Condensed Matter Physics, 2005, Vol. 8, No. 4(44), pp. 835-844 CoNENSED
WMATTER
PHYVSICS]

The high-order cyclotron modes in
Fermi liquid of Q2D layered conductors

O.V.Kirichenko, V.G.Peschansky, D.l.Stepanenko

B.l.Verkin Institute for Low Temperature Physics and Engineering,
National Academy of Sciences of the Ukraine,
47 Lenin ave, Kharkiv, 61103, Ukraine

Received July 18, 2005

The propagation of electromagnetic waves in layered conductors at the
presence of an external magnetic field is investigated theoretically. At cer-
tain orientations of a magnetic field concerning the layers of the conductor
the collisionless absorption is absent and weakly damping collective modes
can propagate even under the strong spatial dispersion. In a short-wave
limit the existence of electromagnetic waves with frequencies near the cy-
clotron resonances is possible at an arbitrary orientation of the wave vector
with respect to an external magnetic field. We have obtained the spectrum
of waves with the frequencies near the cyclotron resonances of high order
with regard to the Fermi-liquid interaction of the electrons.
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Experimental studies of galvanomagnetic phenomena in a large family of tetrathi-
afulvalene based ion-radical salts of the form (BEDT — TTF),X (X stands for a set
of various anions) indicate that these layered compounds possess the metal type elec-
trical conductivity. This permits to describe electron processes in such conductors
based on the well-developed concept of quasiparticles, analogous to conduction elec-
trons in metals. Observation of Shubnikov-de Haas magnetoresistance oscillations
prove that the approximation of free path time 7 in these layered conductors can be
sufficient for charge carriers to manifest their dynamic properties. Their cyclotron
frequency € may significantly exceed 77! (see, for example, [1-3] and citations there-
in).

The sharp anisotropy of the conductivity of layered conductors is apparently
connected with the anisotropy of the velocities on the Fermi surface and restricts
the choice of suitable models for the Fermi surface. The model of the Fermi sur-
face in the form of a weakly corrugated cylinder is in a good agreement with the
experimental investigations of many layered conductors. The results of calculations
based on this model are in complete agreement with the experimentally observed
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Shubnikov-de Haas oscillations in the tetrathiafulvalene salts (BEDT — TTF)JBr
and (BEDT — TTF)yJs.

The charge carrier energy (p) in layered conductors weakly depends on the
momentum projection p, = pn on the normal n to the layers. The electron energy
spectrum can be represented as the Fourier series with respect to the variable p, /po
with rapidly decreasing coefficients. Confining ourselves to the zeroth and first har-
monics and neglecting the anisotropy in the layer-plane we can write the dispersion
law as follows:
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Here g9 = nuppo, v3 = 2ep/m , m is the effective mass in the layer-plane, /i/py is the
distance between the layers, i is the Planck constant, ep is the Fermi energy. The
parameter 7 characterizes the anisotropy of the charge carrier energy spectrum. In
the absence of a magnetic field the ratio of the conductivity across the layers to the
in-plane conductivity is about n?.

The experimental studies of the propagation of electromagnetic waves in the
layered conductors has also attracted the attention of the researches. Several pa-
pers appeared, in which the results of the observation of cyclotron resonance in
a — (BEDT — TTF);KHg(SCN) and in (BEDT — TTF)3ReO4(H20)) have been re-
ported [4-6].

