sciences and Mathematics, Physical Institute, P. O. Box 162,
1000, Skopje, Republic of Macedonia

Received July 11, 2005, in final form May 25, 2006

We have theoretically studied the thermoelectric effect in layered conductors with a quasi-two-dimensional
electron energy spectrum of an arbitrary form in a quantizing magnetic field at low temperatures. Giant quan-
tum oscillations of thermoelectric field versus the inverse magnetic field have been predicted, which will fa-
cilitate the experimental study of quantum oscillatory effects. Thermoelectric force in a layered conductor is
shown to depend periodically upon the angle between the magnetic field direction and the normal to the
layers. This orientation effect arises from the quasi-two-dimensional character of the charge carriers energy
spectrum and is representative of layered conductors.
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Layered structures with sharply anisotropic metal type electrical conductivity have been in-
tensively studied recently. The strong anisotropy of the kinetic coefficients of such conductors is
attributed to the quasi-two-dimensional character of the energy spectrum for charge carriers. The
dependence of the energy of conduction electrons on their momentum depends weakly on the mo-
mentum projection pz = pn along the normal n to the layers and can be represented in the form
of a rapidly converging series

ε(p) =

∞
∑

k=0

εk(px, py) cos

(

akpz

~

)

. (1)

Here a is the separation between layers, ~ is the Planck constant. The maximum values εmax

k at
the Fermi surface decrease significantly with increasing k so that εmax

1
= ηεF � εF where the

parameter of the quasi-two dimensionality η characterizes the anisotropy of the charge carriers
spectrum.

In many-layered conductors of organic origin placed in a strong magnetic field H Shubnikov-de
Haas oscillations have been observed [1]. This points to the presence of closed sections of the Fermi
surface and to the fact that charge carriers mean lifetime τ is large enough and an electron can
perform many rotations with frequency Ω during τ . We shall assume that the Fermi surface has the
form of a weakly corrugated cylinder, which is in a good agreement with experimental investigations
of galvanomagnetic effects and Shubnikov-de Haas oscillations in many tetrathiafulvalene-based
complexes with charge transport.

In present paper we consider thermoelectric phenomena in layered conducting structures placed
in a strong quantizing magnetic field H = (0,H sinϑ,H cos ϑ). In the quasi-classical approximation,
when the interval between quantized energy levels of charge carriers is much less than the Fermi
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energy εF, the electron energy spectrum can be determined making use of the rule of quantizing
areas

S(ε, pH) =
2π~eH

c

(

n +
1

2

)

, (2)

where n are nonnegative integers, e is the electron charge, c is the velocity of light, S(ε, pH) is the
area of the section of the isoenergetic cut by the plane pH = pH/H = const.

The linear response of electron system to weak perturbation by electric field E and temperature
gradient ∇T

ji = σijEj − αij
∂T

∂xj
, (3)

qi = βijEj − κij
∂T

∂xj
(4)

should be determined by means of the solution of the kinetic equation for the statistical operator f̂ .
Represent statistical operator f̂ in the form f̂ = f̂0+f̂1+f̂2 where f̂0 is the equilibrium operator

whose diagonal matrix elements fnn
0

are equal to the Fermi distribution function f0{εn(pH)}, and

operators f̂1 and f̂2 describe the weak perturbations of electron system by the electric field and
the temperature gradient. Then the kinetic equation takes the form [2,3]:

i

~
(εn − εn′ )fnn

′

1
+ Ŵnn′ {f̂1} = eEvnn′

f0(εn) − f0(εn′ )

εn − εn′

, (5)

i

~
(εn − εn′ )fnn

′

2
+ Ŵnn′ {f̂2} = vnn′ ∇T

µ − εn′

T

∂f0(εn′ )

∂εn′

, (6)

where vnn′ are the matrix elements of the electron velocity operator v̂, Ŵ{f̂1} and Ŵ{f̂2} describe
the momentum and energy relaxation of charge carriers, respectively. Under strong magnetic field
conditions (Ωτ � 1), which can be realized at low temperatures, charge carriers are scattered
mainly by impurities and crystal defects, and we may not consider the kinetic equation for nonlinear
phonons. At low temperatures the dominant scattering mechanism is elastic scattering, and the
collision operators can be taken into account in the τ -approximation. In this case the relaxation
times τε and τp are of the same order of magnitude, and if one does not distinguish them, the
kinetic coefficients satisfy the Kelvin-Onsager relations and the Wiedemann-Franz formula.

