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Propagation of electromagnetic waves in the electron Fermi liquid of a quasi-two-dimensional
conductor under strong spatial dispersion
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We have analyzed propagation of electromagnetic waves in a Fermi liquid of charge carriers in quasi-two-
dimensional layered conductors placed in a magnetic field. It is shown that high-frequency collective modes,
which are absent in a gas of charge carriers, can be observed even at low intensity of the Fermi-liquid
interaction. The spectrum of the weakly damping waves has been obtained.
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At low temperatures allowance for the Fermi-liquid cor- of the layered conductors at low temperatures can be de-
relation of conduction electrons in metals results in appearscribed making use of the concept of quasiparticles, analo-
ance of high-frequency collective modes that are absent in gous to conduction electrons in metals. Energy of charge
gas of charge carriers. Experimental observation of thesgarrierse(p) in layered conductors depends weakly on the
waves in ordinary quasi-isotropic metals is faced with diffi- momentum projectiop,=p-n on the norman to the layer
CultieS. The SpeCtrum Of the |0ngitudina| wave |ieS near thq—ﬂane and can be represented in the form
plasma frequencyo,, which is extremely high. In the ab-

sence of an external magnetic field the ratio of the frequency * n
of the transverse collective mode tq, is of the order of e(p) = eo(Px py) + E en(Px Py, n)cos(—>. (1)
1072, but the existence of this wave needs a sufficiently n=1 0

strong electron-electron interactiénn the presence of a H

: ron < . .
high external magnetic field the other types of weakly attenus, ere §n+1(px,p_y,7;) enlPx. By, 7), er i the .Ferm| energy,

; . e nlpy is the distance between layers, afidis the Planck
ating electromagnetic waves, such as helicoidal, magnetohy-

drodynamics, and cyclotron waves, occur. The spectrum o onstant. The parametercharacterizes the anlsotropy_of the
N . charge carriers energy spectrum, ayfds about the ratio of

their high-frequency branches depends essentially on th L : .

L e . . the conductivity across the layers to the in-plane conductiv-

constants of the Fermi-liquid interaction. The influence of. _ ~. s

ity in the absence of a magnetic field.

the Fermi-liquid correlation of charge carriers on the wave Kinetic properties of the system of fermions should be

processes in quasi-isotropic metals has been investigated . N . :
many authors. The results of a considerable part of thes%>éscr|bed by means of the kinetic equation for the density

studies have been reported in the monograph in Ref. 2 matrix p. In the quasiclassical case WhémS.T< 7er the .
guantization of the charge carrier energy in the magnetic

Be'OW we consider the propagation of electromagnetl(;ﬁeld does not affect essentially the magnetizatddn(( is
waves in layered conductors placed in an external magneti

field with the inductiorB,=(0,0,B,) orthogonal to the con- the cyclotron frequency of charge carriefsis the tempera-

ducting layers. We also analyze the influence of the FermiEure)' Under these conditions the density matrix can be pre-

liquid interaction on the spectrum of cyclotron waves undersented as an operator in the space of spin variables and as a
tr?e conditions of strong Spatial dispe?lsion In layered Confunction depending on coordinates and momentum. The
ductors the conditions for observation of the Fermi-liquid equation for single-particle density matrix has the form
waves, propagating along the magnetic field direction, are ,»
much more favorable than in quasi-isotropic metals. The spe- — ——

cifics of the quasi-two-dimensional electron energy spectrum gt

1 1 J
(.51, + (.5} + 5 B} + eE - ﬁ

of the layered conductors gives rise to peculiar Fermi-liquid le(l g ap dp | de .
collective modes whose spectrum corresponds to moderately + 2c\l 9o Pl R =lcol-
: . p ap dJdp Ldp
high frequencies.
Recently an entire series of conducting crystals that pos- (2

sess a layered structure with a pronounced anisotropy cm
electrical conductivity of the metal type has been synthe- A

sized. These are organic conductors of the family of tetrathiSpin variables{e, p} is the classical Poisson bracke is
afulvalene salts, dichalcogenides of transition metals, grapthe collision operatoe is the electron charge,is the veloc-

ite and its intercalates, etc. Galvanomagnetic phenomena arfyy of light, E is electric field,B=By+B~(r,t), B7(r,t) is a
quantum oscillatory effects in these compounds have beefield of wave, e=&(p)d,5—uo0o-B+38e(p,r,t), 6,5 is the
studied intensely in many laboratoriésee, for example, Kronecker symbol, ang is the magnetic momentum of an
Refs. 3-5 and citations thergiThe results of these investi- electron. The interaction between electrons results in the cor-
gations suggest that kinetic and electrodynamics propertie®ction to their energy

ere[e,p], is the commutator for matrices in the space of
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2d%p’ (_ afoe’)

