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The experimental research on galvanomagnetic phenomena in layered organic conductors at high
magnetic fields is discussed in terms of the theoretical ideas about charge transfer phenomena
in conductors with a metallic type of conductivity and a quasi-two-dimensional electron energy
spectrum of arbitrary form. Attention is devoted mainly to the problem of recovering the
dispersion relation of the conduction electrons in layered organic charge-transfer complexes from
experimental studies of their magnetoresistance and quantum oscillation phenomena at low
temperatures. ©2005 American Institute of Physics.@DOI: 10.1063/1.1884422#
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1. INTRODUCTION

Interest in low-dimensional organic conductors ro
sharply in the 1960s after Little’s suggestion1 that high-
temperature superconductivity might be realized in o
dimensional polymer chains. Despite the fact that this id
has not found experimental confirmation, joint efforts
physicists and chemists have led to the creation of a n
class of organic salts having metallic electric
conductivity.2,3

A characteristic feature of the electronic properties of
first organic metals was a pronounced anisotropy of a qu
one-dimensional type due to their crystal structure. The m
structural elements of these compounds are planar molec
having donor or acceptor properties. The best-known
amples of such molecules are tetrathiafulvalene~TTF!, tet-
ramethyltetraselenafulvalene~TMTSF!, tetraselenatetracen
~TST!, and tetracyanoquinodimethane~TCNQ!, which are
shown schematically in Fig. 1. The radical ions of these m
ecules form regular stacks along a preferred crystallogra
direction. The interplane distance between molecules is o
shortened as compared to the van der Waals separation
mutual orientation of neighboring radical ions in the sta
makes for significant overlap of thep molecular orbitals at
minimal Coulomb repulsion. Fractional charge transfer fro
the radical ions to the counterions causes a partial occupa
of the conduction bands thus formed. As a result, the c
ductivity s along the stacks at room temperature in a num
of compounds exceeds;103 S/cm and grows with decreas
ing temperature. At the same time, the overlap of the m
lecular orbitals between stacks is much weaker, making
extremely low conductivity in the transverse directio
;1 S/cm or less, at room temperature. Such high anisotr
of the electronic properties leads to Peierls instability of
metallic state, characteristic for quasi-one-dimensional c
ductors: as the temperature is lowered, the substance u
goes a transition to an insulating state with the formation
a charge- or spin-density wave.4–6
1851063-777X/2005/31(3–4)/18/$26.00
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To suppress the insulator transition it is necessary to
crease the dimensionality of the conducting system, i.e.
strengthen the coupling between stacks. On the one h
this can be achieved by the application of high pressu
Indeed, a metallic state stable to the very lowest temperat
was first obtained at a pressureP'5 kbar in the quasi-one
dimensional complex (TST)2Cl.7 Subsequently similar re
sults were obtained on a number of other compounds.8 The
most exciting achievement was the discovery in 1980 of
perconductivity under pressure (P;9 kbar) in
(TMTSF)2PF6 ~Ref. 9! and then in the isostructural sal
(TMTSF)2X with X5AsF6 , SbF6 , ClO4 , etc. ~a detailed

FIG. 1. Donor and acceptor molecules on which the best-known crysta
organic conductors are based~the full names of the molecules are given
the text!.
© 2005 American Institute of Physics
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review of the physical properties of these so-called Be
gaard salts can be found in Refs. 8 and 10!. It must be noted,
however, that the superconductivity in those compou
competes with instability of the Peierls type~in this case
leading to a state with a spin-density wave!, which limits the
temperature of the superconducting transition to values in
1 K region.

On the other hand, it has proved possible to synthe
conducting complexes in which the organic molecules do
form weakly coupled individual stacks but rather form int
gral layers with significant overlap of thep orbitals in two
directions. For example, the first layered~quasi-two-
dimensional! organic superconductorb-(BEDT-TTF)2I3

~BEDT-TTF denotes bis~ethylenedithio!tetrathiafulvalene;
see Fig. 1! was synthesized in 1984.11 The crystal structure
of this compound is given in Fig. 2. The BEDT-TTF0.51

cation radicals form stacks arranged in layers alterna
with the layers of I3

2 ions. The presence of a significant num
ber of shortened contacts both inside the stacks and betw
them makes for an almost isotropic conductivity along
layers,s i'30 S/cm, at room temperature, while in the d
rection perpendicular to the layers the conductivity is alm
three orders of magnitude lower.12 Nevertheless the tempera
ture dependence of the resistivityr51/s is of a metallic
character independent of the direction of the current; the
sistance falls off monotonically with cooling, and atT
52 K it is more than two orders of magnitude lower than
room temperature. On further cooling the substance goes

FIG. 2. Crystal structure of the quasi-two-dimensional organic superc
ductor b-(BEDT-TTF)2I3 according to the data of V. F. Kaminski�, T. G.
Prokhorova, R. P. Shibaeva, and E´ . B. Yagubski�, JETP Lett.39, 17 ~1984!.
The stacks of BEDT-TTF0.51 cation radicals, which lie in the crystallo
graphic direction (a1b), form layers separated along thec axis by layers of
I3 anions~a!; the arrangement of the molecules in the conducting layer;
dotted lines denote the shortened contacts responsible for the metallic
ductivity between the sulfur atoms from neighboring molecules~b!. The
figure was kindly provided by S. S. Khasanov and R. P. Shibaeva.
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the superconducting state (Tc'1.5 K).11 Interestingly, at a
relatively low pressure~below 1 kbar! the superconducting
transition temperature increases abruptly by a factor of fi
jumping from 1.5 K to 7.5–8.0 K.13,14

Soon after the discovery of superconductivity
b-(BEDT-TTF)2I3 the isostructural superconducting salts
BEDT-TTF with the anions IBr2

2 and AuI2
2 were

synthesized, with transition temperaturesTc52.7 K and
4.8 K, respectively,15,16 significantly exceeding the
highest transition temperature in quasi-one-dimensio
superconductors. By now there are some dozens
layered organic superconductors known, most of wh
are BEDT-TTF salts.10 Some of the other
molecules for which superconducting compounds have b
synthesized are shown in Fig. 1: bis~ethylenedioxy!
tetrathiafulvalene ~BEDO-TTF!, dimethylethylenedithio-
diselenadithiofulvalene~DMET!, and metal complexes o
bis-4,5-dimercapto-3-dithiol-2-thione (M(dmit)2). The
record values ofTc at present have been obtained in t
layered compoundsk-(BEDT-TTF)2@N(CN)2#X with X
5Br (Tc'11.6 K, P50 kbar)17 and X5Cl (Tc'12.8 K,
P50.3 kbar),18 and b8-(BEDT-TTF)2ICl2 (Tc'14.2 K, P
582 kbar).19

To understand the nature of superconductivity and
number of other, no less interesting, phenomena observe
organic conductors~see the review in Ref. 10, for example!,
detailed knowledge of the electron band structure of th
compounds is needed. In the case of ordinary metals h
magnetic fields are a powerful tool for investigating the ele
tronic spectrum. In particular, measurements of the ani
ropy of the magnetoresistance permit one to investigate
topology of the Fermi surface of the metal,20–24and from the
Shubnikov–de Haas oscillations one can determine the
ues of the extremal closed cross sections of the Fermi sur
and some other important characteristics of the cha
carriers.23–25 These methods are widely used to study t
electronic structure of ordinary three-dimension
metals.25–27

In 1988 Shubnikov-de Haas oscillations were observ
in the layered superconductorsb-(BEDT-TTF)2IBr2 ~Refs.
28 and 29! and k-(BEDT-TTF)2Cu(NCS)2 ~Ref. 30! at
magnetic fields;10 T. These studies provided the first d
rect proof of the validity of the Fermi liquid description o
the electronic properties of the given materials and stim
lated intensive further research on organic conductors at h
magnetic fields. By the mid-1990s extensive information h
been accumulated on the subject, a detailed review of wh
was given by Wosnitza.31 Some interesting results of the ap
plication of high fields for studying layered organic condu
tors are reviewed in Refs. 32 and 33.

By virtue of the extremely high anisotropy of the ele
tronic properties of organic conductors, their behavior in
strong magnetic field differs substantially from that of ord
nary three-dimensional materials. This is true of both
quantum oscillations of the magnetoresistance and its qu
classical components, which demonstrate qualitatively n
effects absent in moderately anisotropic three-dimensio
metals and in purely two-dimensional conducting system

In this article we review the basic galvanomagnetic ph
nomena observed in layered organic conductors and their
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for quantitative study of the electronic spectrum of these m
terials. Attention is devoted mainly to the interlayer magn
toresistance features caused by the presence of a Ferm
face in the form of a cylinder with arbitrary cross section a
with only a slight corrugation in the direction perpendicu
to the highly conductive layers. A prominent example o
system having such a Fermi surface is the supercondu
b-(BEDT-TTF)2IBr2 ~Refs. 10, 31, and 32!, which is isos-
tructural to the complexb-(BEDT-TTF)2I3 . In particular,
the Shubnikov-de Haas oscillations with two close frequ
cies attest to a simply connected Fermi surface in the form
a slightly (;1%) corrugated cylinder occupying approx
mately half the volume of the Brillouin zone. Such simp
topology of the Fermi surface and the high quality of sing
crystals of this compound make it an excellent model ob
for studying electronic phenomena in quasi-two-dimensio
metals. Below we shall consider the quasiclassical mag
toresistance ofb-(BEDT-TTF)2IBr2 and show that the ef
fects observed, in particular, the peculiar dependence on
magnetic field direction, are due to the quasi-tw
dimensional character of the electron spectrum and perm
quantitative description of the Fermi surface. Section 3
devoted to Shubnikov-de Haas oscillations, the behavio
which in the substances considered is significantly differ
from the predictions of the standard three-dimensional the
based on the Lifshitz-Kosevich model. Although a quanti
tive description of the Shubnikov-de Haas effect for qua
two-dimensional systems is far from complete, the exist
models are capable of explaining a number of qualitat
features observed experimentally. In the final Section
give a brief description of the Hall effect expected in a qua
two-dimensional metal at high magnetic fields.