The kinetic phenomena in alternating fields contain rich information about the
electron energy spectrum and relaxation properties of charge carriers. In the presence
of a high external magnetic field Hy the other types of weakly attenuating electro-
magnetic waves (helicoidal, magnetohydrodynamic and cyclotron waves) occur. The
spectrum of their high frequency branches depends essentially on the constants of
Fermi-liquid interaction. The results of the studies of the wave processes in con-
ventional metals with regard to the Fermi liquid interaction of charge carriers, are
reported in the monograph [7]. Herein below we consider the propagation of elec-
tromagnetic waves in a Fermi liquid of the layered conductors placed in an external
magnetic field. The specific features of the quasi-two dimensional electron energy
spectrum of a layered conductor manifest themselves in its kinetic properties. The
velocity vy of the charge carriers drift along the magnetic field direction gets zero
for some values of the angle ¥ between Hg = (Hy sin, 0, Hy cos ) and the normal
n to the layers. This is the condition when there is no collisionless absorption of the
electromagnetic wave energy by electrons and weak damping waves can propagate
even under the strong spatial dispersion [8]. In a short-wave limit the existence of
electromagnetic waves with frequencies near the cyclotron resonance is possible at
an arbitrary orientation of the wave vector k with respect to Hyg. We analyze the
spectrum of cyclotron waves under the strong spatial dispersion with regard to the
Fermi-liquid interaction.

Kinetic properties of the system of fermions should be described by means of
the kinetic equation for the density matrix p. In the quasiclassical case when AQ) <
T < ner the quantization of the charge carriers energy in the magnetic field does
not essentially affect the magnetization M (7 is the temperature). Under these
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conditions the density matrix ¢ can be presented as an operator in the space of spin
variables and as a function depending on coordinates and momentum.
The interaction between electrons results in the correction to their energy

/

d3 / / !
dé(p,r,t) = Tr, / (2TZ)3 A(p,o,p,0)ip(p,r,0 ,t) (2)

which can be described with the aid of the correlation function [9,10]
A(p.6,p.6") = L(p,p) + S(p,p )56, (3)

where dp is the nonequilibrium correction to the density matrix, o are Pauli ma-
trices. The second term on the right-hand part of (3) corresponds to the exchange
interaction between electrons.

The alternating electric E and magnetic H™ fields produced by the electric cur-
rent

d3p

(2mh)3

. d3p . . 0¢
j(r,t) =eTr, / Wp(p,r, o,t) o + cpprot Tr,,/

p(p,r,o,t) (4)

should be determined from the Maxwell equations

4 10E 1 0H~
Titign  mE- T (5)
where e is the electron charge, c is the velocity of light.

Instead of the density matrix p, it will be more convenient to use the distribution
function f (r,p,t) = Tr,p and the spin density g(r,p,t) = Tr,(6p). The function
g(r,p,t) and the second term on the right-hand part of (4) describe paramagnetic
spin waves predicted by Silin [11] and observed in isotropic metals by Dunifer and
Schultz [12]. The properties of spin waves are determined by the magnetic suscepti-
bility tensor xi.(w, k). For the frequencies, that do not coincide with the frequency
of eigen-oscillations of the spin density, the components y;x(w, k) are of the order
of the static paramagnetic susceptibility xo =~ puiv(erp) ~ 107¢ (v(ep) is the density
of states at the Fermi level). For this reason we neglect the spin magnetism of the
media, when considering the electromagnetic modes arising from the oscillations of
the electron distribution function.

Let us present the distribution function f in the form f(r,p,t) = fo(e) —
eW(r,p,t)E - 0fy/0e, where fy(e) is the equilibrium Fermi function. The nonequi-
librium correction ¥(r, p,t) satisfies the following kinetic equation

aa—l:f + (V% + % (V X Ho) a—ap) b =v+ Icoll<¢’)- (6)

rot H™ =

Here

O=T4 (L), <pr>;/(
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Iy is the collision integral.
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The wave process can be regarded as harmonic and the coordinate and time
dependencies of the fields E,H~ and of the function ¥ can be represented as
exp(ikr — iwt). Regardless of the weak current of spin magnetization in (4), the
current density in a conductor can be written as follows:

. 2d%p df
ji = 62/ 2nh)? (_8—50) 0;®;E; = 0ij(w, k) Ej (7)

where 0;;(w, k) is the electrical conductivity tensor, v. = 0s(p)/0p. Substituting
E,H™ in the form of a harmonic wave into the Maxwell equations (5) we obtain the
dispersion equation

2
det [kQéij — k@kj — %gij(w, k):| = O, (8)

which determines the spectrum w(k) for the electromagnetic field oscillations. Here
gij(w, k) = &;; + 4miw™! 0j(w, k) is the dielectric tensor. We shall use the reference
frame where the wave vector k = (ksing, 0, k cos¢) is oriented in the zz plane. For
frequencies much less than the plasma frequency wy, the first term in the expression
for €;; can be neglected.

