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Quantum oscillations of the thermomagnetic coefficients of layered conductors
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The linear response of the electronic system of a conductor to a perturbation in the form of an
electric field and a temperature gradient in a quantizing magnetic field B is investigated theoreti-
cally. The thermoelectric effect in a layered conductor is analyzed and it is shown that the quasi-
two-dimensional character of the dispersion law of the charge carriers results in gigantic oscilla-
tions of the thermo-emf. © 2008 American Institute of Physics. �DOI: 10.1063/1.2957285�
I. INTRODUCTION

Landau’s prediction that the magnetization metals oscil-
lates as a function of the magnetic field strength1 played an
important role in solving the inverse problem of reconstruct-
ing the electronic energy spectrum of metals from the experi-
mental data.2,3 Kosevich’s classical works devoted to the in-
vestigation of the quantum oscillations of the magnetic
susceptibility and magnetoresistance of metals, performed
together with Lifshits3 and Andreev,4,5 with the most general
assumptions about the dispersion law for charge carriers
made it possible to study in detail the form of the Fermi
surface �FS� of practically all metals and subsequently also
layered conductors. These works employed the area quanti-
zation rule to determine the quantized energy levels of con-
duction electrons undergoing finite motion in a plane or-
thogonal to the magnetic field:

S��,pB� =
2��eB

c
�n +

1

2
� ,

where n are non-negative integers and S�� , pB� is the area of
the section of an isoenergy surface ��p�=� by the plane pB

= �p ·B� /B=const. The periods of oscillation of the magnetic
susceptibility and the kinetic coefficients associated with this
quantization are determined by the extremal values Se of the
area of the section of the FS. The contribution of each ex-
tremal section of the FS results in the appearance of harmon-
ics of the form cos�kcSe /2eB�+ �� /4�s�, where s
=sign��2Se /�pB

2�.
The quantum oscillatory effects are most strongly mani-

fested in layered conductors possessing substantial sections
with sharply anisotropic, metal-type, electrical conductivity.
The electrical conductivity in the plane of the layers is sev-
eral orders of magnitude higher than that in a direction n
normal to the layers; this suggests that the overlapping of the
wave functions of the electrons belonging to different layers
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is small. In calculations of the kinetic coefficients, such an
anisotropy can be described using a quasi-two-dimensional
electronic energy spectrum, taking account of the fact that
the energy ��p� of the conduction electrons depends weakly
on the projection of their momentum pz=n ·p on the normal
n to the layers. As a result, a substantially larger fraction of
the charge carriers is drawn into the formation of the quan-
tum oscillation effect than in ordinary metals. Investigations
of the galvanomagnetic phenomena in many layered conduc-
tors at low temperatures have made it possible to study the
topological structure of the Fermi surface ��p�=�F, which is
open. Specifically, there is every reason to believe that the FS
of the tetrathiafulvalene salts �BEDT-TTF�2IBr2 and
�BEDT-TTF�2I3 is a cylinder with weak fluting along the pz

axis.6,7 If the magnetic field is strongly tilted away from the
plane of the layers, then all flat sections of such a FS are
closed, and all charge carriers in such conductors contribute
to the quantum oscillations of the thermodynamic and kinetic
properties in a strong magnetic field B.

The difference between the maximum Smax and mini-
mum Smin sections of the FS in layered conductors with a
quasi-two-dimensional electronic energy spectrum is small
because of the weak fluting of the surface. Summing the
contributions from different extremal sections, the oscilla-
tions acquire the form of beats cos�kc�Smax+Smin� /
2eB��cos�kc�Smax−Smin� /2eB�−� /4�.8,9 Low-frequency os-
cillations with frequency proportional to Smax−Smin are also
observed in layered conductors; the amplitude of these oscil-
lations is small but decays with temperature much more
weakly than the amplitude of the Shubnikov-de Haas oscil-
lations in ordinary metals. Slow oscillations of this type were
first observed experimentally in measurements of the magne-
toresistance of the compound �-�BEDT-TTF�2IBr2.10 They
have now been observed in many organic metals.
© 2008 American Institute of Physics
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In what follows, we shall examine the quantum oscilla-
tions of the kinetic coefficients in the presence of a tempera-
ture gradient. Specifically, we shall study the 1 /B depen-
dence in the form of gigantic oscillations of the
thermoelectric field with amplitude much greater than the
smooth part of the field. Analysis of the experimental results
obtained for the oscillatory dependence of the thermo-emf on
1 /B makes it possible to obtain detailed information about
the energy spectrum of charge carriers in the conductor and
is a very refined tool for studying the structure of this spec-
trum.