2. QUASICLASSICAL MAGNETORESISTANCE

The sharp anisotropy of the electrical conductivity
layered conductors is due to anisotropy of the velocities
the conduction electronsv5]«/]p, and the energy of the
charge carriers in such conductors,

«~p!5 (
n50

`

«n~px ,py!cosH anpz

\
1an~px ,py!J ; ~1!

«n~2px ,2py!5«n~px ,py!;

an~px ,py!52an~2px ,2py!

depends weakly on the momentum projectionpz5p•n on
the normaln to the layers (a is the distance between adjace
layers, and\ is Planck’s constant!. It is natural to suppose
that the functions«n(px ,py) with n>1 are much less than
the Fermi energy«F and fall off rapidly with increasingn, as
occurs in the tight-binding approximation, for example.

The charge carrier velocityvz along the normal to the
layers is much less than the characteristic Fermi velocityvF

of the electrons along the layers, and the quasi-tw
dimensionality parameterh of the charge-carrier energ
spectrum can be determined as the ratio of the maxim
value ofvz on the Fermi surface«(p)5«F to the valuevF ,
i.e.,
-
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vz52 (
n51

`
an

\
«n~px ,py!sinH anpz

\
1an~px ,py!J <hvF .

~2!

Here the ratio of the transverse conductivitys' to the
conductivitys0 along the layers in the absence of magne
field is equal in order of magnitude to the square of t
quasi-two-dimensionality parameter,h2.

In a magnetic field the components of the conductiv
tensor, which relate the current density to the electric fieldE,

j i5s i j Ej , ~3!

can be found using the Boltzmann transport equation in tht
approximation for the collision integral. Without any mod
assumptions about the electron energy spectrum, the qu
classical expression fors i j in the case of periodic motion o
a charge with periodTB52p/vc in a magnetic fieldB has
the form

s i j 52
2e3B

c~2p\!3 E d«
] f 0~«!

]« E dpBE
0

TB
dtv i~ t !

3E
2`

t

dt8v j~ t8!exp~~ t82t !/t!. ~4!

Here t is the time of motion of a conduction electron in th
magnetic field under the influence of the Lorentz force

dp/dt5~e/c!@v3B#, ~5!

e, t, and f 0(«) are the charge, mean free time, and equil
rium Fermi distribution function of the conduction electron
vc5eB/(m* c) is the cyclotron frequency of an electron in
magnetic fieldB, m* is its cyclotron effective mass,pB is the
momentum projection in the magnetic field direction, andc
is the speed of light.

The Fermi surface of layered conductors is weakly c
rugated along thepz axis; it can be multisheet and consist
topologically different elements in the form of slightly co
rugated cylinders and slightly corrugated planes in mom
tum space. In the absence of marked anisotropy of the c
ductivity in the plane of the layers the most probable sha
of the Fermi surface is that of a slightly corrugated cylind
at least one sheet of the Fermi surface in such layered
ductors is a cylinder with cross section located inside o
unit cell of momentum space.

Let us consider galvanomagnetic phenomena in a c
ductor whose Fermi surface is in the form of just one cyl
der which is slightly corrugated along thepz axis, in a mag-
netic field B5(0,B sinu,Bcosu). The sections of such a
surface by the planepB5pz cosu1py sinu5const at (p/2
2u)@h are almost the same for different values of the m
mentum projectionpB on the magnetic field direction, an
the velocity components of the conduction electrons in
plane of the layers,vx(pB ,t) andvy(pB ,t), depend weakly
on pB . At the same time, the velocity along the normal to t
layers is substantially different on different sections of t
Fermi surface by the planepB5const. Hence it follows that
the expansion of the components of the conductivity ten
~4! in power series in the quasi-two-dimensionality para
eterh starts with the second or higher power terms, provid
that at least one of the indices ofs i j is z ~Refs. 34 and 35!.
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The resistivity of such conductors along the layers is
the same order of magnitude as that of an uncompens
metal, i.e., at any orientation of the magnetic field the re
tivity is essentially no different from that in the absence
field. In contrast, the resistivityrzz along the ‘‘hard’’ direc-
tion of current flow, i.e., along the normal to the layers,
extremely sensitive to the orientation of a strong magn
field.

Figure 3 shows an example of the angular dependenc
the resistanceR' measured in the direction perpendicular
the highly conductive planeab of a b-(BEDT-TTF)2IBr2

single crystal as a magnetic fieldB515 T is rotated in a
plane normal to theab plane. The geometry of the exper
ment is shown schematically in the inset. The most rema
able feature of this dependence is obviously the strong o
lations of the magnetoresistance. The positions of the lo
maxima on theR'(u) curve are independent of the magne
field strength and temperature,36 and, as is seen in the figure
periodically repeat in the tanu scale over the entire range o
angles except in a small neighborhood ofu5p/2. The field
dependence of the magnetoresistance varies sharply a
field direction is changed:36,37 as is shown in Fig. 4, the
resistance increases in approximate proportion toB2 for the
field direction corresponding to the maximum on the angu
dependence~curve1!, while at the minimum a tendency to
ward saturation in fields above 5 T is clearly seen.

Such behavior, which was first observed29 in a high-
quality sample ofb-(BEDT-TTF)2IBr2 , turns out to be a
general property of quasi-two-dimensional metals and

FIG. 3. Resistance of ab-(BEDT-TTF)2IBr2 single crystal measured in th
direction perpendicular to the highly conductive planeab, in a magnetic
field B515 T, atT51.4 K, versus the angleu between the field direction
and the normal to theab plane. The geometry of the experiment is illu
trated schematically in the upper inset. A characteristic feature of this
pendence is the presence of strong oscillations that repeat periodically i
tanu scale, as is shown in the lower inset. In addition, a sharp peak of
magnetoresistance is observed in a narrow neighborhood of angles a
u590° ~see Sec. 2.2 and Fig. 7!.
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manifested to some degree or other in practically all laye
organic conductors~see, e.g., the review articles31–33! and in
a number of other layered structures.38–44 This orientation
effect does not take place in ordinary metals and is obser
only in layered conductors with a quasi-two-dimension
electron energy spectrum.

2.1. Angular oscillations of the magnetoresistance

When current is passed along the normal to the lay
the electric field is almost parallel to the current, andrzz is
equal to 1/szz to within corrections small in the paramete
h!1.

A significant first step in the explanation of the orient
tion effect was made by Yamaji,45 who, for the case of a
rather simple charge-carrier dispersion relation

«5
px

21py
2

2m
22t' cosS apz

\ D ~6!

calculated, in the linear approximation in the small parame
h!1, the dependence of the area of section of the isoen
surfaceS(«,pB) by a planepB5const on the angleu be-
tween the magnetic field vector and the normal to the lay

S~«F ,pB!cosu5ppF
2

14pmt' cosS apB

\ cosu D J0S apF

\
tanu D ,

~7!

wherepF5(2m«F)1/2, andJ0(u) is the zeroth-order Besse
function. It is clear from expression~7! that the areas of al
the cyclotron orbits are practically equal at the periodica
repeating zeroes of the Bessel function. Obviously this

e-
the
e
nd

FIG. 4. Field dependence of the interlayer resistanceR' of a
b-(BEDT-TTF)2IBr2 single crystal atT51.4 K for two different magnetic
field directions. Curve1 corresponds to a maximum and curve2 to a mini-
mum on the oscillatory angular dependence, as is shown in the inset.
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be achieved by an appropriate choice of the angleuc . At
such an angle the drift velocity of the charge carriers,46

v̄z~pB!5TB
21E

0

TB
dtvz~ t,pB!5cosu

]S/]pB

]S/]«
~8!

becomes negligibly small. This leads to a sharp decreas
the conductivityszz and ultimately to a sharp peak of th
magnetoresistivityrzz at u5uc .

Formulas~7! and~8! correctly reflect the qualitative na
ture of the angular oscillations of the magnetoresistance
served experimentally. In fact, the sharp decrease of the
ference between the maximum areaSmax and minimum area
Smin of the cross section of the Fermi surface at the max
of the angular dependence was evidenced back in the ex
ment of Ref. 29: at those orientations of the magnetic fi
for which the magnetoresistance took a maximum value
beats of the Shubnikov-de Haas oscillations, due to the
ference (Smax2Smin), vanished.

The conductivity tensor componentszz at high magnetic
field (vct@1) in the case of the charge-carrier dispers
relation ~6! with corrections taking into account small p
rametersh andg51/vct has the form34,47

szz5
2ae2m* t cosu

p\4 t'
2 J0

2S apF

\
tanu D1h2s0~h2F1

1g2F2!, ~9!

wheres0 is the conductivity along the layers in the absen
of magnetic field, andF1 and F2 are functions of the tilt
angle of the magnetic field to the layers and are of the or
of unity.

