
Propagation of electromagnetic waves in the electron Fermi liquid of a quasi-two-dimensional
conductor under strong spatial dispersion

O. V. Kirichenko, V. G. Peschansky,* and D. I. Stepanenko
B.I. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the Ukraine,

47 Lenin Ave., Kharkov, 61103, Ukraine
(Received 12 March 2004; revised manuscript received 23 June 2004; published 7 January 2005)

We have analyzed propagation of electromagnetic waves in a Fermi liquid of charge carriers in quasi-two-
dimensional layered conductors placed in a magnetic field. It is shown that high-frequency collective modes,
which are absent in a gas of charge carriers, can be observed even at low intensity of the Fermi-liquid
interaction. The spectrum of the weakly damping waves has been obtained.
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At low temperatures allowance for the Fermi-liquid cor-
relation of conduction electrons in metals results in appear-
ance of high-frequency collective modes that are absent in a
gas of charge carriers. Experimental observation of these
waves in ordinary quasi-isotropic metals is faced with diffi-
culties. The spectrum of the longitudinal wave lies near the
plasma frequencyvp, which is extremely high. In the ab-
sence of an external magnetic field the ratio of the frequency
of the transverse collective mode tovp is of the order of
10−2, but the existence of this wave needs a sufficiently
strong electron-electron interaction.1 In the presence of a
high external magnetic field the other types of weakly attenu-
ating electromagnetic waves, such as helicoidal, magnetohy-
drodynamics, and cyclotron waves, occur. The spectrum of
their high-frequency branches depends essentially on the
constants of the Fermi-liquid interaction. The influence of
the Fermi-liquid correlation of charge carriers on the wave
processes in quasi-isotropic metals has been investigated by
many authors. The results of a considerable part of these
studies have been reported in the monograph in Ref. 2

Below we consider the propagation of electromagnetic
waves in layered conductors placed in an external magnetic
field with the inductionB0=s0,0,B0d orthogonal to the con-
ducting layers. We also analyze the influence of the Fermi-
liquid interaction on the spectrum of cyclotron waves under
the conditions of strong spatial dispersion. In layered con-
ductors the conditions for observation of the Fermi-liquid
waves, propagating along the magnetic field direction, are
much more favorable than in quasi-isotropic metals. The spe-
cifics of the quasi-two-dimensional electron energy spectrum
of the layered conductors gives rise to peculiar Fermi-liquid
collective modes whose spectrum corresponds to moderately
high frequencies.

Recently an entire series of conducting crystals that pos-
sess a layered structure with a pronounced anisotropy of
electrical conductivity of the metal type has been synthe-
sized. These are organic conductors of the family of tetrathi-
afulvalene salts, dichalcogenides of transition metals, graph-
ite and its intercalates, etc. Galvanomagnetic phenomena and
quantum oscillatory effects in these compounds have been
studied intensely in many laboratories(see, for example,
Refs. 3–5 and citations therein). The results of these investi-
gations suggest that kinetic and electrodynamics properties

of the layered conductors at low temperatures can be de-
scribed making use of the concept of quasiparticles, analo-
gous to conduction electrons in metals. Energy of charge
carriers«spd in layered conductors depends weakly on the
momentum projectionpz=p ·n on the normaln to the layer
plane and can be represented in the form

«spd = «0spx,pyd + o
n=1

`

«nspx,py,hdcosSnpz

p0
D . s1d

Here «n+1spx,py,hd!«nspx,py,hd, «F is the Fermi energy,
" /p0 is the distance between layers, and" is the Planck
constant. The parameterh characterizes the anisotropy of the
charge carriers energy spectrum, andh2 is about the ratio of
the conductivity across the layers to the in-plane conductiv-
ity in the absence of a magnetic field.

Kinetic properties of the system of fermions should be
described by means of the kinetic equation for the density
matrix r̂. In the quasiclassical case when"V&T!h«F the
quantization of the charge carrier energy in the magnetic
field does not affect essentially the magnetizationM (V is
the cyclotron frequency of charge carriers,T is the tempera-
ture). Under these conditions the density matrix can be pre-
sented as an operator in the space of spin variables and as a
function depending on coordinates and momentum. The
equation for single-particle density matrix has the form
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Here f«̂ , r̂gs is the commutator for matrices in the space of