@mh)?\" g’ )L(p'p')%”(fvp’,t),

O\ (b5 5pur. 7.1 (Lo =
ﬂ_ﬁ)3 p.O',p O pp,l’,O', lﬂ -

(2
) andlco|,=Tra(fc0,,) is the collision integral.
which can be described with the aid of the correlation |N€ wave process can be regarded as harmonic and the
functiorf’ coordinate and time dependencies of the fi&@dB~ and of
the functiony can be represented as édpr —iwt). Regard-
A(p,o.p’,6")=L(p,p") +Sp,p') 50’ (4) less of the weak current of spin magnetization in &, the
current density in a conductor can be written in the form
where 8p is nonequilibrium correction the density matrix, o ¢
and o are Pauli matrices. The term depending on the opera- i= P (_9% D=0 (w0 KE: 8
. . Ji=e 3 Uj O'U(w: ) i (8)
tors of spin on the right-hand part of E@) correspond to (2mh)°\  de
the exchange interaction between electrons. Since the in-, oi(w,k) is the electrical conductivity tenson
plane interaction between charge carriers exceeds substag—a ( )/aj Substituting E B~ in the form of harmonic
tially the interaction between quasiparticles belonging to dif-~ &(p) tp.th M "g ' Hion btain the di
ferent layers, then both the energy and the Landad/ave Into the Vaxwell equa lorgh), we obtain the disper-

correlation function can be expanded into asymptotic serie8/on equation

oe(p,r,t) =Tr(,/J

about 7, the leading term being not dependent mn This w2
suggestion simplifies essentially the kinetic equation and detl k?5; _kikj_?sij(wnk) =0, 9
makes it possible to obtain its solution for rather general
form of the correlation function. which determines the spectruaik) of oscillations of elec-
To find the electromagnetic field of the wave it is neces-tromagnetic field in a conductor. Here;(w,k)=8;
sary to solve the Maxwell equations +(47il w)ojj(w,k) is the dielectric penetrability tensor. We
B shall use the reference frame where the wave vektor
rotB~ = 19E + AiTj’ divB~=0, rotE=- }ﬂy =(ky,0,k,) is oriented in thexz plane. Fc_)r frequer_lcies much
cdt ¢ c aJt less than the plasma frequenay the first term in the ex-

(5) pression fore;; can be neglected.
In the lowest-order approximation about the small param-
supplemented by the equation linking the current derjsity ~ eter» the functionL(p,p’) does not depend gn, and can be
the perturbation of density matrix of electron subsystem presented as

L(p,p') = X Ly(s)ee ), (10

_ ~ dp . NN
](r1t)_ETrﬁf (zﬂﬁ):‘lp(p’r'a’t)é)p n=-o

+cuot Tr f d®p Sap.r, o) ©) We have chosen the integrals of motion of an electron in a
Ho 7) (2mh)3 pp.1, 00 magnetic fielde and p, and the phase of its velocity
=QOt, as variables in the space. Here¢;=(c/eBy) fdl/v | is
Instead of Eq(2) for p, it will be more convenient to use the the time of motion along the trajectog(p)=¢g, p,=const,
set of four equations for the distribution functidfr,p,t) dI:(dp§+dp§)1’2, andv , is the velocity component orthogo-
=Tr,p and for the spin density(r ,p,t)=Tr,(op). To obtain  nal to the external magnetic fieldBecause of the symmetry
the first equation one must apply the operation of taking thef function A(p, o,p’, ¢’) with respect to its arguments, the
trace over spin variables Jto Eq.(2). Three others are the coefficients in Eq(10) satisfy the conditio,=L_,,. Allow-
result of applying Ty to the initial equation multiplied byr. ing for next-order terms of the expansion for the correlation
The functiong(r,p,t) and the second term on the right-hand function abouty does not lead to the noticeable correction of
part of Eq.(6) describe paramagnetic spin waves predictedhe results.
by Silin® and observed in isotropic metals by Schultz and Expand the function® and ¢ into a Fourier series with
Dunifer? Below we shall neglect small oscillations of the respect top:
spin density and consider electromagnetic modes induced by "
the distribution function perturbation. _ in _ in
Present the distribution functioh in the form f(r,p,t) ®= nzz_x Pi(e,p)e", w'nzz_m Un(e.p)e"?.
=fo(e)—(r ,p,t) dfyl de, where fy(e) is the equilibrium
Fermi function. The nonequilibrium correction should be de-Equalizing coefficients at exime) in the equality ®=y¢