For arbitrary field direction the Bessel functionJ0 is
generally nonzero, and the conductivityszz is determined by
the first term in expression~9!. In that case the magnetore
sistance is essentially the same as that observed in ord
uncompensated metals: it is relatively low and goes to s
ration at high magnetic field. Foru5uc , however, whenJ0

50, the conductivity is proportional tog2, and the magne-
toresistance to current transverse to the layers grows
magnetic field in proportion toB2, reaching saturation only
in the region of very high magnetic fields, i.e., forg!h.
Such a character of the field dependence is in good qua
tive agreement with the experimental results presented
Fig. 4.

Naturally, a theoretical analysis of the transport pheno
ena with the use of a very simple model of the carrier d
persion relation in the form~6! cannot claim to give a quan
titative description of the experimentally observ
dependence of the magnetoresistance on the strength o
magnetic field and on its orientation with respect to the cr
tallographic axes; nevertheless, in many cases this mod
the electron energy spectrum permits a correct compre
sion of the nature of electronic phenomena in layered c
ductors.

In the case of an arbitrary dispersion relation of t
charge carriers an asymptotic expression forszz(h,g) at ar-
bitrarily small g andh has the form:34,48
in

b-
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szz5 (
n51

` E
0

TB
dtE

2`

t

dt8S an

\ D «n~ t !«n~ t8!
e3B cosu

ac~2p\!2

3expS t82t

t D cosH an

\
@py~ t !2py~ t8!#J , ~10!

where all the functions in the integrand are functions oft and
t8 only. With corrections small in the parametersg!1 and
h!1 taken into account, the conductivity tensor compon
szz takes the following form:48,49

szz5
ae2m* t cosu

2p\4 ( n2I n
2~u!1h2s0~h2w11g2w2!;

~11!

where

I n~u!5TB
21E

0

TB
dt«n~ t !cos$napy~ t !tanu/\%, ~12!

and the functionsw1 andw2 , which depend on the orienta
tion of the magnetic field, are of the order of unity, as in t
case of the carrier dispersion relation~6!. The main contri-
bution to the integralI n(u) for tanu@1 comes from small
neighborhoods of points of stationary phase, where]py /]t
52(eH/c)vx cosu50. There are at least two such points o
the closed electron orbit: these are the turning points wh
vx(t1,2)50. Here«n(t1)5«n(t2) and, if there are no othe
points of stationary phase on the electron orbits,
asymptotic expression forI n(u) takes the form

I n~u!52«n~ t1!
u2p\u1/2

TBuanpy9~ t1!tanuu1/2

3cosH napy~ t1!

\
tanu2

p

4 J , ~13!

where a prime denotes differentiation with respect to tim
The functionsI n(u) have a set of zeroes which for tanu@1
repeat with a period34,48

D~ tanu!52p\/aDp , ~14!

whereDp[2py(t1) is the extent of the cross section of th
Fermi surface along thepy axis. Thus for an arbitrary form
of the quasi-two-dimensional electron energy spectrum
tanu@1 the conductivity transverse to the layers, expres
by formula ~11!, and, hence, the interlayer resistance va
with period ~14! on increasing tanu.

From the periods of the angular oscillations of the ma
netoresistance for different orientations of a strong magn
field one can determine the shape of the cross section o
cylindrical Fermi surface. Such a procedure was first app
to b-(BEDT-TTF)2IBr2 in Ref. 46. The result is presented
Fig. 5. This effect is now widely used to study the Fer
surfaces of organic metals and other layered conductors~see,
e.g., Refs. 31–33, 43, and 44!.

Naturally, all the terms in the sum overn in formula~11!
cannot vanish simultaneously. For example, atu5u1 , when
I 1(u) vanishes, all the functionsI n(u) for which (n21) is
not a multiple of four are substantially nonzero,49 and the
asymptotic behavior ofszz depends substantially on th
character of the decay of the functions«n(px ,py) with in-
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creasing indexn. Agreement with experiment can b
achieved by keeping certain terms in the sum overn in the
formula ~11! for szz.

A theoretical calculation of the resistance to curre
transverse to the layers with three terms retained in the
over n in the formula~11! for szz gives a result for theu
dependence of the magnetoresistance of the condu
b-(BEDT-TTF)2IBr2 that is closer to the experimentally ob
served dependence ifI n11 /I n50.4, while for the more an-
isotropic organic conductor (BEDT-TTF)2DIA ~DIA is di-
iodoacetylene! this is found for I n11 /I n50.2 ~Ref. 50!.
Figure 6 shows the results of a calculation of the angu
dependence of the magnetoresistance of the organic con
tor b-(BEDT-TTF)2IBr2 with several harmonics kept in th
dispersion relation of the charge carriers forI n11 /I n50.04
and I n11 /I n50.4. The experimental angular dependence
the magnetoresistance was taken from Ref. 46.

The energy spectrum of the charge carriers in almos
organic compounds lacks symmetry with respect to the
placement ofpz by 2pz , and taking the phase ofan(px ,py)
into account in formula~11! has a sensitive effect on th
position of the sharp maxima of the magnetoresistance

FIG. 5. Cross section of the Fermi surface of the layered organic super
ductor b-(BEDT-TTF)2IBr2 , determined from experiment on the angul
oscillations of the magnetoresistance.46 The Brillouin zone boundary and the
directions of the crystallographic axes in the plane of the layers are sh

FIG. 6. Dependence of the magnetoresistance transverse to the layers f
organic conductorb-(BEDT-TTF)2IBr2 on the angleu between the mag-
netic field vector and the normal to the layers, calculated theoretically w
several Fourier components taken into account in the dispersion relatio
the charge carriers: curve1—for I n11 /I n50.04; curve2—for I n11 /I n

50.4. Curve3—experimental curve of the angular dependence of the re
tance transverse to the layers.46
t
m

tor

r
uc-

f

ll
-

r-

sus u. In Ref. 46, by writinga1(px , py) in the form of a
linear combination ofpx and py , the results of the calcula
tion were reconciled with the experimentally observed asy
metry in the angular dependence of the magnetoresistan

2.2. Resistance in a magnetic field almost parallel to the
layers

The contribution to the conductivity from the rapidl
oscillating functions in the integrand in formula~12! for g
!1 is smaller the larger the value of tanu. Consequently, the
monotonic part of the magnetoresistance increases with
viation of the magnetic field from the normal to the layers
proportion to tanu, as long ash tanu!1.

When u is quite close top/2, specifically forh tanu
'1, a necking of the electron orbit occurs along thepx axis.
In this region of anglesu a substantial rearrangement of th
electron orbits occurs. When the neck widthDp goes to zero,
a small orbit splits off from the highly elongated orbit; th
small orbit is located completely inside one unit cell of m
mentum space. The nucleation of small electron orbits beg
at a parabolic point of the Fermi surface, where the ma
mum value of the electron velocity along the magnetic fie
on the electron orbit occurs. In the case of charge-car
dispersion relation~6! the small electron orbits arise whe
cosu5h, and for an arbitrary shape of the Fermi surface
the form of a weakly corrugated cylinder, when cosu is of
the order ofh. With further growth ofu the number of small
orbits increases, and atu5p/2 the relative fraction of charge
carriers with small orbits in momentum space becomes of
order ofh3/2.

The character of the angular dependence of the mag
toresistance forh tanu>1 is easily ascertained for arbitrar
dependence of the energy of the charge carriers on their
mentum. In this region of magnetic-field tilt angles with r
spect to the layers the values ofpx , py , andvx vary slowly
with time, while pz , to a sufficient degree of accuracy~to
corrections small inh and cosu) varies in time by a linear
law almost everywhere on the slightly elongated orbits
cept in the vicinity of necks and turning points, where t
velocity projectionvx is small.

To calculate the conductivity tensor componentszz for
h tanu'1 we use the Fourier representation for the elect
velocity along thez axis:

vz~ t !5 (
k52`

`

vz
~k! exp~ ikvct !. ~15!

The contribution to the conductivity along the normal
the layers:

szz5
2e2t

~2p\!3

3E
0

2p\ cosu/a

2pm* dpBH vz
212(

k51

`
~vz

~k!!2

11~kvct!2J
~16!

from charge carriers executing motion along orbits w
small necks is large, since they travel near the neck fo
long time. Their period of gyration in a magnetic field d
verges logarithmically asDp goes to zero:TB} ln(1/Dp), so
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that in a certain layer of electron orbits this period is mu
greater than the mean free time. The lower the cyclot
frequencyvc , the more terms must be taken into account
the sum overk in formula ~16!, and forvc→0 the contribu-
tion to szz of such electrons is comparable to their contrib
tion in the absence of magnetic field. Thus the appearanc
self-intersecting electron orbits forh tanu'1 leads to im-
provement of the conductivity of the layered conductor.51,52

As the angleu approaches closer top/2 the magnetoresis
tance begins to grow, since the termvz, which is independen
of the magnetic field strength, goes to zero in proportion
cos2 u and the resistance to current transverse to the lay
after passing through a minimum in the region of ang
where cosu is of the order ofh, again increases, reaching i
maximum atu5p/2.51,52 In this case the resistance to cu
rent transverse to the layers increases without saturation
increasing magnetic field in the plane of the layers.

