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The experimental research on galvanomagnetic phenomena in layered organic conductors at high
magnetic fields is discussed in terms of the theoretical ideas about charge transfer phenomena

in conductors with a metallic type of conductivity and a quasi-two-dimensional electron energy
spectrum of arbitrary form. Attention is devoted mainly to the problem of recovering the
dispersion relation of the conduction electrons in layered organic charge-transfer complexes from
experimental studies of their magnetoresistance and quantum oscillation phenomena at low
temperatures. €005 American Institute of Physic§DOI: 10.1063/1.1884422

1. INTRODUCTION To suppress the insulator transition it is necessary to in-
crease the dimensionality of the conducting system, i.e., to
Interest in low-dimensional organic conductors rosestrengthen the coupling between stacks. On the one hand,
sharply in the 1960s after Little’s suggestiothat high-  this can be achieved by the application of high pressure.
temperature superconductivity might be realized in oneindeed, a metallic state stable to the very lowest temperatures
dimensional polymer chains. Despite the fact that this ideayas first obtained at a pressuPe=5 kbar in the quasi-one-
has not found experimental confirmation, joint efforts of dimensional complex (TSTEL.” Subsequently similar re-
physicists and chemists have led to the creation of a newults were obtained on a number of other compofritise
class of organic salts having metallic electrical most exciting achievement was the discovery in 1980 of su-
conductivity?® perconductivity — under  pressure P{9kbar) in
A characteristic feature of the electronic properties of thg TMTSF),PF; (Ref. 9 and then in the isostructural salts

first organic metals was a pronounced anisotropy of a quasi-TMTSF),X with X =AsFs, SbR, CIO,, etc. (a detailed
one-dimensional type due to their crystal structure. The main

structural elements of these compounds are planar molecules
having donor or acceptor properties. The best-known ex-
amples of such molecules are tetrathiafulvaléh&F), tet-

ramethyltetraselenafulvalen@ MTSF), tetraselenatetracene HETN <S\jH HCZ ™G ? c? > cH
(TST), and tetrgcyan_oqu_|nod|metham§CN_Q), which are HC s-CH H(lz\C/kc/c*c/é%c/‘ll‘H
shown schematically in Fig. 1. The radical ions of these mol- TTE Ho [ ] H
ecules form regular stacks along a preferred crystallographic Se—Se
direction. The interplane distance between molecules is often TST
shortened as compared to the van der Waals separation. The “=°\ﬁ’se\c= ,Se\olsl/CHg Hz?/ S\ﬁ/sxc_ /S\clez
mutual orientation of neighboring radical ions in the stack HC-C~s8  Se-C~ch, HC o Cn¢ B 5-CngCHe
makes for significant overlap of the molecular orbitals at TMTSF BEDT-TTF

minimal Coulomb repulsion. Fractional charge transfer from

the radical ions to the counterions causes a partial occupation Hz?/o\ﬁ’s\ <S\§/O\CH2 Hac\ﬁfSe\ <S\ﬁ/°\c»42
. C= C=
of the conduction bands thus formed. As a result, the con- HC o g/ J:H, Ho-Csd \s-Cug CHy

SN e
ductivity o along the stacks at room temperature in a number o

of compounds exceeds 10° S/cm and grows with decreas- BEDO-TTF (BEDO) DMET
ing temperature. At the same time, the overlap of the mo- Acceptors
lecular orbitals between stacks is much weaker, making for N N
extremely low conductivity in the transverse direction, % e=c & s S

. . \ / \ /c J/ \C/s\ Vatn SN
~1 S/cm or less, at room temperature. Such high anisotropy L=k =g s=c{_ I S/M\ I je=s
of the electronic properties leads to Peierls instability of the & =¢ Ky STITS ST
metallic state, characteristic for quasi-one-dimensional con- TCNQ M(dmit) ,

ductors: as the temperature is lowered, the substance under- . .
" . . . . IG. 1. Donor and acceptor molecules on which the best-known crystalline
goes a transition to an insulating state with the formation Otyganic conductors are basétie full names of the molecules are given in

a charge- or spin-density watg® the texi.
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review of the physical pr_operties of these so-called Bechthe superconducting statd ¢=1.5 K).* Interestingly, at a
gaard salts can be found in Refs. 8 angl. 10must be noted, relatively low pressurébelow 1 kbay the superconducting

however, that the superconductivity in those compoundsgransition temperature increases abruptly by a factor of five,
competes with instability of the Peierls tygin this case jumping from 1.5 K to 7.5-8.0 K>

leading to a state with a spin-density wawehich limits the Soon after the discovery of superconductivity in
temperature of the superconducting transition to values in th%-(BEDT—TTF)Zlg, the isostructural superconducting salts of
1 K region. BEDT-TTF with the anions IBf and Aul were

On the other hand, it has proved possible to synthesizgynthesized, with transition temperatur@s=2.7 K and
conducting complexes in which the organic molecules do nog g K, respectively>® significantly exceeding the
form weakly coupled individual stacks but rather form ime'highest transition temperature in quasi-one-dimensional
gral layers with significant overlap of the orbitals in two superconductors. By now there are some dozens of
directions. For example, the first layeretquasi-two- |4yered organic superconductors known, most of which
dimensiongl organic superconductorB-(BEDT-TTF),l; are BEDT.TTF saltd® Some of the other
(BEDT-TTF denotes bigthylenedithigtetrathiafulvalene;  ,,1ecules for which superconducting compounds have been
see Fig. 1 was synthesized in 1984 The crystal structure synthesized are shown in Fig. 1: fthylenedioxy

of this compound is given in Fig. 2. The BEDT-TTF tetrathiafulvalene (BEDO-TTF), dimethylethylenedithio-

cation radicals form stacks arranged in layers altemaﬂaniseIenadithiofulvalene(DMET), and metal complexes of

with the layers of { ions. The presence of a significant num- .., 5-dimercapto-3-dithiol-2-thione ~ (M(dmj)). ~ The

ber of shortened contacts both inside the stacks and betwe?gcor'd values ofT, at present have been obtained in the
Cc

them makes for an almost isotropic conductivity along theIayered compoundsc-(BEDT-TTE),[N(CN),]X with X
layers, o=30 S/cm, at room temperature, while in the di- —Br (T,~11.6 K, P=0 kbar)” and X=Cl (T,~12.8 K
rection perpendicular to the layers the conductivity is almosb:0 3 Ebar)ls an’d,B’-(BEDT-TTF) ICl, (T ;14 2 K P’
three orders of magnitude lowErNevertheless the tempera- -8 .kbar)lg ' 22 e -

ture dependence of the resistivip~=1/o is of a metallic '

h ter ind dent of the directi f th t th To understand the nature of superconductivity and a
character independent of the direction of the current, In€ 1&g e of other, no less interesting, phenomena observed in
sistance falls off monotonically with cooling, and at

=2 K it is more than two orders of magnitude lower than atorga_nic conductorgsee the review in Ref. 10, for example

. ._detailed knowledge of the electron band structure of these
room temperature. On further cooling the substance goes into : . .

compounds is needed. In the case of ordinary metals high

magnetic fields are a powerful tool for investigating the elec-
tronic spectrum. In particular, measurements of the anisot-
ropy of the magnetoresistance permit one to investigate the
topology of the Fermi surface of the met&r?*and from the
Shubnikov—de Haas oscillations one can determine the val-
ues of the extremal closed cross sections of the Fermi surface
and some other important characteristics of the charge
carriers>>~2° These methods are widely used to study the
electronic  structure of ordinary three-dimensional
metals?®~2

In 1988 Shubnikov-de Haas oscillations were observed
in the layered superconductos (BEDT-TTF),IBr, (Refs.

28 and 29 and «-(BEDT-TTF),Cu(NCS), (Ref. 30 at
magnetic fields~10 T. These studies provided the first di-
rect proof of the validity of the Fermi liquid description of
the electronic properties of the given materials and stimu-
lated intensive further research on organic conductors at high
magnetic fields. By the mid-1990s extensive information had
been accumulated on the subject, a detailed review of which
was given by Wosnitza! Some interesting results of the ap-
plication of high fields for studying layered organic conduc-
tors are reviewed in Refs. 32 and 33.