spin variables,h«̂ , r̂j is the classical Poisson bracket,Îcoll is
the collision operator,e is the electron charge,c is the veloc-
ity of light, E is electric field,B=B0+B,sr ,td, B,sr ,td is a
field of wave, «̂=«spddab−m0ŝ ·B+d«̂sp ,r ,td, dab is the
Kronecker symbol, andm0 is the magnetic momentum of an
electron. The interaction between electrons results in the cor-
rection to their energy
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d«̂sp,r ,td = Trs8E d3p8

s2p"d3Lsp,ŝ,p8,ŝ8ddr̂sp,r ,ŝ8,td

s3d

which can be described with the aid of the correlation
function6,7

Lsp,ŝ,p8,ŝ8d = Lsp,p8d + Ssp,p8dŝŝ8 s4d

where dr̂ is nonequilibrium correction the density matrix,
ands are Pauli matrices. The term depending on the opera-
tors of spin on the right-hand part of Eq.(4) correspond to
the exchange interaction between electrons. Since the in-
plane interaction between charge carriers exceeds substan-
tially the interaction between quasiparticles belonging to dif-
ferent layers, then both the energy and the Landau
correlation function can be expanded into asymptotic series
abouth, the leading term being not dependent onpz. This
suggestion simplifies essentially the kinetic equation and
makes it possible to obtain its solution for rather general
form of the correlation function.

To find the electromagnetic field of the wave it is neces-
sary to solve the Maxwell equations

rot B, =
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c

] E

] t
+

4p

c
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c

] B,

] t
,

s5d

supplemented by the equation linking the current densityj to
the perturbation of density matrix of electron subsystem

j sr ,td = eTrsE d3p

s2p"d3r̂sp,r ,ŝ,td
] «̂

] p

+ cm0rot TrsE d3p

s2p"d3ŝr̂sp,r ,ŝ,td. s6d

Instead of Eq.(2) for r̂, it will be more convenient to use the
set of four equations for the distribution functionfsr ,p ,td
=Trsr̂ and for the spin densitygsr ,p ,td=Trssŝr̂d. To obtain
the first equation one must apply the operation of taking the
trace over spin variables Trs to Eq. (2). Three others are the
result of applying Trs to the initial equation multiplied byŝ.
The functiongsr ,p ,td and the second term on the right-hand
part of Eq.(6) describe paramagnetic spin waves predicted
by Silin8 and observed in isotropic metals by Schultz and
Dunifer.9 Below we shall neglect small oscillations of the
spin density and consider electromagnetic modes induced by
the distribution function perturbation.

Present the distribution functionf in the form fsr ,p ,td
= f0s«d−csr ,p ,td] f0/]«, where f0s«d is the equilibrium
Fermi function. The nonequilibrium correction should be de-
termined by solving the linearized kinetic equation

]c

]t
+ Sv
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DF = evE + IcollsFd. s7d

HereF;c+kLcl,

kLcl ; E 2d3p8

s2p"d3S−
] f0s«8d

] «8
DLsp,p8dcsr ,p8,td,

and Icoll=TrssÎcolld is the collision integral.
The wave process can be regarded as harmonic and the

coordinate and time dependencies of the fieldsE ,B, and of
the functionc can be represented as expsik ·r − ivtd. Regard-
less of the weak current of spin magnetization in Eq.(6), the
current density in a conductor can be written in the form

j i = eE 2d3p

s2p"d3S−
] f0

] «
DviF = si jsv,kdEj , s8d

where si jsv ,kd is the electrical conductivity tensor,v
=]«spd /]p. Substituting E ,B, in the form of harmonic
wave into the Maxwell equations(5), we obtain the disper-
sion equation

detFk2di j − kikj −
v2

c2 «i jsv,kdG = 0, s9d

which determines the spectrumvskd of oscillations of elec-
tromagnetic field in a conductor. Here«i jsv ,kd=di j

+s4pi /vdsi jsv ,kd is the dielectric penetrability tensor. We
shall use the reference frame where the wave vectork
=skx,0 ,kzd is oriented in thexz plane. For frequencies much
less than the plasma frequencyvp the first term in the ex-
pression for«i j can be neglected.

In the lowest-order approximation about the small param-
eterh the functionLsp ,p8d does not depend onpz and can be
presented as

Lsp,p8d = o
n=−`

`

Lns«deinsw−w8d. s10d

We have chosen the integrals of motion of an electron in a
magnetic field« and pz and the phase of its velocityw
=Vt1 as variables in thep space. Heret1=sc/eB0dedl /v' is
the time of motion along the trajectory«spd=«F, pz=const,
dl=sdpx

2+dpy
2d1/2, andv' is the velocity component orthogo-

nal to the external magnetic field.1 Because of the symmetry
of functionLsp ,ŝ ,p8 ,ŝ8d with respect to its arguments, the
coefficients in Eq.(10) satisfy the conditionLn=L−n. Allow-
ing for next-order terms of the expansion for the correlation
function abouth does not lead to the noticeable correction of
the results.