Formula ~16! gives a good description of experimen
Indeed, the angular dependence of the magnetoresistan
Fig. 3 demonstrates a slight drop that is followed by a ra
rise at anglesu→p/2. A detailed study of the magnetoresi
tance peak in the vicinity ofu5p/2 was carried out by Ha
nasakiet al.53 for the layered conductorb-(BEDT-TTF)2I3 ,
a close analog of the complexb-(BEDT-TTF)2IBr2 . In par-
ticular, it was found experimentally that the width of th
peak is practically unchanging with magnetic field streng
This is illustrated in Fig. 7, where the angular dependenc
the magnetoresistanceb-(BEDT-TTF)2I3 at various values
of the field is shown for angles close top/2. The constancy
of the peak width permitted the authors of Ref. 53 to
tribute its origins to the geometry of the Fermi surface, s
cifically, to the slight corrugation along thez axis, and thus
to estimate the quasi-two-dimensionality parameterh
>1022.

Let us now consider the dependence of the resistanc
the magnetic field strength foru5p/2. The main contribu-

FIG. 7. Structure of the peak on the angular dependence of the magne
sistance ofb-(BEDT-TTF)2I3 in the vicinity of u590° for different values
of the magnetic field. Plotted according to the data of Ref. 53.
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tion to the conductivity tensor componentszz at u5p/2 is
from the small fraction of conduction electrons with orb
near the self-intersecting cross sectionpB5pc of the Fermi
surface. These charge carriers move slowly along thez axis
with a periodT(pB) larger than or comparable to their mea
free timet for arbitrarily high values of the magnetic field
Since the velocity along thex axis for electrons on orbits
pB5py close topc is small, which corresponds to a wea
dependence of« on px , in calculating the periodT(py) of
the electron’s motion one is justified in using an expansion
the energy in a power series for smallpx , dropping the
higher-order harmonics in formula~1!:

«5«0~0,py!1px
2/2m11«1~0,py!cos~apz /\!. ~17!

Using relation~17!, one can easily calculate the period of th
electron’s motion along orbits close to self-intersecting,

TB~py!5h21/2T0E
0

p

da~j21sin2 a!21/2, ~18!

where T052p\c/(aeBvF) agrees in order of magnitud
with the period of a conduction electron’s motion in a ma
netic field normal to the layers, and

j25@«2«0~0,py!2«1~0,py!#/2«1~0,py!. ~19!

As the self-intersecting orbit is approached,j becomes
an arbitrarily small quantity, and the integral in formula~18!
diverges logarithmically in proportion to ln(1/j).

Unlike ordinary metals, where the period of the carrie
motion is greater than or comparable to the mean free t
only in an exponentially small region of the cross sections
the Fermi surface near the self-intersecting orbit,54 in a
quasi-two-dimensional conductor the conditionTB.t is
valid in a significantly wider region of electron orbits, sinc
the period of the electrons’ motion near the self-intersect
orbit, even forj of the order of unity, is inversely propor
tional to the small parameterh1/2. Thus for h1/2<g0!1,
whereg05T0 /t, there are quite many charge carriers who
period of motion in the magnetic field are greater than
comparable to the mean free time. As a result of averag
over states of the conduction electrons the conductivity o
layered conductor falls off in proportion to 1/B with increas-
ing magnetic field directed in or near the plane of t
layers:35

szz5h2s0g0 . ~20!

With increasing magnetic field the number of electro
whose periods of motion exceed the mean free time
creases, but in the limit of high magnetic field, wheng0

!h1/2!1, the contribution of the small fraction of electron
with open trajectories in momentum space close to the s
intersecting cross section of the Fermi surface,

szz5h3/2s0g0
2, ~21!

nevertheless exceeds the contribution toszz from all the
other electrons. In this region of magnetic fields the line
growth of the resistance to current transverse to the lay
gives way to a quadratic growth with magnetic field.35,48

In formulas ~20! and ~21! we have dropped numerica
factors of order unity which depend on the concrete form
the electron energy spectrum.
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An analogous dependence ofszz on magnetic field
strength was obtained by Lebed and Bagmet55 and by
Schofield and Cooper56 with the use of a model of the form
~6! for the electron energy spectrum.

In the case of a carrier dispersion relation~6! the depen-
dence of the momentum componentpz on timet in a mag-
netic field parallel to the plane of the layers is described
the standard equation for a simple pendulum:

]2pz

]t2 1
2at'e2B2

mc2\
sin

apz

\
50. ~22!

The solution of this equation enables one to write
dependence of the electron velocityvz on time t explicitly
with the aid of the Jacobi functions, which together w
their Fourier transforms have been tabulated in sufficient
tail, and Schofield and Cooper56 had no difficulty in carrying
out a numerical calculation of the dependence of the re
tance to current transverse to the layers on the magnetic
strength over a wide range of magnetic field and param
h. It follows from their calculation that in a quasi-two
dimensional conductor (h!1) the contribution toszz from
electrons with small orbits foru5p/2 over a wide region of
magnetic fields is significantly smaller than the contributi
of the charge carriers with open trajectories in moment
space, which thus govern the behavior of the magnetore
tance at high magnetic fields, in accordance with what
have said above.

Concluding this Section, we note that the unrestric
growth of the magnetoresistance with in-plane field is due
the absence of drift of the charge carriers along the cur
direction, i.e., along thez axis,20 whereas in a magnetic fiel
tilted with respect to the layers the growth of the resista
to current transverse to the layers with increasing magn
field, r(B)5rzz51/szz, gives way to saturation at hig
fields:

r~`!51/̂ v̄z
2t&. ~23!

The angle brackets denote integration over the Fermi sur
with weight factor 2e3B/c(2p\)3.

For any magnetic field orientationrzz increases with
magnetic field, since all the diagonal components of the c
ductivity tensor fall off monotonically with increasing mag
netic field. One can readily see this by turning to formu
~16!, from which it follows thatszz(0)>szz(B), and

]szz~B!

]B
52

8e2t

~2p\!3B

3E
0

2p\ cosu/a

2pm* dpBH (
k51

`
~vz

kvct!2

@11~kvct!2#2J <0,

~24!

where the equals sign applies only in the case of the lo
tudinal conductivity of an isotropic conductor.

The rate of increase of the resistivityrzz with magnetic
field depends substantially on the saturation value~23! to
which the resistivity tends in the limit of infinitely high mag
netic field. At the maximum of the angular dependence of
resistivity the value of̂ vz

2t& is proportional toh4, and the
resistivity increases more strongly with magnetic fieldB than
y
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at the minima ofr~u!. At those magnetic-field orientation
for which r~u! has a minimum it is significantly easier t
achieve saturation with respect to magnetic field strength
is indeed observed experimentally36,37,57~see Fig. 4!.

3. SHUBNIKOV-DE HAAS EFFECT

With decreasing temperature the mean free path of
charge carriers increases, and the condition of high magn
field (vct@1), under which the dynamic properties of th
conduction electrons are most clearly manifested, is reali
in a wider range of magnetic fields. At very low temper
tures, however, the quasiclassical treatment of the trans
properties can turn out to be incorrect.

At Leiden in 1930 Shubnikov and de Haas observe
complicated magnetic-field dependence of the resistanc
20 K in a single-crystal bismuth sample of very high qual
for that time.58 Against the background of significant growt
of the resistivity of bismuth with magnetic field a tenden
toward oscillatory behavior ofr versusB was seen, and an
investigation at liquid helium temperature revealed a pe
odic dependence of magnetoresistance of bismuth on the
verse magnetic field.59

This effect, which came to be called the Shubnikov-
Haas effect, did not follow from a quasiclassical treatment
charge transport phenomena in solids and for a long time
regarded as another anomaly among the unusual prope
of bismuth. It was only after 8 years that Landau showe60

that oscillatory dependence of the magnetoresistance onB
and also the oscillations of the magnetic susceptibility
bismuth, which had been discovered by de Haas and
Alphen in 1930 as well,61 are due to quantization of th
energy of the charge carriers in a magnetic field and
inherent to all degenerate conductors. In a quantizing m
netic field the density of states of the electrons has a squ
root singularity, which at the Fermi level repeats periodica
with variation of 1/B; this is what leads to the oscillator
dependence of the thermodynamic and kinetic characteris
of the conductor on the inverse magnetic field. Rather h
magnetic fields are needed for observation of these osc
tions, sufficient that the distance between the quantized L
dau levels,D«5\vc , exceeds their width\/t, and the tem-
perature smearing of the Fermi distribution functionkBT (kB

is Boltzmann’s constant! but nevertheless much less than t
Fermi energy«F , i.e., the conditionkBT<\vc!«F must be
met. In metals the carriers responsible for these quan
oscillations comprise only a small fraction, of the order
(\vc /«F)1/2, made up of those for which the area of secti
S(«,pB) of the Fermi surface«(p)5«F by the planepB

5const is close to the extremal valueSext.
From the period of the magnetization or magnetores

tance oscillations,

D~1/B!5
2p\e

cSext
, ~25!

one can determine the extremal area of plane sections o
Fermi surface. Thus a reliable spectroscopic method
developed62–64 which is still being used successfully to re
construct from experimental data the main characteristic
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the electron energy spectrum of degenerate conductors—
Fermi surface ~see, for example, the monograph b
Shoenberg25!.