In the lowest order approximation about the small parameter n the function
L(p, p’) does not depend on py = (pHy)/Hy and can be presented as

L(p,p)= > Ln(e)em ¥, (9)

n=—oo

We have chosen the integrals of motion of an electron in a magnetic field ¢, py and
the phase ¢ = Qt; at its orbit in the magnetic field as variables in the p-space. Here
t1 = (c/eHy) [ dl/vy is the time of motion along the trajectory e(p) = ep, py =

const, dl = (dp2 + dpz)l/ ? v, is the velocity component orthogonal to the external

magnetic field [13]. Due to the symmetry of the function A(p, &, p’, 6'/) with respect
to its arguments, the coefficients in (9) satisfy the condition L, = L_,,. Allowing for
next-order terms of the expansion for the correlation function about n does not lead
to the noticeable correction of the results.

Expanding the functions ® and ¥ into a Fourier series with respect to ¢ and
equalizing coefficients at exp (inp) in the equality ® = ¥ + (LW¥), we obtain

=0 > 8", (10)
Here 9
= (n) _ 1 /71’ —in. /ﬂ- — —in
' =— dpe ™% do® (ep, f) = (e "* D 11
o ), e[ e =), (11)

is the Fourier component for the function (®)s, 8 = py/pocosd, (--+); = 1/2m X
7 dB---, Ay = Ly /(14 Ly), Ly = v(ep)L,. Substituting (10) into the equation
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(6) and using the equality 0/0t; = (e/c)(v x Hy)0/0p we find the kinetic equation
for the perturbation of the renormalized distribution function for electrons with the
quasi-two-dimensional dispersion law [14]:

odP i Vo iw — 1

2 ko= Y ¢ 4 Lo (@ 12

5y TIPS GG Y AB O Gl (@) (1)
The collision integral in the T—approximation can be written as Iy (®) = —771®

(7 is the relaxation time for the momentum ). Below we consider the wave processes
in the range of frequencies satisfying the condition

wp > w>T (13)

where the asymptotic expression for the spectrum of collective modes does not essen-
tially depend on the concrete form of the collision integral. Here w,, = (4me?ng/m)'/?
is plasma frequency, ng is charge carrier density.

In the first order in 7, the components of electron velocity are easily found by
means of standard method of nonlinear mechanics

ve(t) = v0(t) + vV (1), vlV(t1) = v cosQ(B)t, Ug(jo) (t1) = —vosin Q(B)t1,
a)sin (8 —nr/2)
nz—1

v (t;) = nup tan ¥ Jo(a) sin 8 — nup tan 9 Z In( cos n)(B)ty,

v,(t1) = nupsin (6 — acos Q(B)t1) .
(14)
Here

Q(B) = Qo (1 + %n tan ) J;(«) cos ﬁ)

is cyclotron frequency of quasi-particles with the energy spectrum (1) in the magnetic
field Ho = (Hpsind, 0, Hg cos ), Qo = (|e|Hy/mc) cos ¥, o = (mwvp/po) tandd, J, ()
is the Bessel function, the initial phase is chosen so that v,(0) = 0,

(1)
vy = (1——(())—1—@008(&—04))

Vr muvug

is the amplitude of the first harmonic of v,(t).
After straightforward calculations the equation (12) can be transformed into the
form

7 e (L [P0 @ @) (221 S 2,8 e
¢ = plexp | o " (@ —kv(¥", pu)) q g E Ap® e ;
—00 4 =