Expand the functionsF andc into a Fourier series with
respect tow:

F = o
n=−`

`

Fns«,pzdeinw, c = o
n=−`

`

cns«,pzdeinw.

Equalizing coefficients at expsinwd in the equality F=c
+kLcl and using the relationship(10), we obtain

c = F − o
n=−`

`

lnF̄ne
inw. s11d

Here
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F̄n =
1

s2pd2E
0

2p

dw e−inwE
−p

p

du Fs«F,u,wd ; ke−inwFlu,w

s12d

is the Fourier coefficient for the functionkFlu, u=pz/p0,
k¯lu=s1/2pde−p

p du ¯, ln=Ln
, / s1+Ln

,d, Ln
,=ns«FdLn, and

ns«Fd is the density of states at the Fermi level. Substituting
Eq. (11) into Eq. (7) and using the equality] /]t1=se/cdsv
3B0d ·] /]p we find the kinetic equation for the perturbation
of the renormalized distribution function for electrons with
the quasi-two-dimensional dispersion law(1):

] F
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−
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−
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V
o
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`

lnF̄ns«deinw

+
1

V
IcollsFd. s13d

The collision integral in thet approximation can be written
as IcollsFd=−t −1F (t is the relaxation time for the momen-
tum). Below we consider wave processes in the range of
frequencies satisfying the condition

vp @ v @ t −1, s14d

where the asymptotic expression for the spectrum of collec-
tive modes does not depend essentially on the concrete form
of the collision integral.

For the sake of brevity in the calculations we confine
ourselves to account of the two terms in Eq.(1). Neglecting
the anisotropy in the layer plane we write the charge carrier
dispersion law in the form

«spd =
px

2 + py
2

2m
− «0 cos

pz

p0
. s15d

Here«0=hvFp0, vF
2 ;2«F /m, andm is the effective mass. In

a magnetic field directed along the normal to the layers, the
components of electron velocity are given by

vx = v' cosw, vy = − v' sinw, s16d

vz = hvF sin
pz

p0
, v' = vFÎ1 + e cos

pz

p0
,

wheree=«0/«F. In this case the cyclotron frequency in the
main order approximation with respect toh and plasma fre-
quency are, respectively,V= ueuB0/mc, and vp

2=4pe2n0/m
(n0 is charge carrier density).

As a result of simple calculations Eq.(13) can be trans-
formed into

F =E
−`

w

dw8 expS−
i

V
sṽ − kzvzdsw8 − wd

+ i
kxv'

V
ssinw8 − sinwdD

3 Sev ·E

V
− i

v

V
o

p=−`

`

lpF̄pe
ipw8D , s17d

where ṽ=v+ it−1. Equations (8), (9), and (17) describe
eigenmodes of the electromagnetic field in the Fermi liquid
of electrons with the dispersion law(15).

In the case when the wave vectork =s0,0,kd coincides
with the magnetic field direction, the dispersion equation(9)
brakes down into three equations,

«zz= 0, s18d

«xx ± i«xy = Skc

v
D2

s19d

[we have taken into account the equations«xx=«yy, «xz=«yz
=0 because of the isotropy in the layer plane of the electron
dispersion law(15)]. Equation(18) describes purely longitu-
dinal oscillations and coincides exactly with the dispersion
equation for longitudinal oscillations of the charged Fermi
liquid in the absence of a magnetic field. The other two equa-
tions describe transverse electromagnetic waves with differ-
ent polarizations. Circularly polarized components of the
electric fieldE±=Ex± iEy of these waves and of the electric
current densityj±= jx± i j y are connected by the simple rela-
tionship

j± = ssxx 7 isxydE±. s20d

Making use of expression(8) we have

j± = ens«Fdksvx ± ivydFlu,w = evFns«FdF̄±1, s21d

where F̄±1 is determined by the formula(12), and ns«Fd
=mp0/p"3 is the density of states of electrons with the dis-

persion law(15). The coefficientsF̄±1 can be readily found
from Eq. (17) being transformed to the form

F =
i

2

ev'E+eiw

ṽ − kvz − V
+

i

2

ev'E−e−iw

ṽ − kvz + V
+ v o

n=−`

`

ln
F̄ne

inw

ṽ − kvz − nV
.