Oscillatory dependence of the magnetoresistance o
metal on 1/B due to quantization of the energy of the orbit
motion of the charge carriers in a magnetic field was fi
calculated by Akhiezer65 using Titeica’s method.66 The es-
sence of Titeica’s method is that by taking into account
oscillatory character of the motion of electrons in a magne
field, one can represent the electric current as the drift of
centers of the electron orbits. Here the resistance to elect
current flowing in the direction orthogonal to a strong ma
netic field arises because of scattering of the charge carr
Akhiezer, following Titeica, assumed that the mechanism
dissipation in the system of conduction electrons was th
scattering by phonons. Although Akhiezer’s work contain
a number of errors in the calculations of the amplitude of
magnetoresistance oscillations,67 he nevertheless obtaine
the correct expression for the period of the oscillations a
pointed out the significant growth of the quantum correctio
to the magnetoresistance as the temperature approaches

The quantum oscillation effects in the magnetoresista
of bismuth at extremely low temperatures, when the cha
carriers are scattered mainly by impurity atoms, were c
sidered by Davydov and Pomeranchuk.68 Already in that pa-
per it was shown that the probability of scattering of an el
tron will oscillate with variation of the magnetic field an
that it is is extremely important to take such oscillations in
account. Zil’berman69 applied the Titeica’s method in calcu
lating the quantum oscillations of the magnetoresistanc
the case of scattering of conduction electrons in a meta
heavy impurities and showed that the amplitude of
Shubnikov-de Haas oscillations for«F /\vc@1 is deter-
mined mainly by the oscillatory dependence of the mean
time of the charge carriers on 1/B. The magnetic fields avail
able in the 1950s were not very high, and experimental
search on electronic phenomena was restricted to field
several tesla. Therefore Zil’berman’s rather cumbersome
detailed calculations were confined to the use of formulas
the electron collision frequency and magnetoresistance v
for kBT>\vc . The formula he obtained for the invers
mean free time of electrons in a quantizing magnetic fi
had the form

1

t
5

1

t0
H 11

9\vc

40«F
2

5&

A«F\vc

p2kBT

3expS 2
2p2kBT

\vc
D cosS 2p«F

\vc
2

p

4 D J . ~26!

Later Titeica’s method was refined substantially
Kubo70 and successfully used in a theoretical study of gal
nomagnetic phenomena in metals in a quantizing magn
field.71

In the theoretical papers mentioned above65–69 the en-
ergy spectrum of the conduction electrons was assumed
tropic. Such a model of the carrier dispersion relation —
Drude-Lorentz-Sommerfeld model—was used in those ye
in many theoretical investigations of electronic phenome
in metals, even though the most probable open Fermi
faces for electrons in metals with a face-centered cubic
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tice had already been proposed in the monograph by B
and Sommerfeld~see Figs. 23–25 of Ref. 72!. A quadratic
isotropic energy spectrum of the charge carriers was a
used later in the paper by Adams and Holstein,73 which was
devoted to the study of galvanomagnetic phenomena in c
ducting media.

In the case of an isotropic dispersion relation of t
charge carriers there is only one extremal plane section of
Fermi surface—the central cross section, of areaSmax5ppF

2

52p«Fm* .
Low-temperature experiments on the magnetic susce

bility of rather pure metals, carried out by Shoenberg a
co-workers at Cambridge and by Verkin and Lazarev a
co-workers at Kharkov~see Ref. 25 and the references cit
therein!, and also resonance and magnetoacou
phenomena23,24 have given evidence that even in ordina
quasi-isotropic metals, except for a small group of alk
metals, the electron energy spectrum is rather complex an
substantially different from the spectrum of free electrons

To explain the experimental studies of quantum osci
tion phenomena it was necessary to create a theory with
real electron energy spectrum taken into account. The s
cess of Lifshitz and Kosevich’s theory64 of the de Haas-van
Alphen effect under the most general assumptions about
form of the electron energy spectrum of metals with the u
of only the area quantization rule

S~«,pB!52p\~n11/2!eB/c, ~27!

wheren is a nonnegative integer, stimulated investigation
the electronic properties of metals without the invocation
model assumptions about the charge carrier dispersion
tion.

One of the first papers devoted to the theoretical study
galvanomagnetic effects in a quantizing magnetic field
conductors with an arbitrary carrier dispersion relation w
that of Lifshitz.74 In it the current density

j5Tr~ev̂ f̂ ! ~28!

was found by solution of the quantum kinetic equation
the single-particle statistical operator or density matrixf̂ ,
linearized with respect to a weak perturbation of the el
tronic system by a uniform external electric field. The theo
of quantum phenomena in metals with an arbitrary car
dispersion relation obtained its further development in
paper by Kosevich and Andreev,75 who calculated in the
Born approximation the correction oscillatory in 1/B to the
collision integral in the case of electron scattering by imp
rity atoms with a short-range potential with the use of t
Bogolyubov method.76 Here the oscillatory~in 1/B) depen-
dence of the eigenvalues of the collision operator diffe
from that given in the paper by Zil’berman in the case of
isotropic spectrum of the charge carriers only by a relativ
unimportant factor of order unity.

At sufficiently low temperatures that the charge carrie
are scattered mainly by impurity atoms and their drift alon
say, thez axis is nonzero, the asymptote of the conductiv
tensor componentszz at high magnetic field has the form
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szz52
2e3B

~2p\!2c
(
n50

`

E
0

2p\ cosu/a

3dpB~vz
nn!2t~«n!] f 0~«n!/]«n . ~29!

Following Landau,60 we can easily write the terms in th
expression forszz which are oscillatory on variation of th
magnetic field with the aid of Poisson’s formula:

(
n50

`

Fn5 (
k52`

` E
21/2

`

dnF~n!exp~ ikn!. ~30!

Here the oscillatory part of the conductivityszz
osc is deter-

mined mainly by the oscillatory dependence on 1/B of the
mean free time of the charge carriers, which is due to
summation over states of the ‘‘incoming’’ electrons in t
collision integral.

The problem of quantum oscillations of the conductiv
of metals in a magnetic field has been the subject of m
papers. The most transparent and lucid derivation of the
cillatory field dependence of the elastic scattering amplitu
of charge carriers on impurity atoms in the Born approxim
tion is given in Abrikosov’s monograph.24 For \vc!h«F the
frequency of electron scattering can be written in the for

1

t~«!
5

1

t0
~11Dosc!, ~31!

where

Dosc5S e\B

m* c« D 1/2

(
e

U]2Se

]pB
2 U21/2

ge , ~32!

ge5 (
k51

`

ak~21!kk21/2cosS kcSe

e\B
1

p

4
sD cosS pkm*

m D .

~33!

Here theak are numerical factors that depend on the concr
form of the carrier dispersion relation,m is the mass of a free
electron,s5sgn(]2Se/]pB

2), and Se is the extremal value o
the area of section of the isoenergy surface by a planepB

5const. In the case of several extremal sectionsSe it is nec-
essary to sum over all possibleSe in formula ~32!.

As a result, the conductivity, which is proportional to th
relaxation timet, acquires an oscillatory componentsosc

;Doscs0 .
In formulas ~32! and ~33! the broadening of the quan

tized levels of the charge carrier energy due to scattering
not been taken into account. Dingle77 proposed that to do this
it is sufficient to introduce in the oscillatory~in 1/B) correc-
tion to the kinetic coefficient and inDosc a factor

RD5exp~21/vct!, ~34!

which has come to be called the Dingle factor.
A rigorous analysis of the quantum oscillation effec

carried out by Bychkov78 with the use of the diagram tech
nique, showed that in many particular cases such a proce
is completely justified, although it can lead to the loss
interesting effects associated with magnetic-impurity-bou
electronic states. The value calculated by Bychkov for
factor by which the amplitude of the quantum oscillations
lowered on account of scattering of conduction electrons
fered from the Dingle factor only by a number factor of ord
e

y
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e
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te

as

,

re
f
d
e

f-
r

unity in the argument of the exponential factor. In this rega
the Kubo method has turned out to be more attractive
studying the Shubnikov-de Haas effect. In the Kubo form
ism it is unnecessary to introduce a Dingle factor in the
pression for the kinetic coefficients, since the broadening
the carrier energy levels due to scattering is automatic
taken into account in the description of estimation of t
linear response of the electron system to the perturba
with the aid of the retarded two-time Green’s functions.79–81

Besides the weakening of the amplitude of t
Shubnikov-de Haas oscillationsszz

osc due to scattering of
charge carriers, there is a very significant decrease in am
tude with increasing temperature. While the part of the c
ductivity that changes monotonically with magnetic fiel
szz

mon, depends weakly on temperature, since the tempera
smearing of the Fermi distribution functionkBT of the
charge carriers is much less than the Fermi energy«F , the
oscillatory componentszz

osc decreases rapidly whenkBT be-
comes of the order of or greater than the distance\vc be-
tween Landau levels, even forkBT!«F . The factor that de-
creases the amplitude of the oscillations has the form

RT~u!5
u

sinh~u!
, where u5

2p2kBT

\vc
, ~35!

and foru.1 it falls off exponentially with temperature@see
formula ~26!#.

In the early 1950s the de Haas-van Alphen effect h
already been observed in almost all metals, but for a lo
time the quantum oscillations of the magnetoresistance w
hardly ever observed in metals for which the number of c
duction electrons is of the order of one per atom. This
clearly due to the fact that the quantum correction to
classical expression for the conductivity is too small, be
proportional to (\vc /«F)1/2, while the amplitude of the
quantum oscillations of the magnetic susceptibility is a fac
of («F /\vc)

3/2 larger than the Pauli paramagnet
susceptibility82 and the Landau diamagnetic susceptibility.83

Layered organic conductors are an exceptionally con
nient object for experimental study of the Shubnikov-
Haas effect, since a much larger number of charge carrie
involved in its formation than in the case of ordinary meta
In some compounds the amplitude of the resistance osc
tions can reach giant values exceeding the minimum valu
the resistance by one or two orders of magnitude.32,84–87

Clearly the theory of quantum oscillation effects develop
for materials with a relatively slight anisotropy is inapp
cable in this case, especially under conditions such that
distance\vc between adjacent Landau levels is considera
greater than the widthW' of the conduction band in the
direction perpendicular to the layers.