(15)

where © = w + i77!, in the collisionless limit (7 — 00) we may set @ = w + i0.
After multiplying the equation (15) by e~ and then integrating with respect to
{3 and ¢, we obtain the infinitesimal set of linear equations for the Fourier coefficients
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&%) of the function (@), =1/(2m) f:r dp®(er, 3, ¢)

o0

o = ()
S = 3 (= Aep Gan (9,) @7
p p=—00
1/ 1 fo27r 027r dedprv (B, o — @r)enetifileen)
- a\or 1 _ e2miR(2m,2m) ) (16)
B

Lfozrr 027r dgpdwlei(pfn)gafipgmJriR(‘P#’l)

271 1 — e2miR(2m,2m)

fap (B) = (17)

Here R (p, 1) = Q7! f_% dy’ (0 —kv(8,¢')), Onp, is the Kroneker symbol. The
dependence of the cyclotron frequency on py should be taken into account in the
expression k,v, /€ in the exponent when nkvp 2 Q.The coefficients of the Fourier
series for the smooth function L™(p,p’) significantly decrease with their number
increasing, so we shall restrict ourselves to taking into account a finite number of

the terms in the right part of (16).

The parameter 72 is usually of the order of 1073 —107>. If the inequality (krg) =3 x
(nwpvr/Qc)® < 1, (1o = vp /) is satisfied, the components of electrical conductivity
tensor 0,4, = x, %y, proportional to 7, and the component o, ~ n? in the dispersion
equation can be neglected. Substituting the Fourier series expansion of ®; into (7)
we obtain

Oxzx = éevaV(gF) ((T)g) + (T)(z_l)) ) Oyy = _2_Z-e UFV(EF) ((I)g(/l) - éé—l)) ;
1 - - 1 _ -
Opy = EGQ’UFV(EF> (@;1) + CID?(J_I)) = Ze%pu(ap) ((IDS) - @;‘1)) . (18)

Here v(ep) = mpo/mh? is the density of states of electrons at the Fermi level. Equati-
ons (8), (16), (18) describe the eigenmodes of the electromagnetic field in the Fermi
liquid.

Under the strong spatial dispersion krg > 1, nkry ~ 1 the integrals about ¢,
in the formula (16) can be calculated by means of the stationary phase method,
and if w < krg, the stationary points are determined from the equations v,(p) =
0, vz(p —¢1) = 0. It is easy to see that the maximum component of the tensor
0j is oy, which is proportional to (krg)~!. The expansion in power series of the
components 0., = x,%,2 begins with the terms of higher order in (kry)~!. In
the basic approximation in small parameters (kry)~! and 7 we obtain from (8) the
following dispersion equation

k2c? A

Oy (19)

w? w
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The asymptotic expression for f, ,(5) for n,p < kry takes the form

1
funlB) = - | ot (@ (ev))cos 5 n = p)

sin (R (z,7) — & (kv), + 3(n +p))

20
- S (@ — (kv)_) (20)

Outside the domain of values of w, k satisfying the condition
lw —n| > max |(kv),|, (21)

the integrands in the formula (16) have a pole and after integration over py the
dispersion equation gets an imaginary part responsible for the strong absorption of
the wave.

After averaging the component of electron velocity over the period of motion
along the cyclotron orbit, we obtain

(kv), = kvg = nupJo(a)(k; tand + k) sin 3. (22)

For the directions of Hg when « is equal to one of the roots «; = (mwg/po) tan d; of
the equation Jo(a) = 0, the average (kv), ~ n? is of the second order in 7 and there

is no collisionless absorption. Having determined Y using (16), we can find the
conductivity tensor components. Within the framework of the model which allows
for the zeroth and first Fourier harmonics of the Landau function

L(p,p') = Lo + 2L cos(p — ¢'), (23)

the dispersion equation becomes

1 » sin R (19; 1 2
1= e — cotﬂ+# —0 2 (wva) -\
Q0 & Qp sin &2 Qo &o Qocso

o (SR (D), @iG#%—me>>@wmm@)