By virtue of the extremely high anisotropy of the elec-
tronic properties of organic conductors, their behavior in a
6. 2. Crvstal struct - o onal _ strong magnetic field differs substantially from that of ordi-
T et st 1 oot *ary thee-dimensional materials. This s true of both the
Prokhorova, R. P. Shibaeva, andBE Yagubski, JETP Lett39, 17(1984.  quantum oscillations of the magnetoresistance and its quasi-
The stacks of BEDT-TT¥" cation radicals, which lie in the crystallo- classical components, which demonstrate qualitatively new
graphic direction +b), form layers separated along thexis by layers of  effects absent in moderately anisotropic three-dimensional

I3 anions(a); the arrangement of the molecules in the conducting layer; the ; A ; ;
dotted lines denote the shortened contacts responsible for the metallic corr1TJetaIS and in purely two-dimensional conductlng systems.

ductivity between the sulfur atoms from neighboring moleculss The In this article We review the baS_|C galvanomagnetic phe-
figure was kindly provided by S. S. Khasanov and R. P. Shibaeva. nomena observed in layered organic conductors and their use

a+b
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for quantitative study of the electronic spectrum of these ma- “ an anp,

terials. Attention is devoted mainly to the interlayer magne-v,= — Z TSH(px,py)sin T+ an(Px,Py) | < UE.
toresistance features caused by the presence of a Fermi sur- "~ 5
face in the form of a cylinder with arbitrary cross section and 2)
with only a slight corrugation in the direction perpendicular Here the ratio of the transverse conductivity to the

to the highly conductive layers. A prominent example of aconductivity oy along the layers in the absence of magnetic
system having such a Fermi surface is the superconductdield is equal in order of magnitude to the square of the
B-(BEDT-TTF),IBr, (Refs. 10, 31, and 32which is isos-  quasi-two-dimensionality parametey?.

tructural to the complex3-(BEDT-TTF),l;. In particular, In a magnetic field the components of the conductivity
the Shubnikov-de Haas oscillations with two close frequeniensor, which relate the current density to the electric field
cies attest to a simply connected Fermi surface in the form of |

a slightly (~1%) corrugated cylinder occupying approxi- ~ Ji=iEi 3

mately half the volume of the Brillouin zone. Such simple can be found using the Boltzmann transport equation inrthe
topology of the Fermi surface and the high quality of singlegpproximation for the collision integral. Without any model
crystals of this Compound make it an excellent model ObjeChssumptionS about the electron energy spectrum, the quasi_
for studying electronic phenomena in quasi-two-dimensionag|assical expression far;; in the case of periodic motion of

metals. Below we shall consider the quasiclassical magnes charge with periodg=27/w. in a magnetic fieldB has
toresistance of3-(BEDT-TTF),IBr, and show that the ef- the form

fects observed, in particular, the peculiar dependence on the

magnetic field direction, are due to the quasi-two- _ _ 2¢°B f de dtole) f d jTBdtU'(t)
dimensional character of the electron spectrum and permita ' c(2mh)® de Pe 0 :
guantitative description of the Fermi surface. Section 3 is

deyoteq to Shubnikov-de Haa_s osciII.atio_ns,. Fhe behgvior of « Jt dt'v;(t")exp((t' —t)/7). ()
which in the substances considered is significantly different —w

from the predictions of the standard three-dimensional theor'y_| . . . . :
based on the Lifshitz-Kosevich model. Although a quantita- eret IS th_e time of motlc_)n of a conduction electron in the
tive description of the Shubnikov-de Haas effect for quasi_magnetlc field under the influence of the Lorentz force
two-dimensional systems is far from complete, the existing  dp/dt=(e/c)[vxB], (5)
models are capable of explaining a number of qualitative ) .
features observed experimentally. In the final Section wé 7> andfo(e) are the charge, mean free time, and equilib-
give a brief description of the Hall effect expected in a quasifium Fermi distribution function of the conduction electrons,

two-dimensional metal at high magnetic fields. w.=eB/(m*c) is the cyclotron frequency of an electron in a
magnetic fieldB, m* is its cyclotron effective masgg is the

momentum projection in the magnetic field direction, and
is the speed of light.

The Fermi surface of layered conductors is weakly cor-
rugated along the, axis; it can be multisheet and consist of
Fopologically different elements in the form of slightly cor-
rugated cylinders and slightly corrugated planes in momen-
tum space. In the absence of marked anisotropy of the con-
ductivity in the plane of the layers the most probable shape
* 5{ of the Fermi surface is that of a slightly corrugated cylinder;

2. QUASICLASSICAL MAGNETORESISTANCE

The sharp anisotropy of the electrical conductivity of
layered conductors is due to anisotropy of the velocities o
the conduction electrong=de/dp, and the energy of the
charge carriers in such conductors,

e(p)= E en(Px,Py)CO a;li—szran(px,py) ; (1) at least one sheet of the Fermi surface in such layered con-
n=0 ductors is a cylinder with cross section located inside one
N ) unit cell of momentum space.

en( =P~ Py) =n(PasPy); Let us consider galvanomagnetic phenomena in a con-

- (—p — ductor whose Fermi surface is in the form of just one cylin-

%l Px:Py) == (= Px. = Py) der which is slightly corrugated along tipe axis, in a mag-
depends weakly on the momentum projectipi=p-n on  netic field B=(0,B sing,Bcosd). The sections of such a
the normah to the layers & is the distance between adjacent surface by the plan@g=p,cosé+p, sinf=const at /2
layers, andh is Planck’s constapt It is natural to suppose — 6)> 7 are almost the same for different values of the mo-
that the functionss,(py,py) with n=1 are much less than mentum projectiorpg on the magnetic field direction, and
the Fermi energy  and fall off rapidly with increasing, as  the velocity components of the conduction electrons in the
occurs in the tight-binding approximation, for example. plane of the layersy,(pg,t) andv,(pg,t), depend weakly

The charge carrier velocity, along the normal to the onpg. At the same time, the velocity along the normal to the
layers is much less than the characteristic Fermi velagity layers is substantially different on different sections of the
of the electrons along the layers, and the quasi-twofermi surface by the plangs;=const. Hence it follows that
dimensionality parametet; of the charge-carrier energy the expansion of the components of the conductivity tensor
spectrum can be determined as the ratio of the maximurnd) in power series in the quasi-two-dimensionality param-
value ofv, on the Fermi surface(p) =& to the valuevg, eter » starts with the second or higher power terms, provided
ie., that at least one of the indices ofj is z (Refs. 34 and 3p
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FIG. 3. Resistance Ofﬁ-(BEDT—TTF)2|BI’2 single crystal measured in the FIG. 4. Field dependence of the inter|ayer resistarﬁe of a

direction perpendicular to the highly conductive plaie in a magnetic  g-(BEDT-TTF),IBr, single crystal aff=1.4 K for two different magnetic
field B=15T, atT=1.4 K, versus the anglé between the field direction field directions. Curvel corresponds to a maximum and cu®¢o a mini-

and the normal to thab plane. The geometry of the experiment is illus- mum on the oscillatory angular dependence, as is shown in the inset.
trated schematically in the upper inset. A characteristic feature of this de-

pendence is the presence of strong oscillations that repeat periodically in the

g scle g 1o Shour, I e lower e, In o, 4 <D bk of Mpanitested to some degree or other in practically all layered
6=90° (see Sec. 2.2 and Fig).7 organic conductorésee, e.g., the review articiés®) and in
a number of other layered structurds** This orientation
effect does not take place in ordinary metals and is observed
The resistivity of such conductors along the layers is ofonly in layered conductors with a quasi-two-dimensional
the same order of magnitude as that of an uncompensateectron energy spectrum.
metal, i.e., at any orientation of the magnetic field the resis-
tivity is essentially no different from that in the absence of3 1. angular oscillations of the magnetoresistance
field. In contrast, the resistivitg,, along the “hard” direc- .
tion of current flow, i.e., along the normal to the layers, is ~ WWhen current is passed along the normal to the layers

extremely sensitive to the orientation of a strong magnetid€ electric field is aimost parallel to the current, gndis
field. equal to 14, to within corrections small in the parameter

Figure 3 shows an example of the angular dependence gr<l. o ) ) ) ,
the resistanc®, measured in the direction perpendicular to A significant first step in the. explanation of the orienta-
the highly conductive planab of a B-(BEDT-TTF),IBr, tion effept was made by.Yamaf]?, Who' for the case of a
single crystal as a magnetic fieB=15 T is rotated in a rather simple charge-carrier dispersion relation
plane normal to theb plane. The geometry of the experi- 2492 a

. . . . Px y Pz

ment is shown schematically in the inset. The most remark- &= om —2t, co 7
able feature of this dependence is obviously the strong oscil- . . S
lations of the magnetoresistance. The positions of the locaalculated, in the linear approximation in the small parameter
maxima on theR, (6) curve are independent of the magnetic #<1, the dependence of the area of section of the isoenergy
field strength and temperatuttand, as is seen in the figure, surfaceS(e,pg) by a planepg=const on the angl® be-
periodically repeat in the tafiscale over the entire range of tween the magnetic field vector and the normal to the layers:
angles except in a small ne|ghb(_)rhood6t# 77_/2. The field S(sr,pg)COSH= 7Tp|2:
dependence of the magnetoresistance varies sharply as the

(6

field direction is changetf” as is shown in Fig. 4, the apg ape
resistance increases in approximate proportioBidor the +ammt, COS( W>J°<Ttan6 ’
field direction corresponding to the maximum on the angular

dependencécurve 1), while at the minimum a tendency to- ™
ward saturation in fields above 5 T is clearly seen. wherepg=(2meg) 2, andJy(u) is the zeroth-order Bessel