Pioneering research on the magnetic susceptibility
conductors with a markedly anisotropic quasi-tw
dimensional electron energy spectrum was done in the y
1983–1985 by Wagner and co-workers88,89 and by
Shoenberg.90 The thermodynamic theory of quantum oscill
tions has been under particularly intensive developmen
the last 10 years~see Refs. 91–102 and the references ci
therein!. There is now a consistent theory of the de Haas-v
Alphen effect in layered systems which can in principle
used for quantitative analysis of the magnetization osci
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tions observed in organic conductors~see, for example, Refs
91 and 103–105!. A number of theoretical papers have be
devoted to an examination of quantum oscillations of
magnetoresistance.106–113 Unlike the case of the thermody
namic de Haas-van Alphen effect, the detailed description
quantum oscillations of the kinetic properties, which is co
plicated strongly by the necessity of taking the details of
scattering processes into account under conditions of
tremely high anisotropy, is far from completed. Neverthele
substantial progress in understanding some of the impor
features of the Shubnikov-de Haas effect in quasi-tw
dimensional systems, at least on a qualitative level, has b
made recently.

Let us consider in more detail the case of a compa
tively strongly corrugated cylindrical Fermi surface, wh
the width of the conduction band in the direction perpendi
lar to the layers,W' , is somewhat~but not very much!
greater than the distance between adjacent Landau le
This condition is realized in many layered organic cond
tors in fields of;10 T. In this case the de Haas-van Alph
effect is still described well by the standard Lifshitz
Kosevich formula, which was obtained for moderately ani
tropic metals.64 At the same time, it turns out that th
Shubnikov-de Haas effect manifests a number of spec
features already atW'>\vc . Among them are beats of th
quantum oscillations of the magnetoresistance and an ap
ciable shift of their phase in relation to the beats of the
cillations of the magnetic susceptibility, which carries info
mation about the spectrum of charge carriers.109 The
detection of slow quantum oscillations with a frequency p
portional to the difference between the maximum and m
mum areas of section of the Fermi surface has turned ou
be very important.110 These oscillations are observed
higher temperatures than the oscillations at the fundame
frequency, which is proportional to the extremal area of s
tion of the Fermi surface.

Figure 8 shows a typical example of the field depe
dence of the interlayer resistance ofb-(BEDT-TTF)2IBr2 in
a magnetic field tilted at a small angle (u515°) from the
normal to the conducting plane,110 at temperatures of the
order of 0.6 and 1.4 K. Two types of oscillations are clea
seen. The fast oscillations, which are particularly pronoun
at 0.6 K, are the Shubnikov-de Haas effect on extremal or
of the cylindrical Fermi surface.29,32 By virtue of the slight
corrugation of the cylinder the frequencies corresponding
the maximum and minimum cross sections of the Fermi s
face are extremely close, as is reflected in the low-freque
modulation of the oscillation amplitude, which is propo
tional to cos(2pFb /B1w).

From the ratio of the beat frequency (Fb'20 T) to the
fundamental frequency (F0'3900 T) one can estimate th
relative value of the corrugation of the Fermi surfac
DS/S52Fb /F0'1022. The ratio of the width of the con
duction band in the direction perpendicular to the laye
W''4t' @ t' is the transverse transfer integral; see form
~6!#, to the distance\vc between Landau levels in a field o
10 T is equal to 2Fb /B'4. Consequently, taking the smal
ness of the oscillation amplitude into account (;1% of the
monotonic component of the resistance! and the practically
total absence of higher harmonics of the fundamen
e
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frequency,109,110 it could be supposed that the standa
‘‘three-dimensional’’ model applies in the given situation. I
deed, the behavior of the magnetization oscillations
b-(BEDT-TTF)2IBr2 has been analyzed successfully
Wosnitza and co-workers31,114 in the framework of the
Lifshitz-Kosevich theory.64 However, in the case of resis
tance oscillations new effects arise even under these co
tions, due to the quasi-two-dimensional character of
charge carriers.

Perhaps the most obvious and important anomaly of
behavior presented in Fig. 8 is the presence of slow quan
oscillations of the interlayer resistance. These oscillatio
which are periodic in the 1/B scale, were observed back i
the first experiments on this compound,28,29 but their nature
has been understood only recently.110,111 It has been
established110 that the dependence of the frequency of t
slow oscillations on the orientation of the magnetic fie
Fslow(u), is strictly correlated with the angular oscillations
the quasiclassical part of the resistanceR'(u), which were
considered in Sec. 2.1. As is shown in Fig. 9,Fslow oscillates
with variation of the field tilt angleu, going to zero at angles
corresponding to the maxima ofR'(u). Such behavior at-
tests to the direct link between the slow oscillations and
corrugation of the Fermi surface. Indeed, as was discus
above, the quasiclassical magnetoresistance takes on m
mal values at those magnetic-field orientations for which
areas of all the cyclotron orbits become practically equ
This, in particular, means that the beat frequencyFb of the
fundamental Shubnikov-de Haas oscillations goes to zero

FIG. 8. Quantum oscillations of the interlayer magnetoresistance
b-(BEDT-TTF)2IBr2 in a magnetic field tilted at an angleu'15° from the
normal to the layers, for different temperatures. The fundame
Shubnikov–de Haas oscillations, shown on an enlarged scale in the i
have a frequencyF05D0

21(1/B)'3900 T and beat with a frequencyFbeat

5Dbeat
21 (1/B)'20 T. In addition to the fundamental oscillations, which a

rapidly damped with increasing temperature, slow oscillations which
periodic on a scale of 1/B but are practically independent of temperature a
observed. Data of Ref. 110.
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the maxima of the angular oscillations of the magnetore
tance. Recent measurements have shown that the angula
pendencesFb(u) and Fslow(u) actually coincide with each
other to good accuracy over a wide range of angles, and
following relation holds:

Fslow~u!52Fb~u!. ~36!

Thus one can conclude that the slow oscillations, like
beats of the fundamental Shubnikov-de Haas oscillations
not due to some independent small section but to the w
corrugation of the main cylinder of the Fermi surface.

To explain this effect we use the model dispersion re
tion ~6!, which under conditions of quantization of the orbit
motion of the electrons takes the form

«~n,pz!5S n1
1

2D\vc22t' cosS apz

\ D . ~37!

In a quantizing magnetic fieldB deviating substantially
from the layers, i.e., when (p/22u)@h, the resistance to
the current transverse to the layers, as in the case when
ergy quantization is not taken into account, is determin
mainly by the conductivity tensor componentszz.

Using the Poisson formula~30!, applying it to expres-
sion ~29! for szz, we obtain a series of terms oscillatory
the inverse magnetic field:

FIG. 9. Angular dependence of the frequency of slow oscillationsFslow ~d!
and twice the beat frequency 2Fbeat ~s! ~a!, and the corresponding angula
dependence of the quasiclassical part of the interlayer magnetoresis
~b!.110
s-
de-

he

e
re
ak

-

en-
d

szz52
4t'

2 e2a

m\~2p\!3 E d«
] f 0~«!

]«
t~«!

3F11
\vc

pt'
(
k51

`

~21!kk21 cosS 2pk«

\vc
D

3J1S 4pkt'
\vc

DRDG . ~38!

The mean free time of the charge carriers also oscilla
with variation of the magnetic field. In the Born approxim
tion the oscillations are determined by oscillations of t
density of states and, when the carrier dispersion rela
~37! is taken into account, assume the form115,94

t~«!}F112(
k51

`

~21!k cosS 2pk«

\vc
D J0S 4pkt'

\vc
DRDG21

,

~39!

whereRD is the usual Dingle factor, andJ0(u) andJ1(u) are
Bessel functions. As is seen from expressions~38! and~39!,
the oscillations of the relaxation time and velocity of th
electrons are modulated in amplitude by the Bessel functi
of order zero and one, respectively, with an argument de
mined, as expected, by the ratiot' /(\vc). Obviously the
product of two oscillatory functions in the expression for t
conductivity will contain a slowly oscillating term.

At large argumentsu54pt' /(\vc) one can use the ap
proximate expressions for the Bessel functionsJ0(u)
'A2/pu cos(u2p/4) andJ1(u)'A2/pu sin(u2p/4). Since
in the experiment the amplitude of the oscillations is rath
small, and all the harmonics except the first are substanti
suppressed, we neglect the oscillations of the chemical
tential and keep in the expansion forszz only the terms of
lowest order in the factorsRD andRT , and after integration
over « we obtain110

szz5s0S t'
«F

D 2H 112A\vc~11a2!

2p2t'
cosS 2pm

\vc
D

3cosS 4pt'
\vc

2
p

4
1w DRDRT1

\vc

2p2t'

3RD*
2A11a2 cosS 8pt'

\vc
2

p

2
1w D J , ~40!

where

a5\vc /~2pt'!, w5arctan~a!, ~41!

m is the chemical potential of the charge carriers, ands0 is
the monotonic part of the conductivity along the layers.