—cot — 44—~ 7P
o QO+ sing—‘(‘)’ o o sin’ ?Tw
(24)
Here
/2 ( )
kv(p kyvy k.vp
R(v;) = / dp =2 -7 Hy(a;) cos 8
) o) ¥ " aE) ™o,
—7/2
Jont1 ()
Y tan o, 25
L 290 o Cosﬁz n(n+1)2n+1) (25)
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w/2
Ho(a) = (2/7) [ desin(acos ) is the Struve function, & = k,ro.
0

The equation (24) has the solution in the region of the resonance
w=ny + Aw, 0 < |Aw| < Qy, n=123..., (26)

where n{)y is the frequency corresponding to the cyclotron resonance of n order. In
quasi-isotropic metals the similar types of waves take place only when k is perpen-
dicular to the direction of the magnetic field.

In the case when (kr) =3 (wpvp/Qc)? > 1, which is usually realized in the conduc-
tors whose charge carriers density is about one electron per atom, the left-hand part
of the equation (24) may be neglected. If the inequality 1— | (sin R(;)) 4 [> &1 s
satisfied, the spectrum for the cyclotron waves can be found in the analytical form

Aw = Aw0+Aw1,

Awy = G _ #amsm <sinR(19i))ﬁ>,
Qoo (n . Awo> (cos R(1:)))

Awy = :
w1 € Qo / 1—(sin R(ﬁ)};

(27)

In the other limited case (kro)™® (wour/Qc)” < 1, the solution of (24) can be
represented in the form (26) with:

Aw = %) (ai\/CLZ—i—Z(fy—)\l))\o (1 — (sin R(1;))? — <cosR(19i)>;)>, (28)
a = % Mo=2(7 = M)+ (=1)" (o + 2(7 = ) (sin R(3:)), |, 7 = (&:;)2

If nkvrp < Qo, the spatial dispersion along the z-direction is not essential, R(v;) =
2k,ro and formulas (27),(28) transform into the expressions obtained in [14] for the
case when the wave vector k = (k,0,0) is orthogonal to an external magnetic field.
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BuUCOKO4YaCTOTHI LMKNOTPOHHI Moau y Pepmi pianHi
Q2D wapyBaTux NnpoBiAHUKIB

0.B.Knpunuenko, B.IMNiwaHcbkni, O.1.CtenaHeHko

®disnko-TexHiyHni IHCTUTYT Hnabknx Temnepatyp im. B.1.BepkiHa HAH
Ykpainu, YkpaiHa, 61164, m. Xapkis, np. JleHiHa, 47

OtpumanHo 18 nunHga 2005 p.

TeopeTn4HO AOCNIAXKEHO MOLUNPEHHS €EeKTPOMAarHiTHUX XBUSb Y LLIAPY-
BaTUX MNPOBIgHMKAX Y NPUCYTHOCTI 30BHILLUHBOrO MarHiTHoro nong. MNpwu
DEeSKNX OpiEHTaLiIX MarHiTHOro nNons LWoao wapis NpoBigHMka 6e33iTk-
HEHe MOrfIMHAHHS BIACYTHE | MOLWMPEHHS cnabo3racaymx KONeKTUBHUX
MO, € MOX/IMBMM HaBiTb B YMOBaX CWUJIbHOI MPOCTOPOBOI aAncnepcii. Y
KOPOTKOXBUSBOBIN MEXi MOX/MBE iCHYBAHHS €NeKTPOMAarHiTHUX XBUSb
3 yactotamu Oing pPe30HaHCIB NPV AOBINbHIN OpPIiEHTALi XBUIBOBOro
BEKTOPA LOA0 30BHILLUHBOrO MarHiTHOro nons. 3HanaeHoO CNEKTP XBUJb
3 yactoTaMu BiNg KpaTHUX LMKIOTPOHHUX PE30HAHCIB 3 BPAaxyBaHHAM
depMi-pignHHOI B3aEMOoji enekTpOoHiB NPOBiAHOCTI.

KniouoBi cnoBa: wapysari npoBigHvikn, depmi-pianHa, UnKI0TPOHHI
XBUJTI

PACS: 72.15.Nj, 72.30.+q
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