s22d

With the aid of relations(20) and(21) it is easy to determine
sxx7 isxy and represent the dispersion equation(19) in the
collisionless limitst→`d as

Skc

v
D2

= 1 −
vp

2

v
fsgnsv 7 VdÎsv 7 Vd2 − shkvFd2 − l1vg−1.

s23d

At frequencies much lower than the plasma frequency, the
solution of Eq.(24) is given by

v± =
ÎshkvFd2 − fshkvFd2 − V2gsl1 − vp

2/k2c2d2 ± V

1 − sl1 − vp
2/k2c2d2 .

s24d

At l1.0 this formula describes two branches of oscillations.
The low-frequency branchsv,V ,k,vp/cÎl1d in the lim-
iting case whenhkvF!V represents a helicoidal wave with
frequencyv=Vk2c2/vp

2, which propagates along an external
magnetic field direction. The other, a high-frequency wave
sv.Vd, results from the Fermi-liquid interaction between
charge carriers and exists if the following conditions hold:
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sv 7 Vd2 − sl1vd2 , shkvFd2 , sv 7 Vd2, k .
vp

cÎl1

.

s25d

The inequalities(25) show that the frequency takes real val-
ues at real values of the wave vector. The inequality
shkvFd2, sv7Vd2 is a usual condition of the absence of
Landau’s collisionless attenuation in a magnetic field. When
this condition is satisfied the attenuation rate of the wave is
determined by collision processes and is proportional tot −1.
The values k=kmin=vp/cÎl1, v±skmind=hvpvF /cÎl1±V
correspond to the edge of the wave spectrum. The depen-
dence of limiting values for the wave vector and the fre-
quency onl1 shows that the waves under consideration can
exist at however weak a Fermi-liquid interaction. It suffices
that l1.0, but the conditions for the excitation of these
modes become more difficult with decreasing ofl1.

Proceeding to the limitV→0 in Eq. (24), we obtain the
spectrum of the Fermi-liquid wave in the absence of a mag-
netic field,

v =
hkvF

Î1 − sl1 − vp
2/k2c2d2

. s26d

The magnetic field lifts the degeneracy from the spectrum,
which leads to the appearance of two waves with different
polarizations, the limiting value for the frequencyv− being
decreased. It is easily seen from Eq.(23) that atB0=0 the
value ofkmin remains unchanged.

As follows from Eqs.(9) and (15), the spectrum of the
electromagnetic waves with wave vectork =sk,0 ,0d or-
thogonal to an external magnetic field is determined by the
equations

k2c2

v2 = «zz, s27d

k2c2

v2 «xx = «xx«yy + «xy
2 . s28d

The first of these equations describes the wave with electric
field vector directed along the vectorB0. In order to obtain
the spectrum of this wave, the conductivity componentszz
should be determined. Multiplying Eq.(17) by vz and aver-
aging over the Fermi surface, we obtain

szz= ehvFns«FdksinuFlu·w/Ez

=
e2h2vF

2ns«Fd
iV

ksin2 uf0sudlu

= − i
h2vp

2

4pV
o

m=−`

`
ksin2 uJm

2 sjdlu

m− ṽ/V
. s29d

Here

f0sud = −
1

2pi
s1 − e2piṽ/Vd−1E

0

2p E
0

2p

dw dw1

3expSiRsw,w1d + i
ṽ

V
w1D , s30d

Rsw ,w1d=−j sinw+j sinsw−w1d, j=kv' /V, andJmsjd is the
Bessel function.

In the main approximation inh, the Fermi-liquid interac-
tion does not affect theszz component of the conductivity
tensor. This is the case when Fermi-liquid effects manifest
themselves if the dependence of the Landau correlation func-
tion Lsp ,p8d on h is taken into account.