o

termined by solving the linearized kinetic equation +(Ly) and using the relationshig10), we obtain

Y J e d 5=

— 4+ |V + (VX Bg)— |P=eVE + I q(®). (7 =0- g

ot (V&r C(V 0) ﬁp) ev coll( ) ( ) 4 X nzz_m An(bne (11)
Here ® = i+ (Ly), Here
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— 1 (2 (T , where m=w+i7 L. Equations(8), (9), and (17) describe
o, = Wf de e_'n"’J do @(eg, 0,¢) = (€"°D)y eigenmodes of the electromagnetic field in the Fermi liquid
0 o of electrons with the dispersion lag5).
(12 In the case when the wave vector(0,0 k) coincides

with the magnetic field direction, the dispersion equati@n

is the Fourier coefficient for the functiotd), 6=p,/po, brakes down into three equations

¢-9g=(112m) [T dO---, \y=L7/(1+L7), L= =w(ep)Ly, and

v(eg) is the density of states at the Fermi level. Substituting 82;= 0, (18)
Eq. (12) into Eq. (7) and using the equality/dt,=(e/c)(v 5

X Byg) -l dp we find the kinetic equation for the perturbation et e = (E) (19)
of the renormalized distribution function for electrons with XETYN o

h i-two-dimensional dispersion lady: . .
the quasi-two-dimensional dispersion laty [we have taken into account the equatiens=e,y, &,,=¢y,

9d i & -E oo  — _ =0 because of the isotropy in the layer plane of the electron
— - —(w-k-V)P=———=— > \D,(c)"® dispersion law(15)]. Equation(18) describes purely longitu-
Je Q Q== dinal oscillations and coincides exactly with the dispersion
1 equation for longitudinal oscillations of the charged Fermi
+ 5|cou(q))- (13)  liquid in the absence of a magnetic field. The other two equa-
tions describe transverse electromagnetic waves with differ-
The collision integral in ther approximation can be written ent polarizations. Circularly polarized components of the
asl e (®)=—7"1® (7 is the relaxation time for the momen- electric fieldE,=E,+iE, of these waves and of the electric
tum). Below we consider wave processes in the range ofurrent densityj.=j,+ij, are connected by the simple rela-
frequencies satisfying the condition tionship

W > w> 71 (14) jo= (o F iny)Ei- (20)

where the asymptotic expression for the spectrum of collecMaking use of expressio(8) we have
tive modes does not depend essentially on the concrete form . . —
of the collision integral. P g e =evlep){(vxtivy) Py, = Wprlep)Puy,  (20)

For the sake of brevity in the calculations we confinenhere 5+1 is determined by the formuldl2), and »(sp)
ourselves to account of the two terms in Ef). Neglecting — — /743 s the density of states of electrons with the dis-

the anisotropy in the layer plane we write the charge carrier . . .
disper;ion |gv)\l/ Iin the fo);m P we wr 9 ! persion law(15). The coefficientsb,, can be readily found

from Eg.(17) being transformed to the form
2

2
+ . . - —
e(p) = Pt By g9 cosp—z. (15 i ew E,€¢ i ev Ee'® d e
2m Po O=—= = ‘oD N ———.
20-kv,-Q 20-kv,+Q = @-kv,-nQ
Hereeg= nuepPo, U,Z:EZSF/m, andm is the effective mass. In 22)

a magnetic field directed along the normal to the layers, the

components of electron velocity are given by With the aid of relationg20) and(21) it is easy to determine
o+ ioy,, and represent the dispersion equati@6) in the
collisionless limit(r— «) as

kc\? 2
v,= WFSin&1 b, = UEA I1+ecosZ, <_) =1-—L[sgro F OV(w T Q)2 - (gkvp)? = \o] .
Po Po ® ®

where e=¢gy/eg. In this case the cyclotron frequency in the (23

main order approximation with respect ipangl plasma fre- At frequencies much lower than the plasma frequency, the
quency are, respectivelf)=|e|By/mc and wy=4m€no/m  solution of Eq.(24) is given by