At low temperature there exist giant oscillations of the thermoelectric field that are caused by
quantization of arbitrary motion of charge carriers in layered conductors [4]. Consider thermoelec-
tric field E induced by the temperature gradient oriented along the normal to the layers

Ei = ρij αjz
∂T

∂z
. (7)

Here ρij is the resistivity tensor.
The asymptotic expression for the thermoelectric field Ex for η � 1 and (Ωτ)−1 � 1 is

determined by non-diagonal components of the resistivity tensor. In the lowest order approximation
with respect to the small parameter 1/Ωτ the components ρxy and ρxz are the same as in the
classical consideration. The quantum oscillations of these components appear in the highest order
terms in expansion in 1/Ωτ that thus can be neglected [2].

The oscillatory dependence of Ex upon 1/H is determined by the quantum oscillations of the
thermoelectric coefficients αik.

In the quasi-classical approximation the component αik can be obtained by making use of the
Poisson formula and replacing integration with respect to n by integration with respect to energy.
Straightforward calculations yield the following asymptotic expression

αyz = αzz tan ϑ =
2e

(2π~)3

∞
∑

k=−∞

(−1)k

∫

dε
µ − ε

T

∂f0(ε)

∂ε
τε

×

∫

dpH

{

∂S

∂pH

}2
(sin θ)2

∂S/∂ε
exp

{

ikcS(ε, pH)

eH~

}

, (8)
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where µ is the chemical potential of electrons. Here we have taken into consideration that

v̄y = v̄z tan θ = v̄H sin θ =
∂S/∂pH

∂S/∂ε
sin θ, (9)

where v̄H is the drift velocity of charge carriers along the magnetic field averaged over the states
of electron orbit ε = const, pH = const.

When calculating αyz, it is necessary to allow for quantum oscillations of the relaxation time
τ that result from the summation over the electron states in the incoming term of the collision
integral. The quantum oscillations of the scattering amplitude of electrons by impurities in layered
conductors have been obtained in [5–8]. If the condition

T � ~Ω � ηεF (10)

is satisfied the relaxation time in the Born approximation is given by

1

τp(ε)
=

1

τε(ε)
=

1

τ0

{

1 +

(

e~H

m∗cε

)1/2
∑

e

∣

∣

∣

∣

∂2Se

∂p2

H

∣

∣

∣

∣

−1/2

g

}

, (11)

g =
∑

k

ak(−1)kk−1/2
ku

sinh ku
cos

[

kcSe

e~H
+

π

4
s

]

cos
πkm∗

m
.

Here ak are the numerical coefficients depending on the form of the dispersion law for charge
carriers, τ0 is their mean free path time in the absence of a magnetic field,

m∗ =
1

2π

∂S

∂ε

is the cyclotron effective mass of charge carriers, m is the free electron mass,

u =
2π2T

~Ω

and

s = sign
∂2Se

∂p2

H

.

The main contribution into the oscillatory part of τosc is made by a small part of electrons near
the extreme cross-sections Se of the Fermi surface, and the summation over all sections Se should
be taken.

The oscillating part of αzz,

αosc

zz =
2e

(2π~)3

∫

dε
ε − µ

T

∂f0(ε)

∂ε

∫

dpH

{

∂S

∂pH

}2
cos2 θ

∂S/∂ε

×

{

τosc + 2Re
∞
∑

k=1

(−1)kτ0

∫

dpH

{

∂S

∂pH

}2
cos2 θ

∂S/∂ε
exp

[

ikcS(ε, pH)

eH~

]

}

(12)

is determined mainly by the oscillatory dependence of τosc. The terms with k 6= 0 in the formula
(12) are less than the first term by a factor ~Ω/µ.