Such behavior, which was first obseré®dn a high-  function. It is clear from expressiofY) that the areas of all
quality sample ofg-(BEDT-TTF),IBr,, turns out to be a the cyclotron orbits are practically equal at the periodically
general property of quasi-two-dimensional metals and igepeating zeroes of the Bessel function. Obviously this can
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be achieved by an a_\ppropri_ate choice of the ani%le At i TBd ¢ " an , e3B cosf

such an angle the drift velocity of the charge carriers, azz—n:1 . tf_w t 7 en(t)e,(t )W
— _1 (7B dS/dpg t'—t an o
vz(pB)zTglf0 dtv,(t,pg)=cosé S 3s (8) ><exp<T cog ——[py(=py(t)]}, (10)

where all the functions in the integrand are functions aid
becomes negligibly small. This leads to a sharp decrease i only. With corrections small in the parameteys<1 and
the conductivityo,, and ultimately to a sharp peak of the 7»<<1 taken into account, the conductivity tensor component

magnetoresistivity,, at =6, . o, takes the following fornf®49
Formulas(7) and(8) correctly reflect the qualitative na- A€m* 7 Cosd
i i r
ture of the angular oscillations of the magnetoresistance op— UZZZTE nzlﬁ( 0) + 7200 7201+ 1200):
served experimentally. In fact, the sharp decrease of the dif- ™
ference between the maximum ar®g,, and minimum area 1D

Smin Of the cross section of the Fermi surface at the maximg,nere
of the angular dependence was evidenced back in the experi-
ment of Ref. 29: at those orientations of the magnetic field
for which the magnetoresistance took a maximum value the
beats of the Shubnikov-de Haas oscillations, due to the dif-
ference Gmax—Smin), vVanished. and the functionsp; and ¢,, which depend on the orienta-
The conductivity tensor componeat, at high magnetic  tion of the magnetic field, are of the order of unity, as in the
field (w.7>1) in the case of the charge-carrier dispersioncase of the carrier dispersion relatig®). The main contri-
relation (6) with corrections taking into account small pa- bution to the integral ,(#) for tang>1 comes from small
rametersy and y=1/w.7 has the form**’ neighborhoods of points of stationary phase, whasg/Jt
=—(eH/c)v, cosh#=0. There are at least two such points on
the closed electron orbit: these are the turning points where

1,(0)=Tg" fOTBdtan(t)cos{nag,(t)tan0/ﬁ}, (12)

*
UZZ:Zanm—zcosa i g(ﬁtang + nlog( 72D, vx(t12)=0. Hereg(t;) =€p(t,) and, if there are no other
mh h points of stationary phase on the electron orbits, the
+92D,), (9) asymptotic expression fdr,(6) takes the form
|277ﬁ|1/2

whereay is the conductivity along the layers in the absence (€)= 2en(t1) Telanp|(tytand?
of magnetic field, andb; and ®, are functions of the tilt
angle of the magnetic field to the layers and are of the order xoos{ nap,(ty) ang— T 13
of unity. h 4

For arbitrary field direction the Bessel functialy is ) ] o ] )
generally nonzero, and the conductivity, is determined by where a prime denotes differentiation with .respect to time.
the first term in expressiof9). In that case the magnetore- ' N€ functionsl,(6) ha;/e a set of zeroes which for tar1
sistance is essentially the same as that observed in ordinaf§Peat with a perioth
unpompen'sated meta]s: 'it is relatively low and goes to satu- A(tang)=2mh/aD,, (14)
ration at high magnetic field. Fad#= 6., however, wherj,
=0, the conductivity is proportional t¢?, and the magne- whereD ,=2p,(t;) is the extent of the cross section of the
toresistance to current transverse to the layers grows witkermi surface along thp, axis. Thus for an arbitrary form
magnetic field in proportion t®2, reaching saturation only of the quasi-two-dimensional electron energy spectrum for
in the region of very high magnetic fields, i.e., for< 7. tan#>1 the conductivity transverse to the layers, expressed
Such a character of the field dependence is in good qualitdsy formula (11), and, hence, the interlayer resistance vary
tive agreement with the experimental results presented iwith period(14) on increasing tan.
Fig. 4. From the periods of the angular oscillations of the mag-

Naturally, a theoretical analysis of the transport phenomnetoresistance for different orientations of a strong magnetic
ena with the use of a very simple model of the carrier disfield one can determine the shape of the cross section of the
persion relation in the fornf6) cannot claim to give a quan- cylindrical Fermi surface. Such a procedure was first applied
titative description of the experimentally observedto 8-(BEDT-TTF),IBr, in Ref. 46. The result is presented in
dependence of the magnetoresistance on the strength of tk&y. 5. This effect is now widely used to study the Fermi
magnetic field and on its orientation with respect to the cryssurfaces of organic metals and other layered conducsess
tallographic axes; nevertheless, in many cases this model ef.g., Refs. 31-33, 43, and ¥4
the electron energy spectrum permits a correct comprehen- Naturally, all the terms in the sum overin formula(11)
sion of the nature of electronic phenomena in layered coneannot vanish simultaneously. For examplegat6;, when
ductors. I,(#) vanishes, all the functionk,(6) for which (n—1) is

In the case of an arbitrary dispersion relation of thenot a multiple of four are substantially nonzéfoand the
charge carriers an asymptotic expressiondgy »,y) at ar-  asymptotic behavior ofo,, depends substantially on the
bitrarily small y and 5 has the formi448 character of the decay of the functiong(py,p,) with in-
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Aa sus 6. In Ref. 46, by writinga4(py, py) in the form of a
/\ linear combination op, andp,, the results of the calcula-
tion were reconciled with the experimentally observed asym-

metry in the angular dependence of the magnetoresistance.

2.2. Resistance in a magnetic field almost parallel to the
layers

\P The contribution to the conductivity from the rapidly
oscillating functions in the integrand in formui{d2) for y
<1 is smaller the larger the value of tanConsequently, the
\/ monotonic part of the magnetoresistance increases with de-
FIG. 5. Cross section of the Fermi surface of the layered organic supercon\{latlon .Of the magnetic field from the normal to the layers in
roportion to targ, as long asy tan6<1.

ductor B-(BEDT-TTF),IBr,, determined from experiment on the angular p g . .
oscillations of the magnetoresistarfédhe Brillouin zone boundary and the When 6 is quite close ton/2, specifically for »tané
directions of the crystallographic axes in the plane of the layers are shown=1, a necking of the electron orbit occurs along theaxis.
In this region of angle® a substantial rearrangement of the
electron orbits occurs. When the neck widtp goes to zero,
creasing indexn. Agreement with experiment can be 3 small orbit splits off from the highly elongated orbit; this
achieved by keeping certain terms in the sum aven the  small orbit is located completely inside one unit cell of mo-
formula (11) for o,. mentum space. The nucleation of small electron orbits begins
A theoretical calculation of the resistance to Currentat a parabo”c point of the Fermi Surface' where the maxi-
transverse to the |ayerS with three terms retained in the Surﬁhum value of the electron Ve'ocity a|ong the magnetic field
over n in the formula(11) for o, gives a result for th&  on the electron orbit occurs. In the case of charge-carrier
dependence of the magnetoresistance of the conduct@lispersion relatior(6) the small electron orbits arise when
B-(BEDT-TTF),IBr; that is closer to the experimentally ob- ¢osg= 1, and for an arbitrary shape of the Fermi surface in
served dependence lif,;/1,=0.4, while for the more an- the form of a weakly corrugated cylinder, when @is of
isotropic organic conductor (BEDT-TTEPIA (DIA is di-  the order ofy. With further growth ofé the number of small
iodoacetylenp this is found forl,.;/1,=0.2 (Ref. 50.  orpits increases, and &t= /2 the relative fraction of charge
Figure 6 shows the results of a calculation of the angulagarriers with small orbits in momentum space becomes of the
dependence of the magnetoresistance of the organic condugrder of 732
tor -(BEDT-TTF),IBr, with several harmonics kept in the The character of the angular dependence of the magne-
dispersion relation of the charge carriers fqr;/1,=0.04  toresistance fom tang=1 is easily ascertained for arbitrary
andl,.;/1,=0.4. The experimental angular dependence ofgependence of the energy of the charge carriers on their mo-
the magnetoresistance was taken from Ref. 46. mentum. In this region of magnetic-field tilt angles with re-
The energy spectrum of the charge carriers in almost alkpect to the layers the values of, py, andv, vary slowly
organic compounds lacks symmetry with respect to the reyith time, while p,, to a sufficient degree of accuraéto
placement op, by —p,, and taking the phase of,(px.Py)  corrections small iny and cos) varies in time by a linear
into account in formula11) has a sensitive effect on the |aw almost everywhere on the slightly elongated orbits ex-
position of the sharp maxima of the magnetoresistance vegept in the vicinity of necks and turning points, where the
velocity projectionv, is small.
To calculate the conductivity tensor component, for

ntanf~1 we use the Fourier representation for the electron
velocity along thez axis:
[22] .
= v()= > v expikmgt). (15)
> k=—o
]
© The contribution to the conductivity along the normal to
el the layers:
2e’r
Oz7— (277_%)3
27h cosbla _ - (v(k))z
X 27m*d 242> 2~
fo T pB[“Z 2, 1+ (Kwgr)?
FIG. 6. Dependence of the magnetoresistance transverse to the layers for the (16)

organic conductopB-(BEDT-TTF),IBr, on the angled between the mag-
netic field vector and the normal to the layers, calculated theoretically withfrgm charge carriers executing motion a|0ng orbits with

several Fourier gomponents taken into aEcount_ in the dispersion relation ost’ma” necks is Iarge, since they travel near the neck for a
the charge carriers: curvé—for |,,,/1,=0.04; curve2—for I,,./I,