The second term in the sum~40! corresponds to the main
oscillations with the fundamental frequencyF05mm* c/\e
5cS/(2p\e), modulated in amplitude at the frequenc
Fslow54t' /\vc52t'm* c/\e. The third term in~40! corre-
sponds to slow oscillations with a frequency equal to tw
the beat frequency, in complete agreement with experim

It must be noted that the amplitude of the slow oscil
tions does not contain a temperature factor, since these o
lations are independent of the electron energy~they are de-
termined only by the value oft' in the dispersion relation!.
Indeed, as is seen in Fig. 8, the amplitude of the slow os

nce
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lations remains almost unchanged when the temperatu
increased from 0.6 to 1.4 K, while the fundamental harmo
of the Shubnikov oscillations is almost completely su
pressed at 1.4 K. Strictly speaking, the slow oscillations a
of course, damped with temperature by virtue of t
temperature-dependent scattering processes,111 but this
damping is considerably slower. In particular, in the co
pound b-(BEDT-TTF)2IBr2 the slow oscillations are ob
served all the way up to temperatures;10 K, i.e., an order
of magnitude higher than the fundamental Shubnikov os
lations.

Another consequence of the fact that the slow osci
tions are independent of the carrier energy is the differe
of the corresponding Dingle factorRD* from the standard
one.110,111 Usually the relaxation time that enters into th
Dingle factor takes into account both point defects and ot
macroscopic, imperfections of the crystal which influen
the local value of the chemical potential: dislocations, mo
icity, local strains, etc. Since the chemical potential does
appear in the expression for the slow oscillations, the fac
RD* is determined solely by the point defects. Indee
experiment110 has shown that inb-(BEDT-TTF)2IBr2 the
relaxation time obtained from the Dingle factor of the slo
oscillations is five times larger than the value determin
from the fundamental Shubnikov-de Haas oscillatio
Hence it can be concluded that the contribution of the m
roscopic inhomogeneities to the suppression of the Sh
nikov oscillations is dominant in this compound.

Thus the slow oscillations of the interlayer magneto
sistance are a general phenomenon observed in sufficie
pure layered metals by virtue of the superposition of
oscillations of the relaxation time and carrier velocity in t
direction transverse to the layers, the amplitudes of wh
turn out to be comparable, whenW' is of the order of\vc .
Indeed, such oscillations have been observed not only
b-(BEDT-TTF)2IBr2 but also in a number of other layere
organic conductors in fields;10 T.116–120

It follows from relations~40! and ~41! that the phase o
the beats of the fundamental harmonic of the Shubnikov
Haas oscillations contains an anomalous termw which de-
pends on the magnetic field. In fact, experiments on a n
ber of organic metals109,121–123have revealed a significan
phase shift of the beats of the magnetoresistance oscilla
with respect to the beats of the magnetization oscillation
fields of the order of 10–20 T~recall that the latter are wel
described by the standard three-dimensional Lifsh
Kosevich model64!.

A detailed experimental study of the phase of the be
of the Shubnikov oscillations was carried out in Refs. 1
and 123, and it was shown that it is indeed substanti
dependent on the ratio\vc /W' . In particular, it was found
that the phase shiftw increases strongly as the magnetic-fie
orientation approaches the direction corresponding to
peak in the angular oscillations of the classical part of
magnetoresistance. This result agrees with the fact that
effective interlayer transfer integral vanishes at the peak
the angular oscillations.124 It should be noted, however, tha
the phase shift measured in Ref. 109 was approxima
twice as large as the value predicted by formulas~40!. This is
illustrated in Fig. 10, where the symbols correspond to
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results of the measurements and the dashed line repre
relation~41!; here the ratio\vc /t' was taken from the bea
frequency of the de Haas-van Alphen oscillations.

Subsequently a more rigorous theoretical analysis of
conductivity based on the Kubo formalism with the use
the self-consistent Born approximation111 showed that a term
'\/(2t't* ) must be added to the argument of the arcta
gent in formula~41!, wheret* is the scattering time on poin
defects~it can be determined from the Dingle factor for th
slow oscillations,RD* ). Then, as is shown in Fig. 10~solid
line!, fair agreement with experiment109 can be achieved for
fields in the interval 7–12 T, which corresponds to valu
\vc /t''0.7– 1.2. However, upon further increase of t
field the discrepancy between the theory111 and experiment
increases. Moreover, it has been observed123 that for field
orientations close to the direction corresponding to the p
in the angular oscillations of the magnetoresistance the ph
shift w is significantly greater than the limitp/2 predicted by
the theory.111

Thus the results presented show that, unlike the ther
dynamic quantum oscillations such as the de Haas-van
phen effect, the quantum oscillations of the conductivity
layered metals display a number of anomalies even
\vc /W',1. The existing theoretical models are able to d
scribe the nature of these anomalies in a qualitative w
However, to achieve quantitative agreement between the
and experiment, especially under conditions when the r
\vc /W' increases, approaching unity, further efforts will b
necessary.

For \vc@W' the Boltzmann transport equation do
not lead to a satisfactory result at high magnetic fie
(vct@1). A detailed analysis of the conductivityszz for the
case\vc@W' in a field perpendicular to the layers (Biz)
was done by Champel and Mineev112 and by Gvozdikov113

on the basis of the Kubo formalism with the use of the se
consistent Born approximation. It was shown that with
creasing field an ever greater contribution to the oscillatio

FIG. 10. Tangent of the phase shift of the beats of the Shubnikov osc
tions in b-(BEDT-TTF)2IBr2 as a function of magnetic field according t
the data of Ref. 109. The dashed line was constructed according to form
~41!, and the solid line is the result of a quantum-mechanical calculation111

The calculation was done using the values of the cyclotron massmc53.9
310227 g and scattering time on point defectst* 58310212 s obtained
from the Dingle factor of the slow oscillations.110
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of szz is given by the purely quantum term, which does n
have an analog in the semiclassical model. In particular
integer occupation of the Landau levels this term alm
completely compensates the semiclassical Boltzmann co
bution, which gives rise to a ‘‘pseudogap’’ in the functio
szz(«) and an activation temperature dependenceszz(T) at
integerm/\vc . Such a temperature dependence has ind
been observed125 at fields greater than 20 T in the organ
conductorb9-(BEDT-TTF)2SF5CH2CF2SO3. Nevertheless,
a detailed comparison of the Shubnikov–de Haas oscillat
in this compound125,126with the results of the theoretical ca
culations reveals significant discrepancies. As was note
Ref. 112, the cause of this may be the insufficiency of tak
into account scattering only on point defects in the regi
\vc@W' . A more rigorous treatment of scattering pr
cesses in layered organic conductors is an extremely c
plex problem and has not been done at the present time

4. HALL EFFECT

The Hall field at high magnetic fields, even in the pre
ence of open sections of a Fermi surface in the form o
corrugated cylinder, i.e., foru5p/2, has the form48

EHall5
@ j3B#

Nec
, ~42!

i.e., the same form as in the case of a magnetic field ti
with respect to the layers, when all the charge carriers in
collisionless limit (t5`) drift at a velocity

u5c
@E3B#

B2 . ~43!

This is because the drift of the charge carriers alo
open orbits in a plane orthogonal to the magnetic field, w
the velocity

vx5
2p\c

aeBTB~pB!
, ~44!

is naturally compensated in the expression for the cur
density

j5Neu, ~45!

whereu, as in the case whenu is not equal top/2, has the
form ~43!. As a result, by measuring the value of the H
field at a high magnetic field with any orientation, one c
determine the charge carrier densityN to the necessary ac
curacy.

At low temperatures such that it is important to take t
quantization of the electron energy levels into account,
conductors with a single group of charge carriers the qu
tum corrections to the asymptote of the Hall field~42! for
vct@1 appear only in the higher terms of the expansion i
power series in the small parameterg51/vct. Let us present
Lifshitz’ elegant proof of this assertion.74

We calculate the current density flowing in the directi
orthogonal to the magnetic field with the aid of the soluti
of the quantum kinetic equation for the statistical opera
f̂ 5 f̂ 01 f̂ 1 :

$H f̂ %5Ŵcoll~ f̂ !, ~46!
t
at
t
ri-

ed

s

in
g
e

-

-
a

d
e

g
h

nt

l

r
n-

a

r

whereH5H0(P2eA/c)2eE•r is the Hamiltonian of a con-
duction electron in uniform electric and magnetic fields,P is
the generalized momentum operator,A is the vector potential
for the magnetic inductionB5(0,B sinu, Bcosu)5curlA,
which in the Landau gauge has the formA5(0,xB cosu,
2xBsinu), and in the absence of electric field the projectio
of the generalized momentumPy and Pz are good quantum
numbers.

The quantum analog of the collision integralŴcoll( f̂ )
takes into account the scattering of electrons by the poten
( iV(r2r i) of impurity atoms located at coordinatesr i . In
the case when this potential is short-ranged and weak,
collision integralŴcoll can lead to an integral operator actin
on a single-particle statistical operatorf̂ 5 f̂ 01 f̂ 1 . The op-
erator f̂ 0 describes the unperturbed state of the system
conduction electrons, —its diagonal matrix elements
equal to the Fermi distribution function of the charge car
ers,f 0

nn(pB)5 f 0$«n(pB)%—and the operatorf̂ 1 describes the
perturbation of the charge carriers by the electric field.