After straightforward calculations we obtain the following asymptotic expression:

αmon

zz = −
eTτ0

6~3

∂

∂µ

∫

ε=µ

m∗v2

zdpH , (13)

where

αosc

zz =
πτ0eT

3~3

(

1

~Ωµ

)1/2
∑

e

∣

∣

∣

∣

∂2Se

∂p2

H

∣

∣

∣

∣

−1/2 ∞
∑

k=1

(−1)kakk3/2
ku

sinh(ku)

× cos
πkm∗

m
sin

(

kcSe

e~H
+

π

4
s

)
∫

v2

zdpH . (14)
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As is easily seen the amplitude of αosc
zz is greater than αmon

zz by a factor of (µ/η~Ω)1/2.
The Dingle factor ID = exp(−1/Ωτ) is omitted in the above formulas because at (Ωτ) � 1 this

factor is close to unity. However, as the angle ϑ increases, the period of electron rotation in the
magnetic field grows and D decreases. At ϑ close to ±π/2 the amplitude of quantum oscillations
decays exponentially.

If the magnetic field noticeably deviates from the normal to the layers, both αmon
zz and αosc

zz

oscillate with the angle ϑ between the magnetic field direction and the normal. These oscillations
result from the periodic dependence of vz upon the angle ϑ and are characteristic of the kinetic
coefficients of layered conductors [9–12].

Using classical equations of motion for electron whose dispersion law is described by the for-
mula (1), in the main approximation in the small parameter η one can easily obtain

vz = −
∑

k=1

ka

~
εkJ0

(

kapF tan ϑ

~

)

sin

(

kapH

~ cos ϑ

)

, (15)

where Jn is the Bessel function and the coefficients εk are assumed to be independent of px, py.
Considering, for example, the monotonously varying part of the field

Ez = −
π2T

3e

∂σzz/∂µ

σzz

∂T

∂z
, (16)

where

σzz =
e2τam∗ cos ϑ

2π~2

∞
∑

k=1

k2J2

0

(

akpF tan ϑ

~

)

, (17)

we obtain

Ez =
π2T tan ϑ

3e~vF

∑

k=1
k3ε2

kJ0(kβ)J1(kβ)
∑

k=1
k2ε2

kJ2
0
(kβ)

. (18)

Here β = (apF tan ϑ)/~. The functions Jn do not vanish simultaneously, and the more rapid the
series in the formula (17)converges the sharper the maxima on the curve Ez(ϑ) are. The analysis
of the angle dependence of the thermoelectric field in layered conductors makes it possible to
determine the degree of decreasing of harmonics in the expansion in the Fourier series of the
electron energy dependence on the momentum projection on the normal to the layers. It is easy
to make sure that the extremum of the thermoelectric field, as a function of tanϑ, does not
coincide with the maximum of the magnetoresistance. The shift of these extreme values contains
an important information about the electron energy spectrum of a layered conductor.
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Термомагнiтнi явища у шаруватих провiдниках
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Отримано 11 липня 2005 р., в остаточному виглядi – 25 травня 2006 р.

Теоретично вивчено термоелектричнi та термомагнiтнi явища у шаруватих провiдниках з квазiдво-
вимiрним електронним енергетичним спектром довiльного виду в квантуючому магнiтному полi при

низьких температурах. Передбачено iснування гiгантських осциляцiй термоелектричного поля як

функцiї оберненої величини магнiтного поля, що полегшує експериментальне вивчення квантових

осциляцiйних явищ. Показано, що термоелектричнi коефiцiєнти шаруватого провiдника є перiоди-
чно залежними вiд кута мiж напрямком магнiтного поля та нормаллю до шарiв. Цей орiєнтацiйний

ефект пов’язаний з квазiдвовимiрнiстю енергетичного спектру носiїв заряду i є характерним для

шаруватих провiдникiв.

Ключовi слова: термоелектричне поле, шаруватий провiдник, квантовi осциляцiї

PACS: 72.15.Jf
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