=0.4. Curve3—experimental curve of the angular dependence of the resisjong time. T_heir _periOd of gyration in a magnetic field di-
tance transverse to the layéPs. verges logarithmically ad p goes to zeroTgeIn(1/Ap), so
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tion to the conductivity tensor componeamy, at = /2 is
08l BT from the small fraction of conduction electrons with orbits
’ near the self-intersecting cross sectimg= p. of the Fermi
surface. These charge carriers move slowly alongzthgis
with a periodT(pg) larger than or comparable to their mean

07 free time 7 for arbitrarily high values of the magnetic field.
Since the velocity along thg axis for electrons on orbits
0.6 pg= Py close top, is small, which corresponds to a weak
c dependence of on p,, in calculating the period (py) of
ol the electron’s motion one is justified in using an expansion of

the energy in a power series for smal}, dropping the
higher-order harmonics in formuld):

12
10
B \8/\’_ e=e0(0,py) + pi/2m,+e,(0, py)cogap,/4). (17)
—\L&_

Using relation(17), one can easily calculate the period of the

o electron’s motion along orbits close to self-intersecting,

: - - Te(py) =7 YT fwd 2+sif a) 12 18
88 89 90 91 92 s(Py) =7 "o | da(é @) 18

0,d . .
°d where To=2w7c/(aeBvg) agrees in order of magnitude

FIG. 7. Structure of the peak on the angular dependence of the magnetor@vith the period of a conduction electron’s motion in a mag-
sistance of3-(BEDT-TTF),l5 in the vicinity of #/=90° for different values  netic field normal to the layers, and
of the magnetic field. Plotted according to the data of Ref. 53.
2_
§°=[e—£0(0,py) —&1(0,py)1/284(0, py). (19

that in a certain layer of electron orbits this period is much ~ As the self-intersecting orbit is approache&dpecomes
greater than the mean free time. The lower the cyclotrordn arbitrarily small quantity, and the integral in formyls)
frequencyw,, the more terms must be taken into account indiverges logarithmically in proportion to In(g).
the sum ovek in formula(16), and forw.— 0 the contribu- Unlike ordinary metals, where the period of the carriers’
tion to o, of such electrons is comparable to their contribu-motion is greater than or comparable to the mean free time
tion in the absence of magnetic field. Thus the appearance @nly in an exponentially small region of the cross sections of
self-intersecting electron orbits foptang~1 leads to im- the Fermi surface near the self-intersecting otbitn a
provement of the conductivity of the layered conduéfo¥  quasi-two-dimensional conductor the conditidig>7 is
As the angled approaches closer te/2 the magnetoresis- Valid in a significantly wider region of electron orbits, since
tance begins to grow, since the tesp which is independent  the period of the electrons’ motion near the self-intersecting
of the magnetic field strength, goes to zero in proportion tPrbit, even for¢ of the order of unity, is inversely propor-
cog 6 and the resistance to current transverse to the layer§onal to the small parameten™. Thus for »"?< yo<1,
after passing through a minimum in the region of anglesvhereyo=To/, there are quite many charge carriers whose
where co9 is of the order ofy, again increases, reaching its Period of motion in the magnetic field are greater than or
maximum atf= /2.5252 In this case the resistance to cur- comparable to the mean free time. As a result of averaging
rent transverse to the layers increases without saturation wit@ver states of the conduction electrons the conductivity of a
increasing magnetic field in the plane of the layers. layered conductor falls off in proportion toBLiith increas-
Formula (16) gives a good description of experiment. INg_ Magnetic field directed in or near the plane of the
Indeed, the angular dependence of the magnetoresistancel#Yers:
F_ig. 3 demonstrates a slight_ drop that is followed by a rgpid 0= 1200 Yo. (20)
rise at angle®— =/2. A detailed study of the magnetoresis-
tance peak in the vicinity of= /2 was carried out by Ha- With increasing magnetic field the number of electrons
nasakiet al > for the layered conductqs-(BEDT-TTF),l5, whose periods of motion exceed the mean free time de-
a close analog of the complg(BEDT-TTF),IBr,. In par-  creases, but in the limit of high magnetic field, whep
ticular, it was found experimentally that the width of the < p'”2<1, the contribution of the small fraction of electrons
peak is practically unchanging with magnetic field strengthwith open trajectories in momentum space close to the self-
This is illustrated in Fig. 7, where the angular dependence dntersecting cross section of the Fermi surface,
the magnetoresistang@-(BEDT-TTF),l; at various values oo 7320 2 21)
of the field is shown for angles close #62. The constancy 22~ 77900
of the peak width permitted the authors of Ref. 53 to at-nevertheless exceeds the contributionotp, from all the
tribute its origins to the geometry of the Fermi surface, speother electrons. In this region of magnetic fields the linear
cifically, to the slight corrugation along theaxis, and thus growth of the resistance to current transverse to the layers
to estimate the quasi-two-dimensionality parametgr gives way to a quadratic growth with magnetic fiétd®
=10 2. In formulas (20) and (21) we have dropped numerical
Let us now consider the dependence of the resistance dactors of order unity which depend on the concrete form of
the magnetic field strength fat=7/2. The main contribu- the electron energy spectrum.
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An analogous dependence of,, on magnetic field at the minima ofp(6). At those magnetic-field orientations
strength was obtained by Lebed and Bagteind by for which p(6) has a minimum it is significantly easier to
Schofield and Coop#&twith the use of a model of the form achieve saturation with respect to magnetic field strength, as
(6) for the electron energy spectrum. is indeed observed experimentafly’*’(see Fig. 4.

In the case of a carrier dispersion relati@y the depen-
dence of the momentum compongnton time 7 in a mag-
netic field parallel tp the plang of the layers is described byS. SHUBNIKOV-DE HAAS EFFECT
the standard equation for a simple pendulum:

2 2p2 With decreasing temperature the mean free path of the

J°p, 2at eB ap, e o i ,
+—  sin—=0. (22)  charge carriers increases, and the condition of high magnetic

at? mch h field (w.7>1), under which the dynamic properties of the

The solution of this equation enables one to write the_Conductlon electrons are most clearly manifested, is realized

dependence of the electron velocity o timet explcty 7, & ML TEO0S B ERERC SO B e rameport
with the aid of the Jacobi functions, which together with ' ’ d P

their Fourier transforms have been tabulated in sufficient de® roperties can turn out to be incorrect.

. . e . . At Leiden in 1930 Shubnikov and de Haas observed a
tail, and Schofield and Coopihad no difficulty in carrying complicated magnetic-field dependence of the resistance at

numerical calculation of th ndence of the resis: " " . . . .
out a numerical calculation of the dependence of the resis K in a single-crystal bismuth sample of very high quality

tance to current transverse to the layers on the magnetic fie N ; T2
strength over a wide range of magnetic field and parameteoartLheatrg;';ivifgs;n;’fsmitﬁaviiﬂr?#:dngf[ii'?ireulgcgrlg%ogx?
n. It follows from their calculation that in a quasi-two- y g Y

dimensional conductorsf<1) the contribution tar,, from }2\\;\;?3 gfif)lrllla:t)r?i/ ?nec?i\gﬁ;r?t\éizsiiitﬂzsr;e;gfezng aZri
electrons with small orbits foé= /2 over a wide region of 9 q P P

magnetic fields is significantly smaller than the contributionOdlc dependence of magnetoresistance of bismuth on the in-

. . . o verse magnetic fiele?
of the charge carriers with open trajectories in momentum . . .
9 P J This effect, which came to be called the Shubnikov-de

space, which thus govern the behavior of the magnetoresis- . . )
P g 9 aas effect, did not follow from a quasiclassical treatment of

tance at high magnetic fields, in accordance with what w ) . X
charge transport phenomena in solids and for a long time was

have said above. .
Concluding this Section, we note that the unrestricteor?g;rded k?s another Ianofmaly among r;[he unudsual Egﬁeét'es

growth of the magnetoresistance with in-plane field is due t<f 'qut - Itwas only after 8 years that Lan au showe

the absence of drift of the charge carriers along the currenpalt oscillatory dependence of the magnetoresistancetn 1/

direction, i.e., along the axis2° whereas in a magnetic field and also the oscillations of the magnetic susceptibility of

tilted with respect to the layers the growth of the resistanc%sr::grt]h'inwgc?’ho h;: Vesglna?fcg::rteod bgar?t?z;;is Oafnt(:rll(;/an
to current transverse to the layers with increasing magnetic P ' q

field, p(B)= p,,=1/c,, gives way to saturation at high energy of the charge carriers in a magnetic field and are

fields: inherent to all degenerate conductors. In a quantizing mag-
' netic field the density of states of the electrons has a square-
p()= 1/<U_§T>_ (23 root singularity, which at the Fermi level repeats periodically