In the case whenkj@1 the exponents in the integrand in
expression(30) are rapidly oscillating functions and the
asymptotic expression forf0sud can be obtained by means of
the stationary phase method. As a result, the dispersion equa-
tion takes the form

k2c2

v2 = 1 −h2 vp
2

Vv

1

j0
Scot

pṽ

V
+

2J1sej0d
ej0

sin 2j0

sinspṽ/Vd
D ,

s31d

wherej0=kr0;kvF /V, andr0 is the Larmour radius of elec-
tron. Under the condition whensn2/j0

3dsvpvF /Vcd2!1, it
follows from Eq. (31) that the spectrum of the cyclotron
waves is

vskd = nVH1 −
h2

pj0
3SvpvF

Vc
D2

3S1 + s− 1dn2J1sej0d
ej0

sin 2j0DJ, n = 1,2,3,… .

s32d

Equation(28) corresponds to the wave with the vectorE
orthogonal to an external magnetic field. The components of
current density are determined by the expressions

jx = ens«FdkvxFlu,w =
1

2
evFns«FdsF̄1 + F̄−1d = sxxEx + sxyEy,

j y = ens«FdkvyFlu,w =
1

2i
evFns«FdsF̄1 − F̄−1d = syxEx + syyEy.

s33d

After multiplying Eq.(17) by e−inw and then integrating over
u andw we obtain the infinitesimal set of linear equations for

F̄n:

o
p=−`

` Sdnp +
v

V
lpfn,pDF̄p = − i

evF

2V
E+fn,1 − i

evF

2V
E−fn,−1,

s34d

where
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fn,p = −
1

2pi
s1 − e2pisṽ/Vdd−1

3KE
0

2p E
0

2p

dwdw1e
iRsw,w1d−isn−pdw+isṽ/V−pdw1L

u

= o
m=−`

`
kJm−nsjdJm−psjdlu

m− ṽ
V

.

If kr0@1, the asymptotic expression for the coefficientsfn,p
can be evaluated by means of the stationary phase method.
As a result, forn,p!kr0 we have

fn,p = −
1

j0
Scot

pṽ

V
cos

p

2
sn − pd

+ J0sej0d
sins2j0 + sp/2dsn + pdd

sinspṽ/Vd
D . s35d

The coefficients of the Fourier series for the smooth function
Lsp ,p8d decrease significantly with an increase of their num-
ber, so we will restrict ourselves to a finite number of the

terms. DetermineF̄±1 using Eq.(34) and find the conductiv-
ity tensor components from Eq.(33). At kr0@1 the compo-
nents of conductivity tensorsxx, sxy are much smaller than
syy and Eq.(28) takes the form

k2c2

v2 = «yy. s36d

In the frame of the model that allows for the zeroth and first
Fourier harmonics of the Landau function

Lsp,p8d = L0 + 2L1 cossw − w8d,

the dispersion equation becomes

1 − l0
v

V

1

j0
Scot

pṽ

V
+ J0sej0d

sin 2j0

sinspṽ/Vd
D

= 2
v

V

1

j0
FSvpvF

Vcj0
D2

− l1G
3 S− cot

pṽ

V
+ J0sej0d

sin 2j0

sinspṽ/Vd

+
l0

j0

v

V

cos2spṽ/Vd − J0
2sej0d

sin2spṽ/Vd
D . s37d

The solution of Eq.(37) may be written as

v = nV + Dv, 0 , Dv , V, s38d

where nV is the frequency corresponding to the cyclotron
resonance. In the case when

1

j0
3SvpvF

Vc
D2

@ 1,

which can be realized in conductors whose charge carrier
density is about one electron per an atom, the left-hand part
of Eq. (37) may be neglected. Then in the range of the wave
numbers where the inequality 1−uJ0sej0dsins2j0du@j 0

−1 is
satisfied, the spectrum for cyclotron waves can be found in
the analytical form

Dv = Dv0 + Dv1,

Dv0 = VS1

2
−

s− 1dn

p
arcsinfJ0sej0dsin 2j0gD ,

Dv1 =
Vl0

pj0
Sn +

Dv0

V
D J0

2sej0dcos2 2j0

1 − J0
2sej0dsin2 2j0

. s39d

In the case when

1

j0
3SvpvF

Vc
D2

! 1,

the solution of(36) can be represented in the form of Eq.
(38) with uDvu!V in whole range wherej0@n and

Dv =
nV

pj0
sa ± Îa2 + 2sg − l1dl0f1 − J0

2sej0dgd ,

a =
1

2
hl0 − 2sg − l1d + s− 1dnfl0 + 2sg − l1dg

3J0sej0dsin 2j0j, g = SvpvF

Vcj0
D2

. s40d

As appears from the formulas(39) and (40), under the
strong spatial dispersion conditions the frequencies of the
cyclotron waves are oscillating functions of the wave num-
ber. It should be noted that in layered conductors the collec-
tive mode with the frequencies near the cyclotron resonance
frequencies can exist atkzvz,hkzvF!V. Because of the
small value of the parameterh, this condition is satisfied in a
wide range ofkz even in not very strong magnetic fields.
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