(ng is charge carrier density | > — 55
As a result of simple calculations E¢L3) can be trans- . _ N(kog) — [(7kvg)” ~ Q7 (g — w/K°c) "+ O
1 -\~ wyfk?c?)? '

Ux=UV, COS¢, vy=-v, SiNg, (16)

formed into @

(24)

At A, >0 this formula describes two branches of oscillations.
The low-frequency branchw <, k< wp/c\s“)\j) in the lim-
+i kxvi(sm @' —sin 90)) iting case whemykve <() represents a helicoidal wave with
Q frequencyw:kaczlwg, which propagates along an external
&NE ol . magnetic field direction. The other, a high-frequency wave
(__'_ > qu,peip«:’)' (17) (0>Q), results from the Fermi-liquid interaction between
Q O charge carriers and exists if the following conditions hold:

¢ ’ L ~ _ L
q)—f_wdcp eXp<—Q(w kp) (@' = @)
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2w (27
(0T Q)2-(\w)? < (gkvp)? < (0 F Q)% k> —“L fo(6) = - i_(l — g?miolyL f f de de,
C\“}\l 2 0 0
(25 »

The inequalitieg25) show that the frequency takes real val-

ues at real values of the wave vector. The inequalityR - ; ; — ;

: " yop)=—¢sine+Esin(e—¢y), é=kv  /Q, andJ is the
(mkvp)?’<(w¥Q)? is a usual condition of the absence of B(eisg)fungtionqo gsinle=gy), £=ku, m(¢)
Landau’s collisionless attenuation in a magnetic field. When |\ '1ha main épproximation iy, the Fermi-liquid interac-

this condition is satisfied the attenuation rate of the wave i?ion does not affect ther,, component of the conductivity
. .. . - Y4
determined by collision processes and is proportional o oncor This is the case when Fermi-liquid effects manifest

The values k=knin=wp/CV\1, @ (Kmin) = nwpve/CVA themselves if the dependence of the Landau correlation func-
correspond to the edge of the wave spectrum. The depegyn, L(p,p’) on 7 is taken into account.

dence of limiting values for the wave vector gnd the fre- |4 the case whehés 1 the exponents in the integrand in
quency onk, shows that the waves under consideration can,,,ression(30) are rapidly oscillating functions and the
exist at however weak a Fermi-liquid interaction. It SUﬁ'CeSasymptotic expression fdg(6) can be obtained by means of

that A; >0, but the conditions for the excitation of these o stationary phase method. As a result, the dispersion equa-
modes become more difficult with decreasinghef tion takes the form

Proceeding to the limifl— 0 in Eq. (24), we obtain the

spectrum of the Fermi-liquid wave in the absence of a mag- 25 2 ~ .
netic field, k_‘; —1- 7]22‘)‘£<00tm L 2h(egy) S|n~2§0 )
w Qw & Q €& sin(mw/Q))
7KUE (31

N NPTV A (26)

V1= (- opfke) where&,=kro=kvg/Q, andr, is the Larmour radius of elec-
S tron. Under the condition whefin?/ £)(wwe/ Q)?<1, it
The magnetic field lifts the degeneracy from the spectrumsyiiows from Eq. (31) that the spectrum of the cyclotron
which leads to the appearance of two waves with different, o\ es is

polarizations, the limiting value for the frequeney being

decreased. It is easily seen from Ef3) that atB,=0 the 7 [ wvr |2

value ofk.,;, remains unchanged. (k) =nQy 1 ——3(—u>
As follows from Egs.(9) and (15), the spectrum of the mép\ (C

electromagnetic waves with wave vect&r=(k,0,0) or- 2J1(e&o) .
thogonal to an external magnetic field is determined by the ><<1 +(= ﬂnTS'n 250) , n=1,23,...
equations 0
(32
k’c? Equation(28) corresponds to the wave with the vectr
02 Ezz (27) orthogonal to an external magnetic field. The components of
current density are determined by the expressions
stx_ ExxByy t Exy- (28) Ix= eV(£F)<Ux<D>9,<p = EeUFV(SF)(q)l +®_y) = oy By + oxyEy,