. ) ) with variation of 1B; this is what leads to the oscillatory
The angle brackets genote Integration over the Fermi surfacgependence of the thermodynamic and kinetic characteristics
with weight factor 2°B/c(27%)”. . _ of the conductor on the inverse magnetic field. Rather high
For any magnetic field orientatiop,, increases with  agnetic fields are needed for observation of these oscilla-
magnetic field, since all the diagonal components of the congons, sufficient that the distance between the quantized Lan-
ductivity tensor fall off monotonically with increasing mag- g, levelsAe=fiw,, exceeds their widtth/r, and the tem-
netic field. O_ne can readily see this by turning to formmaperature smearing of the Fermi distribution functiyT (kg
(16), from which it follows thato,(0)=0,/B), and is Boltzmann's constapbut nevertheless much less than the
do,{B) 8e?r Fermi energy, i.e., the'conditiorkBT_shwc<sF must be
B 2278 met'. Iq metals thg carriers respon5|blg for these quantum
oscillations comprise only a small fraction, of the order of
2k cosola 2 (vhwer)? (hwe/ee)Y? made up of those for which the area of section
xf 2mm*dpg >, 1T (ko212 <0, S(e,pg) of the Fermi surfaces(p)=e by the planepg
0 =1 (14 (keoer)7] =const is close to the extremal val&g,;.
(29 From the period of the magnetization or magnetoresis-

. . . tance oscillations,
where the equals sign applies only in the case of the longi-

tudinal conductivity of an isotropic conductor. 2mhe

The rate of increase of the resistivipy, with magnetic A(1/B)= S’ (29
field depends substantially on the saturation val2®@ to X
which the resistivity tends in the limit of infinitely high mag- one can determine the extremal area of plane sections of the
netic field. At the maximum of the angular dependence of the&=ermi surface. Thus a reliable spectroscopic method was
resistivity the value ofv,?7) is proportional toz*, and the  develope®®* which is still being used successfully to re-
resistivity increases more strongly with magnetic fiBlthan  construct from experimental data the main characteristic of
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the electron energy spectrum of degenerate conductors—thiee had already been proposed in the monograph by Bethe
Fermi surface (see, for example, the monograph by and Sommerfeldsee Figs. 23—-25 of Ref. T2A quadratic
Shoenbert). isotropic energy spectrum of the charge carriers was also
Oscillatory dependence of the magnetoresistance of ased later in the paper by Adams and Holst&imhich was
metal on 1B due to quantization of the energy of the orbital devoted to the study of galvanomagnetic phenomena in con-
motion of the charge carriers in a magnetic field was firstducting media.
calculated by Akhiez&F using Titeica’s methof® The es- In the case of an isotropic dispersion relation of the
sence of Titeica's method is that by taking into account thecharge carriers there is only one extremal plane section of the
oscillatory character of the motion of electrons in a magnetid=ermi surface—the central cross section, of &8gga~= wpﬁ
field, one can represent the electric current as the drift of the=27epm*.
centers of the electron orbits. Here the resistance to electrical Low-temperature experiments on the magnetic suscepti-
current flowing in the direction orthogonal to a strong mag-bility of rather pure metals, carried out by Shoenberg and
netic field arises because of scattering of the charge carrierso-workers at Cambridge and by Verkin and Lazarev and
Akhiezer, following Titeica, assumed that the mechanism ofto-workers at Kharkoysee Ref. 25 and the references cited
dissipation in the system of conduction electrons was theitherein, and also resonance and magnetoacoustic
scattering by phonons. Although Akhiezer’s work containedphenomen&?* have given evidence that even in ordinary
a number of errors in the calculations of the amplitude of thequasi-isotropic metals, except for a small group of alkali
magnetoresistance oscillatiotfshe nevertheless obtained metals, the electron energy spectrum is rather complex and is
the correct expression for the period of the oscillations andubstantially different from the spectrum of free electrons.
pointed out the significant growth of the quantum corrections  To explain the experimental studies of quantum oscilla-
to the magnetoresistance as the temperature approaches zeimon phenomena it was necessary to create a theory with the
The quantum oscillation effects in the magnetoresistanceeal electron energy spectrum taken into account. The suc-
of bismuth at extremely low temperatures, when the chargeess of Lifshitz and Kosevich's thedfyof the de Haas-van
carriers are scattered mainly by impurity atoms, were conAlphen effect under the most general assumptions about the
sidered by Davydov and Pomeranctfilalready in that pa-  form of the electron energy spectrum of metals with the use
per it was shown that the probability of scattering of an elec-of only the area quantization rule
tron will oscillate with variation of the magnetic field and
that it is is _extremely impgrtant to f[alfe such oscillgtions into S(s,pg) =27 (n+1/2)eBlc, 27)
account. Zil'bermaf? applied the Titeica’s method in calcu-

lating the quantum oscillations of the magnetoresistance in ) o . ) o
the case of scattering of conduction electrons in a metal b heren is a nonnegative integer, stimulated investigation of

heavy impurities and showed that the amplitude of th he electronic properties of metals without the invocation of

Shubnikov-de Haas oscillations fore /hw>1 is deter- model assumptions about the charge carrier dispersion rela-
mined mainly by the oscillatory dependence of the mean fredON. ] )

time of the charge carriers onBl/ The magnetic fields avail- One of the first papers devoted to the theoretical study of
able in the 1950s were not very high, and experimental regalvanomagnetic effects in a quantizing magnetic field in

search on electronic phenomena was restricted to fields §onductors with an arbitrary carrier dispersion relation was

- . 74 - .
several tesla. Therefore Zil'berman’s rather cumbersome antat of Lifshitz. In it the current density

detailed calculations were confined to the use of formulas for
the electron collision frequency and magnetoresistance valid = Tr(egf) (28)
for kgT=%hw.. The formula he obtained for the inverse

mean free time of electrons in a quantizing magnetic field . N :
had the form was found by solution of the quantum kinetic equation for

the single-particle statistical operator or density mafrjx
1 1 9w, 5v2 ) linearized with respect to a weak perturbation of the elec-
T 1 + 40sp m mkgT tronic system by a uniform external electric field. The theory
of quantum phenomena in metals with an arbitrary carrier
27m2kgT 2mer dispersion relation obtained its further development in the

Xex;{— Froog ) 5( Fraog _Z) (26)  paper by Kosevich and Andre&V,who calculated in the

Born approximation the correction oscillatory inBlto the
Later Titeica's method was refined substantially bycollision integral in the case of electron scattering by impu-
Kubo' and successfully used in a theoretical study of galvarity atoms with a short-range potential with the use of the

nomagnetic phenomena in metals in a quantizing magnetiBogolyubov method® Here the oscillatory(in 1/B) depen-
field." dence of the eigenvalues of the collision operator differed
In the theoretical papers mentioned abBvé’ the en-  from that given in the paper by Zi’berman in the case of an
ergy spectrum of the conduction electrons was assumed is@sotropic spectrum of the charge carriers only by a relatively

tropic. Such a model of the carrier dispersion relation — theunimportant factor of order unity.

Drude-Lorentz-Sommerfeld model—was used in those years At sufficiently low temperatures that the charge carriers
in many theoretical investigations of electronic phenomenare scattered mainly by impurity atoms and their drift along,
in metals, even though the most probable open Fermi sussay, thez axis is nonzero, the asymptote of the conductivity

faces for electrons in metals with a face-centered cubic lattensor component,, at high magnetic field has the form
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unity in the argument of the exponential factor. In this regard
the Kubo method has turned out to be more attractive for
0 studying the Shubnikov-de Haas effect. In the Kubo formal-
nm2 I (e ism it is unnecessary to introduce a Dingle factor in the ex-

X dps(vz")*r(en) "0 dey. (29 pression for the kinetic coefficients, since the broadening of
Following Landalf® we can easily write the terms in the the carrier energy levels due to scattering is automatically
expression foro,, which are oscillatory on variation of the taken into account in the description of estimation of the

Oz7—

ZGBB ” J'Zﬂ-ﬁ cosé/a
(2wt %e i

magnetic field with the aid of Poisson’s formula: linear response of the electron system to the perturbation
. _— with the aid of the retarded two-time Green’s functigis®!
> b= > dnd(n)expikn). (30) Be§ides the Weake_ning of the amplitude_ of the
n=0 kK== J o112 Shubnikov-de Haas oscillations?;° due to scattering of

Here the oscillatory part of the conductivi® is deter- charge carriers, there is a very significant decrease in ampli-

mined mainly by the oscillatory dependencezzoB bf the tude with increasing temperature. While the part of the con-

mean free time of the charge carriers, which is due to théjlrfq%ﬂv'ty that changes monotonically W'.th magnetic field,
depends weakly on temperature, since the temperature

summation over states of the “incoming” electrons in the 9zz ' * R :
collision integral. smearing of the Fermi distribution functiokgT of the