In an approximation linear in the weak electric field th
kinetic equation takes the form

$H0 f̂ 1%2$eE•r f̂ 0%5Ŵcoll$ f̂ 1%. ~47!

It is easy to see that the expression for the current d
sity component orthogonal to the magnetic field,

@ j3B#/B5Tr~e@ v̂3B# f̂ 1!/B, ~48!

wherev̂ is the velocity operator of the conduction electron
is proportional to the change of the momentum of the el
tron with time:

e@ v̂3B#5c
d

dt
p̂5c$H,p̂%. ~49!

Using relation~49!, we obtain

@ j3B#y5~ ic/h!Tr ~H f̂ 1p̂y2 f̂ 1Hp̂y!

52cTr ~$eE•r f̂ 0% p̂y!2cTr ~Ŵcoll~ f̂ 1! p̂y!. ~50!

As a result, in the collisionless limitŴcoll( f̂ 1)50 we
obtain

@ j3B#y5ceTr ~Eyf̂ !5Tr ~ f̂ 0!ecEy5NecEy , ~51!

i.e., at arbitrary orientations of the current density and m
netic field the asymptote of the Hall field has the form~42!.
Taking the collision integral into account is extremely impo
tant for calculating the dissipative component of the curr
density.

Thus in layered conductors with a Fermi surface in t
form of a slightly corrugated cylinder, the quantum oscill
tions of the off-diagonal components of the magnetoresis
ity tensor, divided by the asymptote of the Hall field, a
smaller than the quantum oscillationsrosc/rmon by at least a
factor of vct.

However, in conductors with a multisheet Fermi surfa
the amplitude of the oscillations of the Hall field can b
comparable to the the amplitude of the magnetoresista
oscillations.

Let us consider the case when the Fermi surface inclu
a pair of slightly corrugated planes in addition to the cyli
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drical part. Such a topology of the Fermi surface is qu
common in organic metals.31–33 In particular, it is character-
istic for one of the best-known organic superconducto
k-(BEDT-TTF)2Cu(NCS)2 ~Ref. 30! and also for the nor-
mal metallic state of the compoun
a-(BEDT-TTF)2MHg(SCN)4 , where M is a metal from the
group K, Rb, Tl or NH4 ~Ref. 127!. Open sections of such
Fermi surface by a planepB5const are encountered at pra
tically any orientation of the magnetic field, and the magn
toresistance of such a conductor increases without satura
as the magnetic field is increased. The position of all
planes inp space can easily be determined from the anis
ropy of the magnetoresistance in the plane of the layers20

For h!cosu and g0!cosu the magnetoresistance to
current flowing along the layers has the form49,128

rxx5
s1 sin2 w cos2 u1g0

2s0

g0
2s0~s01s1!

;

ryy5
s1 cos2 w cos2 u1g0

2s0

g0
2s0~s01s1!

, ~52!

where s0 and s1 are equal in order of magnitude to th
contribution from the charge carriers situated, respectiv
on the cylindrical and planar parts of the Fermi surface to
conductivity along the layers in the absence of magnetic fi
and w is the angle between thepy axis and the corrugate
plane of the Fermi surface.

The contribution of the charge carriers whose states
long to a sheet of the Fermi surface in the form of a sligh
corrugated plane to the conductivity along the normal to
layers does not lead to a noticeable Hall effect provided
h!g0 and the resistivity along thez axis,

rzz5
1

szz
1

s1 cos2 w sin2 u

g0
2s0~s01s1!

~53!

is determined mainly by the conductivity tensor compon
szz.

In formula ~52! and in the last term of formula~53! we
have dropped unimportant factors of order unity which d
pend on the concrete form of the dispersion relation of
charge carriers, and the relationship between the mobil
of the conduction electrons of the two groups are assume
be the same.

At rather high magnetic fields, wheng0<h, the Hall
components of the resistivity tensor, in particular,

rxz5g0
22 s1 sin 2w sin 2u

s0~s01s1!
1g0

21 ~s01s1 sin2 w!sinu

s0~s01s1!
~54!

are already comparable torzz.
The presence of an additional pocket of the Fermi s

face in the form of weakly corrugated planes leads forg0

<h to the unrestricted growth of the resistivity to a curre
transverse to the layers with magnetic field, and the H
field, which is proportional toH2, is now comparable toEz .

The energy spectrum of the carriers whose states be
to the slightly corrugated planes in momentum space d
not contain discrete levels, and therefore this group of c
duction electrons does not take part in the formation of qu
tum oscillation effects, but its presence can have a substa
e
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influence on the asymptote of the quantum oscillations of
Hall field. When the oscillatory dependence of the mean f
time on 1/B at low temperatures for the conduction electro
with closed orbits on a sheet of the Fermi surface in the fo
of a corrugated cylinder is taken into account, the Hall fie
in a quantizing magnetic field takes the form128

Ex5 j
H sinu

2Nec

3H 2sin2 w1
Hs0s1 sin 2w cosu2Necs0 cos2 w

Nec@s01s1~11Dosc!#
J ,

~55!

Ey5 j
H sinu

Nec

Hs0s1 cosu2Necs1~11Dosc!sin 2w

Nec@s01s1~11Dosc!#
.

~56!

It is easy to see that the ratio of the oscillatory partEHall
osc

of the Hall field to the part that varies monotonically wi
magnetic field,EHall

mon, as follows from formulas~55! and
~56!,

EHall
osc /EHall

mon52Dosc

s1

s01s1
~57!

is of the same order of magnitude asrzz
osc/rzz

mon.
Thus, by studying the dependence of the resistivity a

Hall field on the value of a sufficiently strong magnetic fie
for different orientations of the field with respect to the la
ers, one can reconstruct completely the topological struc
of the Fermi surface and determine the contribution of
individual groups of charge carriers to the total conductiv
of the conductor.

5. CONCLUSION

At high magnetic fields the kinetic characteristics
low-dimensional conductors depend substantially on the c
crete form of the energy spectrum of the charge carriers
contain detailed information about the dispersion relation
the conduction electrons. Intensive research on galvanom
netic phenomena in organic layered conductors at low te
peratures has revealed a number of peculiar effects spe
to quasi-two-dimensional conductors. It turns out that
electronic phenomena in quasi-two-dimensional conduc
are manifested in fundamentally different ways for differe
orientations of the quantizing magnetic field. Even in a mo
erately strong magnetic field orthogonal to the layers, wh
the discrete-continuous electron energy spectrum of the
ered conductor contains a rather large number of quant
values of the momentum projection on the magnetic fi
direction at a fixed value of the energy, e.g., equal to
Fermi energy, at certain orientations of the magnetic fi
with respect to the layers only one or a few electron sta
with the Fermi energy are possible, i.e., the electron ene
spectrum turns out to be quasi-discrete.

Thus, depending on the angle between the magnetic fi
vector and the normal to the layers, a layered conductor
haves as a three-dimensional conductor with highly an
tropic electron energy spectrum or as a two-dimensional c
ductor with a discrete spectrum of charge carriers. T
orientation effect, which is specific to quasi-two-dimension
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conductors, is manifested in various kinetic phenomena
particular, for certain orientations of the magnetic field a la
ered conductor is transparent to electromagnetic and aco
waves,129,130 and in such conductors the propagation of p
culiar weakly damped electromagnetic and spin waves
occur,131,132 carrying information about the electron ener
spectrum and the relaxation properties of the charge carr

Layered conductors with a quasi-two-dimensional el
tron energy spectrum are extremely convenient objects
studying quantum oscillation effects, the formation of whi
involves a large number of charge carriers. The detection
low-frequency oscillations of the magnetoresistance of l
ered conductors at high temperatures such that the fu
mental harmonics of the Shubnikov-de Haas oscillations
hardly observed, and the study of the phase relations of
oscillations of the magnetoresistance and magnetic susc
bility can yield detailed information about the dispersion
lation of the conduction electrons.

Linear growth of the resistivity with magnetic field~the
Kapitsa law! is very specific in quasi-two-dimensional co
ductors, being observed even in single-crystal samples.
ear growth of the resistivity of bismuth with magnetic fiel
which gave way to quadratic growth at higher fields, w
observed by E. S. Borovik,133 who devoted many years t
studying the galvanomagnetic phenomena in metals.
magnetoresistance of a layered conductor in a magnetic
lying in the plane of the layers behaves in an analogous w
It is quite possible that the linear growth of the resistivity
bismuth with magnetic field is due to the marked anisotro
of the Fermi surface of that substance, the axes of the e
tron ellipsoid of the Fermi surface of bismuth differing b
roughly a factor of 10.

The investigation of galvanomagnetic phenomena in l
ered conductors has been the subject of an enormous nu
of studies. We have not attempted to cover everything,
some interesting results of experimental and theoretical
search on the classical and quantum galvanomagnetic ef
may have been left out. The main goal of this paper was
demonstrate the effectiveness of galvanomagnetic meas
ments for investigating the electron energy spectrum.

We are grateful to the Editor-in-Chief of the journalLow
Temperature Physicsfor inviting us to contribute to this spe
cial issue dedicated to the 90th anniversary of the birth of
outstanding physicist and fascinating man, Evgeni� Stanisla-
vovich Borovik.

We are extremely grateful to W. Biberacher and P.
Grigoriev for helpful discussions of the problems of char
transfer in organic conductors touched upon in this artic
and to the INTAS foundation for support of this study~Grant
01.0791!.
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