The first of these equations describes the wave with electric 1 o

field vector d|recteq along the vect8y, In prder to obtain iy=ev(ep)(v,P)y, = EeUFV(SF)(q)l_ D_y) = 0y, Ex + 0y, E,y.
the spectrum of this wave, the conductivity componepyt !

should be determined. Multiplying E¢17) by v, and aver- (33)
aging over the Fermi surface, we obtain

After multiplying Eq.(17) by e™"¢ and then integrating over

0,,= enuev(ep)(sin 60),. JE, 6 and ¢ we obtain the infinitesimal set of linear equations for
&2 22 D,
= %”(&)@inz 0 o(6)),
O Voo i®rp g o

P & (si? 032(9), > (5”P+ ﬁkpf”vp>®p" 20 Ffn T 150 B
=-i—2 > e (29) pe—e

A7 ey M—w/Q (34)

Here where
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1 @O -1 o=n0+Aw, 0<Aw< ), (38)
fnp:——_(l—ez”I @iY)
2mi wheren() is the frequency corresponding to the cyclotron
2w (2w ) _ o resonance. In the case when
X f f d(PnglelR(wol)—l(n—P)¢+I(w/Q—P)<p1

o Jo P 1 wue >
| ) > 1,
&\ Qc

- S Onenl®IngO)s
i m—% ' which can be realized in conductors whose charge carrier
_ _ o density is about one electron per an atom, the left-hand part
If kro>1, the asymptotic expression for the coefficiefits  of Eq.(37) may be neglected. Then in the range of the wave
can be evaluated by means of the stationary phase methogumbers where the inequality %(ego)sin(2§o)|>§5l is
As a result, fom,p<kro we have satisfied, the spectrum for cyclotron waves can be found in
1 ~ the analytical form
fig=-— —(cotﬂcosz(n -p)
g\ QT2
sin(2éo + (w/2)(n + p)))
sin(a/Q) '

The coefficients of the Fourier series for the smooth function
L(p,p’) decrease significantly with an increase of their num-

Aw=Awy+ Aw,

n

b arcsinfJy(e&p)sin 250]) )

T

+Jo(€6o) (39)

1
A(DO:Q -
2

ase slg ore Qo[ Awg) Jg(eby)cos 24,
ber, so we will restrict ourselves to a finite number of the Aw, = pury n+ =" L - Petsi? 26, (39
terms. Determin&b,; using Eq.(34) and find the conductiv- e oleto)sin 2&
ity tensor components from E¢33). At kro>1 the compo- In the case when
nents of conductivity tensaw,,, oy, are much smaller than )
ayy and Eq.(28) takes the form i(ﬂpv_F) <1,
K2c2 &\ Qc
W2 = By (36) the solution of(36) can be represented in the form of Eq.
~ (38) with |[Aw|<Q in whole range wher&,>n and
In the frame of the model that allows for the zeroth and first
Fourier harmonics of the Landau function _nQ I, 5
Aw= —(ai va©+ 2(y = NN _Jo(ffo)])i
L(p.p') = Lo+ 2Ly cosp—¢'), o
the dispersion equation becomes 1
P _ _ _ n _
® 1( _— sin 2%, ) a= 2{)\0 2(y=A) + (= D"Mho+2(y—Ny)]
1-No5 | cot—+Jo(edo) == —
Q& Q sin(7rw/)) . wUE 2
o 1] { owe )2 X Jo(€éo)sin 20}, y= (ch ) : (40)
:2——|:(_fi> _)\1:| 0
Q &\ Qcgo As appears from the formula@9) and (40), under the
o sin 2%, strong spatial dispersion conditions the frequencies of the
X (‘ cot— + Jo(ebp) ———= cyclotron waves are oscillating functions of the wave num-
Q sin(ma/(2) ber. It should be noted that in layered conductors the collec-
Ao w COS(TwIQ) - Jg(ego) tive mode with the frequencies near the cyclotron resonance
+§—a S (7 510) (37)  frequencies can exist dtw,~ 7kuv:<(. Because of the
0 small value of the parametey; this condition is satisfied in a
The solution of Eq(37) may be written as wide range ok, even in not very strong magnetic fields.
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