The problem of quantum oscillations of the conductivity cha_rliqe carrers 1S mUCDSCIZSS than the F%rlml (leqner,%lj_ytt)he
of metals in a magnetic field has been the subject of man)(?sc' atory componentr,,” decreases rapidly whekyT be-

papers. The most transparent and lucid derivation of the ogomes of t:e olrderl of or grfiater than tEe fdistaﬁmr? bg-
cillatory field dependence of the elastic scattering amplitudéWeen Landau levels, even fgT<e . The factor that de-

of charge carriers on impurity atoms in the Born approxima-C'€aSes the amplitude of the oscillations has the form

tion is given in Abrikosov’s monograpt.For# w < ne g the u 272k T
frequency of electron scattering can be written in the form Ry(u)= ———, whereu= & , (35
sinh(u) hwe
1
o) T_O(1+Aosz‘)a (3)  and foru>1 it falls off exponentially with temperatuisee
formula (26)].
where In the early 1950s the de Haas-van Alphen effect had
ehiB | 12 52s.| ~12 already been observed in almost all metals, but for a long
os | =— —| e, (32)  time the quantum oscillations of the magnetoresistance were
m* ce ape : .
e | 9Pg hardly ever observed in metals for which the number of con-
o ke - duction electrons is of the order of one per atom. This is
ge= 2, ak(—l)kk‘l’zco%%—BJr 7S cos( ) clearly due to the fact that the quantum correction to the
k=1

classical expression for the conductivity is too small, being
(33 proportional to twc/ep)? while the amplitude of the
Here thea, are numerical factors that depend on the concretguantum oscillations of the magnetic susceptibility is a factor
form of the carrier dispersion relatiom is the mass of a free of (ep/fiwc)®¥? larger than the Pauli paramagnetic
electron,s=sgn@@S./ap3), and S, is the extremal value of susceptibility? and the Landau diamagnetic susceptibfiity.

the area of section of the isoenergy surface by a plane Layered organic conductors are an exceptionally conve-
=const. In the case of several extremal secti®ni is nec-  nient object for experimental study of the Shubnikov-de
essary to sum over all possib® in formula (32). Haas effect, since a much larger number of charge carriers is

As a result, the conductivity, which is proportional to the involved in its formation than in the case of ordinary metals.
relaxation timer, acquires an oscillatory componenf*® In some compounds the amplitude of the resistance oscilla-
~AgsTg- tions can reach giant values exceeding the minimum value of

In formulas (32) and (33) the broadening of the quan- the resistance by one or two orders of magnittfdféd—8’
tized levels of the charge carrier energy due to scattering haSlearly the theory of quantum oscillation effects developed
not been taken into account. Din§l@roposed that to do this for materials with a relatively slight anisotropy is inappli-
it is sufficient to introduce in the oscillatoryn 1/B) correc-  cable in this case, especially under conditions such that the
tion to the kinetic coefficient and i .5 a factor distancei w. between adjacent Landau levels is considerably

reater than the widtW, of the conduction band in the

Rp=exp(— 1weT), (34 girection perpendicular té the layers.
which has come to be called the Dingle factor. Pioneering research on the magnetic susceptibility of

A rigorous analysis of the quantum oscillation effects,conductors with a markedly anisotropic quasi-two-
carried out by Bychkof? with the use of the diagram tech- dimensional electron energy spectrum was done in the years
nique, showed that in many particular cases such a proceduf®83-1985 by Wagner and co-work&® and by
is completely justified, although it can lead to the loss ofShoenberd® The thermodynamic theory of quantum oscilla-
interesting effects associated with magnetic-impurity-boundions has been under particularly intensive development in
electronic states. The value calculated by Bychkov for thehe last 10 yeargsee Refs. 91-102 and the references cited
factor by which the amplitude of the quantum oscillations istherein. There is now a consistent theory of the de Haas-van
lowered on account of scattering of conduction electrons difAlphen effect in layered systems which can in principle be
fered from the Dingle factor only by a number factor of orderused for quantitative analysis of the magnetization oscilla-
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tions observed in organic conductdsge, for example, Refs.
91 and 103-1056 A number of theoretical papers have been
devoted to an examination of quantum oscillations of the 0.56 K
magnetoresistanc¢@® 13 Unlike the case of the thermody- 0.88
namic de Haas-van Alphen effect, the detailed description of
guantum oscillations of the kinetic properties, which is com-
plicated strongly by the necessity of taking the details of the
scattering processes into account under conditions of ex- ©
tremely high anisotropy, is far from completed. Nevertheless, @
substantial progress in understanding some of the important
features of the Shubnikov-de Haas effect in quasi-two-
dimensional systems, at least on a qualitative level, has been
made recently.

Let us consider in more detail the case of a compara-
tively strongly corrugated cylindrical Fermi surface, when
the width of the conduction band in the direction perpendicu-
lar to the layers,W, , is somewhat(but not very much
greater than the distance between adjacent Landau levels.

1
2 Apear(1/B)

2g(1/8)

This condition is realized in many layered organic conduc- - BTTTST A
tors in fields of~10 T. In this case the de Haas-van Alphen L , i . , BT ;
effect is still described well by the standard Lifshitz— 8 10 12 14
Kosevich formula, which was obtained for moderately aniso- B, T

tropic .metalsﬁ' At the same t'me* it turns out that th('?'_FIG. 8. Quantum oscillations of the interlayer magnetoresistance of

Shubnikov-de Haas effect manifests a number of specifig-(BEDT-TTF),IBr, in a magnetic field tilted at an angte~15° from the

features already aW, =% w.. Among them are beats of the normal to the layers, for different temperatures. The fundamental

quantum oscillations of the magnetoresistance and an appr hubnikov—-de Haas 0§(i|||at|0ns, shown on an enla.rged scale in the inset,
iabl hift of their bh . |ati he b fth ave a frequency,=A, “(1/B)~3900 T and beat with a frequendey

C!a e shiit of their p a;e inre at|.0|.1. tot e eats 0 t. e OS':Agela(l/B)&vzo T. In addition to the fundamental oscillations, which are

cillations of the magnetic susceptibility, which carries infor- rapidly damped with increasing temperature, slow oscillations which are

mation about the spectrum of charge carri@fs.The periodic on a scale of B/but are practically independent of temperature are

detection of slow quantum oscillations with a frequency pro-°Pserved. bata of Ref. 110.

portional to the difference between the maximum and mini-

mum areas of section of the Fermi surface has turned out thequency’®®'° it could be supposed that the standard

be very important’® These oscillations are observed at sthree-dimensional” model applies in the given situation. In-
higher temperatures than the oscillations at the fundamentgleed, the behavior of the magnetization oscillations in
frequency, which is proportional to the extremal area of seCp-(BEDT-TTF),IBr, has been analyzed successfully by
tion of the Fermi surface. Wosnitza and co-workets'* in the framework of the
Figure 8 shows a typical example of the field depen-| jfshitz-Kosevich theor§* However, in the case of resis-
dence of the interlayer resistance®f(BEDT-TTF),IBr, in  tance oscillations new effects arise even under these condi-
a magnetic field tilted at a small anglé<15°) from the tions, due to the quasi-two-dimensional character of the
normal to the conducting plart€ at temperatures of the charge carriers.
order of 0.6 and 1.4 K. Two types of oscillations are clearly  perhaps the most obvious and important anomaly of the
seen. The fast oscillations, which are particularly pronouncegehavior presented in Fig. 8 is the presence of slow quantum
at 0.6 K, are the Shubnikov-de Haas effect on extremal orbitgscillations of the interlayer resistance. These oscillations,
of the cylindrical Fermi surfac&:* By virtue of the slight  which are periodic in the B scale, were observed back in
corrugation of the cylinder the frequencies corresponding tehe first experiments on this compoutfc?® but their nature
the maximum and minimum cross sections of the Fermi surhas been understood only reced§!! It has been
face are extremely close, as is reflected in the low-frequencystablisheti® that the dependence of the frequency of the
modulation of the oscillation amplitude, which is propor- slow oscillations on the orientation of the magnetic field,
tional to cos(2rF,/B+ ¢). Fsiow( 0), is strictly correlated with the angular oscillations of
From the ratio of the beat frequencl~20 T) to the  the quasiclassical part of the resistafg(6), which were
fundamental frequencyH;~3900 T) one can estimate the considered in Sec. 2.1. As is shown in FigF,,, oscillates
relative value of the corrugation of the Fermi surface:with variation of the field tilt angled, going to zero at angles
AS/S=2F,/Fy=~10"2. The ratio of the width of the con- corresponding to the maxima &, (6). Such behavior at-
duction band in the direction perpendicular to the layerstests to the direct link between the slow oscillations and the
W, ~4t, [t, is the transverse transfer integral; see formulacorrugation of the Fermi surface. Indeed, as was discussed
(6)], to the distancé w. between Landau levels in a field of above, the quasiclassical magnetoresistance takes on maxi-
10 T is equal to F,,/B~4. Consequently, taking the small- mal values at those magnetic-field orientations for which the
ness of the oscillation amplitude into accountX% of the  areas of all the cyclotron orbits become practically equal.
monotonic component of the resistapead the practically This, in particular, means that the beat frequefgyof the
total absence of higher harmonics of the fundamentafundamental Shubnikov-de Haas oscillations goes to zero the
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10 _ ' ] ! H The mean free time of the charge carriers also oscillates

with variation of the magnetic field. In the Born approxima-

i tion the oscillations are determined by oscillations of the
. density of states and, when the carrier dispersion relation
(37) is taken into account, assume the fotrP*

! 1 1 | t 1
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1 whereR}, is the usual Dingle factor, ant}(u) andJ,(u) are
0.2 I Bessel functions. As is seen from expressi@®) and(39),
i » the oscillations of the relaxation time and velocity of the
01k electrons are modulated in amplitude by the Bessel functions
L 1 ! | t !

of order zero and one, respectively, with an argument deter-
Loy . mined, as expected, by the ratip/(Zw.). Obviously the
40 -20 0 20 40 product of two oscillatory functions in the expression for the
9, deg conductivity will contain a slowly oscillating term.
At large argumentsi =4t /(A w.) one can use the ap-

FIG. 9. Angular dependence of the frequency of slow oscillatfogs, (®) proximate expressions for the Bessel functiodg(u)

and twice the beat freque_ncy:g_eat(O) (a), and th_e corresponding angu_lar ~ \[2/7u cosU—/4) andJ,(u)~ \/msin(u—rrM). Since

dependence of the quasiclassical part of the interlayer magnetoresistance . . I .

(b) 110 In the experiment the amplitude of the oscillations is rather
small, and all the harmonics except the first are substantially
suppressed, we neglect the oscillations of the chemical po-
tential and keep in the expansion fat, only the terms of

the maxima of the angular oscillations of the magnetoresistowest order in the factor®, andRy, and after integration

tance. Recent measurements have shown that the angular @dgrer ¢ we obtairt®

pendences-,(#) and Fq.(6) actually coincide with each

other to good accuracy over a wide range of angles, and the R t_l 2 142 [fiwc(1+a?%) co 2T
following relation holds: 2z V0] o 2%t hog

4t T hw
F|M0):2Fb(0) (36) X J‘__+ +—C
% co ho, 4 ¢ RoRr 27t
Thus one can conclude that the slow oscillations, like the 8t -
beats of the fundamental Shubnikov-de Haas oscillations, are X REZ\1+a2 cos( S (p) ] , (40)
not due to some independent small section but to the weak hoe 2
corrugation of the main cylinder of the Fermi surface. where
To explain this effect we use the model dispersion rela-
tion (6), which under conditions of quantization of the orbital ~ @=hwc/(27t,), ¢=arctaria), (41)
motion of the electrons takes the form w is the chemical potential of the charge carriers, agds
L the monotonic part of the conductivity along the layers.
ap, The second term in the suf0) corresponds to the main
P)=| N+ z|hiw.—2t — . 3 I .
&(n,p)=|n 2|1 @eT el COS( h ) 7 oscillations with the fundamental frequenEy=um*c/#e

=cY(27he), modulated in amplitude at the frequency
In a quantizing magnetic fiel® deviating substantially Fg,,=4t, /fiw.=2t, m*c/he. The third term in(40) corre-
from the layers, i.e., when#{/2— 0)> 7, the resistance to sponds to slow oscillations with a frequency equal to twice
the current transverse to the layers, as in the case when ethe beat frequency, in complete agreement with experiment.
ergy quantization is not taken into account, is determined It must be noted that the amplitude of the slow oscilla-
mainly by the conductivity tensor componeny,. tions does not contain a temperature factor, since these oscil-
Using the Poisson formulé30), applying it to expres- lations are independent of the electron eneftipey are de-
sion (29) for o,,, we obtain a series of terms oscillatory in termined only by the value df, in the dispersion relation
the inverse magnetic field: Indeed, as is seen in Fig. 8, the amplitude of the slow oscil-
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lations remains almost unchanged when the temperature is
increased from 0.6 to 1.4 K, while the fundamental harmonic 0.6k {
of the Shubnikov oscillations is almost completely sup-

pressed at 1.4 K. Strictly speaking, the slow oscillations are,
of course, damped with temperature by virtue of the
temperature-dependent scattering proceSsedyut this
damping is considerably slower. In particular, in the com-
pound B-(BEDT-TTF),IBr, the slow oscillations are ob-
served all the way up to temperatured0 K, i.e., an order

of magnitude higher than the fundamental Shubnikov oscil-
lations.

Another consequence of the fact that the slow oscilla-
tions are independent of the carrier energy is the difference
of the corresponding Dingle factdRf from the standard
onel%! ysually the relaxation time that enters into the 5 B, T
Dingle factor takes into account both point defects and other,
macroscopic, imperfections of the crystal which influence’!C: 10 Tangent of the phase shift of the beats of the Shubnikov oscilla-

. o . tions in B-(BEDT-TTF),IBr, as a function of magnetic field according to
the local value of the chemical pOtem'aI' dislocations, MOS8zhe data of Ref. 109. The dashed line was constructed according to formulas
icity, local strains, etc. Since the chemical potential does not41), and the solid line is the result of a quantum-mechanical calcul’tion.
appear in the expression for the slow oscillations, the factofhe calculation was done using the values of the cyclotron mgss3.9
R% is determined solely by the point defects. Indeed,g:olrg thegD?:dlesf:étg;'g? tﬂzzlé’v’s gséﬁltaggaioc%%xlo s obtained
experiment'® has shown that in3-(BEDT-TTF),IBr, the g '
relaxation time obtained from the Dingle factor of the slow
oscillations is five times larger than the value determineqggits of the measurements and the dashed line represents
from the fundamental Shubnikov-de Haas OSC'"at'O”S-relation(41); here the ratidiw,/t, was taken from the beat
Hence it can be concluded that the contribution of the MaCtequency of the de Haas-van Alphen oscillations.
roscopic inhomogeneities to the suppression of the Shub- gypsequently a more rigorous theoretical analysis of the
nikov oscillations is dominant in this compound. conductivity based on the Kubo formalism with the use of

Thus the slow oscillations of the interlayer magnetore-the self-consistent Born approximatidhshowed that a term
sistance are a general phenomenon observed in sufficiently /2t 7) must be added to the argument of the arctan-
pure layered metals by virtue of the superposition of thegent in formula(41), wherer* is the scattering time on point
oscillations of the relaxation time and carrier velocity in the gefects(it can be determined from the Dingle factor for the
direction transverse to the layers, the amplitudes of whicky|gyy oscillations,R%). Then, as is shown in Fig. 1Golid
turn out to be comparable, whéM, is of the order ofiwc.  |ine), fair agreement with experiméfit can be achieved for
Indeed, such oscillations have been observed not only ifieids in the interval 7-12 T, which corresponds to values
B-(BEDT-TTF),IBr, but also in a number of other layered 74 /t, ~0.7—1.2. However, upon further increase of the
organic conductors in fields 10 .16~ field the discrepancy between the thédhand experiment

It follows from relations(40) and(41) that the phase of increases. Moreover, it has been obselé&that for field
the beats of the fundamental harmonic of the Shubnikov-derientations close to the direction corresponding to the peak
Haas oscillations contains an anomalous terrwhich de-  in the angular oscillations of the magnetoresistance the phase
pends on the magnetic field. In fact, experiments on a numshift ¢ is significantly greater than the limit/2 predicted by
ber of organic metaf§®**'~***have revealed a significant the theory*
phase shift of the beats of the magnetoresistance oscillations Thus the results presented show that, unlike the thermo-
with respect to the beats of the magnetization oscillations ifynamic quantum oscillations such as the de Haas-van Al-
fields of the order of 10—20 Trecall that the latter are well phen effect, the quantum oscillations of the conductivity of
described by the standard three-dimensional LifShitZ-Iayered metals display a number of anomalies even for
Kosevich modér). hw /W, <1. The existing theoretical models are able to de-

A detailed experimental study of the phase of the beatscribe the nature of these anomalies in a qualitative way.
of the Shubnikov oscillations was carried out in Refs. 109However, to achieve quantitative agreement between theory
and 123, and it was shown that it is indeed substantiallyand experiment, especially under conditions when the ratio
dependent on the ratibw. /W, . In particular, it was found % w /W, increases, approaching unity, further efforts will be
that the phase shift increases strongly as the magnetic-field necessary.
orientation approaches the direction corresponding to the For Zw.>W, the Boltzmann transport equation does
peak in the angular oscillations of the classical part of thenot lead to a satisfactory result at high magnetic fields
magnetoresistance. This result agrees with the fact that thew.7>1). A detailed analysis of the conductivity,, for the
effective interlayer transfer integral vanishes at the peak ofases w.>W, in a field perpendicular to the layer8|(z)
the angular oscillation It should be noted, however, that was done by Champel and Minéé¥and by Gvozdikot*3
the phase shift measured in Ref. 109 was approximatelgn the basis of the Kubo formalism with the use of the self-
twice as large as the value predicted by formy#®. Thisis  consistent Born approximation. It was shown that with in-
illustrated in Fig. 10, where the symbols correspond to thecreasing field an ever greater contribution to the oscillations

tano
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of o,,is given by the purely quantum term, which does notwhereH=Hy(P—eA/c)—eE-r is the Hamiltonian of a con-
have an analog in the semiclassical model. In particular, aluction electron in uniform electric and magnetic fieleds
integer occupation of the Landau levels this term almosthe generalized momentum opera#iis the vector potential
completely compensates the semiclassical Boltzmann contrfer the magnetic inductiorB= (0, B sin 6, Bcosé)=curlA,
bution, which gives rise to a “pseudogap” in the function which in the Landau gauge has the for+= (0,xB cos6,
o,/&) and an activation temperature dependea¢g€T) at  —xBsin#), and in the absence of electric field the projections
integer u/h .. Such a temperature dependence has indeedf the generalized momentuf, and P, are good quantum
been observeéd® at fields greater than 20 T in the organic numbers.

conductorg”-(BEDT-TTF),SFCH,CF,SO;. Nevertheless, The quantum analog of the collision integidlyy(f)
a detailed comparison of the Shubnikov—de Haas oscillationgskes into account the scattering of electrons by the potential
in this compountf>*?®with the results of the theoretical cal- >.\/(r—r,) of impurity atoms located at coordinates In
culations reveals significant discrepancies. As was noted ithe case when this potential is short-ranged and weak, the

Ref. 112, the cause of this may be the insufficiency of taking,gjision integral,,, can lead to an integral operator acting
into account scattering only on point defects in the regime

. : on a single-particle statistical operatbef,+f,. The op-
hw.>W, . A more rigorous treatment of scattering pro- gie-p P 0L P

cesses in layered organic conductors is an extremely COrﬁa_ratorfo describes the unperturbed state of the system of

plex problem and has not been done at the present time conduction electrons, —its diagonal matrix elements are
equal to the Fermi distribution function of the charge carri-

ers,f3"(pg) = folen(Pg) }—and the operatof; describes the
4. HALL EFFECT perturbation of the charge carriers by the electric field.

In an approximation linear in the weak electric field the
The Hall field at high magnetic fields, even in the pres-kinetic equation takes the form

ence of open sections of a Fermi surface in the form of a

corrugated cylinder, i.e., fof= /2, has the forff {Hof 1} —{eE-rfo}=Weai{f4}. (47)
[jXB] It is easy to see that the expression for the current den-
Hall = “Neg (42) sity component orthogonal to the magnetic field,
i.e., the same form as in the case of a magnetic field tilted [jXB]/B=Tr(e VX B]f,)/B, (48)

with respect to the layers, when all the charge carriers in th

- - . . fuhere is the velocity operator of the conduction electrons,
collisionless limit (=) drift at a velocity

is proportional to the change of the momentum of the elec-

[EXB] tron with time:
C?. (43)

This is because the drift of the charge carriers along
open orbits in a plane orthogonal to the magnetic field, wit

u=

e[\7><B]=c%f)=c{H,|6}. (49

hUsing relation(49), we obtain

the velocity
2mhe [ixBly=(ic/h)Tr(HE p,—F1HPy)
U= 26BTa(pa) (44) . A
BPs = —cTr({eE-rfo}py) —cTr (Weai(f1)By). (50)
|ds ngturally compensated in the expression for the current As a result, in the collisionless limi,q(f,)=0 we
ensity .
obtain
j=Neu, (45) _ R .
[[xB]y=ceTr(E,f)=Tr(fy)ecE,=NecE, (52

whereu, as in the case whe# is not equal torn/2, has the
form (43). As a result, by measuring the value of the Hall i-€., at arbitrary orientations of the current density and mag-
field at a high magnetic field with any orientation, one cannetic field the asymptote of the Hall field has the fo2).
determine the charge carrier densiyto the necessary ac- Taking the collision integral into account is extremely impor-
curacy. tant for calculating the dissipative component of the current

At low temperatures such that it is important to take thedensity.
quantization of the electron energy levels into account, for ~ Thus in layered conductors with a Fermi surface in the
conductors with a single group of charge carriers the quanform of a slightly corrugated cylinder, the quantum oscilla-
tum corrections to the asymptote of the Hall figkR) for  tions of the off-diagonal components of the magnetoresistiv-
w71 appear only in the higher terms of the expansion in dty tensor, divided by the asymptote of the Hall field, are
power series in the small parametet 1/w.7. Let us present Smaller than the quantum oscillatiop*7p™" by at least a
Lifshitz’ elegant proof of this assertiof. factor of w.7.

We calculate the current density flowing in the direction ~ However, in conductors with a multisheet Fermi surface
orthogonal to the magnetic field with the aid of the solutionthe amplitude of the oscillations of the Hall field can be
of the quantum kinetic equation for the statistical operatocomparable to the the amplitude of the magnetoresistance
f=fo+?1i oscillations.

Let us consider the case when the Fermi surface includes

{Hf}z\fvcou(f), (46) a pair of slightly corrugated planes in addition to the cylin-
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drical part. Such a topology of the Fermi surface is quiteinfluence on the asymptote of the quantum oscillations of the
common in organic metaf$33In particular, it is character- Hall field. When the oscillatory dependence of the mean free
istic for one of the best-known organic superconductorstime on 1B at low temperatures for the conduction electrons
k-(BEDT-TTF),Cu(NCS), (Ref. 30 and also for the nor- with closed orbits on a sheet of the Fermi surface in the form
mal metallic state of the compound of a corrugated cylinder is taken into account, the Hall field
a-(BEDT-TTF),MHg(SCN),, where M is a metal from the in a quantizing magnetic field takes the fdfh

group K, Rb, Tl or NH (Ref. 127. Open sections of such a

. Hsinég
Fermi surface by a plangs= const are encountered at prac- g, =j ————
tically any orientation of the magnetic field, and the magne- 2Nec
toresistance of such a conductor increases without saturation Hogo; sin 2¢ cosd—Neco, o ¢

as the magnetic field is increased. The position of all the X1{ —sir? g+ ,
planes inp space can easily be determined from the anisot- Ned oot ou(1+Aesd]
ropy of the magnetoresistance in the plane of the lasfers. (55

For p<cos# and y,<cos# the magnetoresistance to a H sing Hogoy cosf—Necoy(1+ Ay sin 26

current flowing along the layers has the f4rif® E =]
4 Nec Nedop+o1(1+ALd]
0, Sir? ¢ o 0+ Y20 (56)
P Voooot o) It is easy to see that the ratio of the oscillatory f&LL;
2 2 5 of the Hall field to the part that varies monotonically with
) _01C0S ¢ COS 0+ 500 (520  Magnetic field,Efly, as follows from formulas(55) and
yy ’

Yooo(oo+ o) (56),

where oy and o, are equal in order of magnitude to the o
. . . . R EOSC/ mon: _ A (57)
contribution from the charge carriers situated, respectively, Halll EHall 05 oy
on the cylindrical and planar parts of the Fermi surface to the . mon
conductivity along the layers in the absence of magnetic field® ©f the same order of magnitude A o
and ¢ is the angle between the, axis and the corrugated Thus, by studying the dependence of the resistivity and
plane of the Fermi surface. Hall field on the value of a sufficiently strong magnetic field
The contribution of the charge carriers whose states pdor different orientations of the field with respect to the lay-
long to a sheet of the Fermi surface in the form of a slightly©'S: Oné can reconstruct completely the topological structure
corrugated plane to the conductivity along the normal to thef the Fermi surface and determine the contribution of the
layers does not lead to a noticeable Hall effect provided thali?dividual groups of charge carriers to the total conductivity
7<1y, and the resistivity along the axis, of the conductor.
p _ 1 oicosesimy (53 5 CONCLUSION
zz

M bk e
o oologt o . L . L
2z Yo70(Tot 1) At high magnetic fields the kinetic characteristics of

is determined mainly by the conductivity tensor componeniow-dimensional conductors depend substantially on the con-
Tzt crete form of the energy spectrum of the charge carriers and
In formula (52) and in the last term of formulés3) we  contain detailed information about the dispersion relation of

have dropped unimportant factors of order unity which de-the conduction electrons. Intensive research on galvanomag-
pend on the concrete form of the dispersion relation of thenetic phenomena in organic layered conductors at low tem-
charge carriers, and the relationship between the mobilitieperatures has revealed a number of peculiar effects specific
of the conduction electrons of the two groups are assumed @ quasi-two-dimensional conductors. It turns out that the

be the same. electronic phenomena in quasi-two-dimensional conductors
At rather high magnetic fields, whepy<7, the Hall are manifested in fundamentally different ways for different
components of the resistivity tensor, in particular, orientations of the quantizing magnetic field. Even in a mod-

erately strong magnetic field orthogonal to the layers, when
the discrete-continuous electron energy spectrum of the lay-
ered conductor contains a rather large number of quantized
(54) values of the momentum projection on the magnetic field
are already comparable jg,. direction at a fixed value of the energy, e.g., equal to the
The presence of an additional pocket of the Fermi surfermi energy, at certain orientations of the magnetic field
face in the form of weakly corrugated planes leads ygr  with respect to the layers only one or a few electron states
< 5 to the unrestricted growth of the resistivity to a currentwith the Fermi energy are possible, i.e., the electron energy
transverse to the layers with magnetic field, and the Halbpectrum turns out to be quasi-discrete.
field, which is proportional td¢12, is now comparable t&, . Thus, depending on the angle between the magnetic field
The energy spectrum of the carriers whose states belongector and the normal to the layers, a layered conductor be-
to the slightly corrugated planes in momentum space doelsaves as a three-dimensional conductor with highly aniso-
not contain discrete levels, and therefore this group of contropic electron energy spectrum or as a two-dimensional con-
duction electrons does not take part in the formation of quanductor with a discrete spectrum of charge carriers. This
tum oscillation effects, but its presence can have a substantiatientation effect, which is specific to quasi-two-dimensional

_,018iN2psin20 . (og+oysi? @)sing
Pxz= Yo + %

oo(optoy) oo(optoy)
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