II. LINEAR RESPONSE OF THE ELECTRONIC SYSTEM TO A
PERTURBATION IN THE FORM OF AN ELECTRIC FIELD
AND A TEMPERATURE GRADIENT

The electric current density j and heat flux density q
which arise in a conductor as a result of an external pertur-
bation in the form of a temperature gradient �T and an elec-
tric field E have the form

ji = �ijEj
* − �ij

�T

�xj
, �1�

qi = �ijEj
* − �ij

�T

�xj
, �2�

where

E
j
* = Ej −

1

e

��

�xj
, �3�

and � is the chemical potential of the electrons.
The construction of a linear theory of thermomagnetic

phenomena reduces to calculating the kinetic coefficients
�ij�B�, �ij�B�, �ij�B�, and �ij�B� which relate the fluxes with
small perturbations of the electronic system. We shall assume
that the electron-electron interaction establishes in a conduc-
tor, over a time much shorter than the damping time of mac-
roscopic fluxes, a local quasi-equilibrium distribution of
charge carriers with coordinate-dependent parameters �T ,��.
We shall examine the case of low temperatures, where the
number of phonons is small and the main relaxation mecha-
nism is elastic scattering of electrons by impurity centers,
whose concentration is not too large so that the revolution
frequency 	c of the charge carriers in a magnetic field is
much higher than the carrier-scatterer collision frequency.

In the absence of current-conducting contacts, a tem-
perature gradient generates a thermoelectric field in the con-
ductor. Setting j=0 in Eq. �1� we obtain

Ei = 
il�lj
�T

�xj
+

1

e

��

�xi
, �4�

where 
ij is the resistivity tensor, which is the inverse of the
conductivity tensor �ij.

The gradient of the chemical potential is easily found
from the condition that the number of charge carriers per unit
volume is constant:

�N

�r
= 0, �5�

where
N =
2eB

c�2���2 �
n=0

� � dpH

1 + exp	��n�pB� − ���/T

. �6�

Applying Poisson’s relation

�
n=0

�


n = �
−1/2

�

dn
�n� �
k=−�

�

exp�2�ikn�

to Eq. �5� and switching from integration over n to integra-
tion over energy, we obtain in the leading approximation in
the small parameter �	c /�

�� = − �T
�2T

3����� �����
��

−
23/2

�3�1/2�
k=1

�

�− 1�kk1/2

� �
e

Pk�u�
m3/2

��	c�1/2� �2Se

�pH
2 �−1/2

sin� kcSe

e�H
+

�

4
s�
 ,

�7�

where v��� is the electron density of states in the absence of
a quantizing magnetic field, m= �2��−1�S /�� is the effective
mass of the conduction electrons, u=2�2T /�	c, and the
function

Pk�u� = −
3

ku

sinh�ku� − ku cosh�ku�
sinh2�ku�

goes to 1 as T→0. Since charge carriers on the extremal
sections of the FS form the oscillations, the summation in
Eq. �7� must extend over the electron states in all of these
sections.

In a quasi-isotropic conductor at sufficiently low tem-
perature, the amplitude of the oscillating terms in Eq. �7� is
greater than the first term by at least a factor of �� /�	c�1/2.

The amplitudes of the quantum oscillations of both terms
on the right-hand side of Eq. �3� are of the same order of
magnitude, and to calculate the thermoelectric field it is very
important to take account of the oscillations of ��. Ordi-
narily, when calculating the macroscopic fluxes in the pres-
ence of a temperature gradient, the contributions associated
with the magnetization M of the electronic system are ex-
cluded from them. It is assumed that the conduction current
density differs from the average microscopic current density

Tr�ef̂v̂� by the vector c curl M, and the energy flux minus the
magnetic energy flux is studied as the heat flux �v̂ and e are

the velocity operator and the electron charge, f̂ is the density
operator, and c is the speed of light�. Eliminating the “non-
thermal” contribution in this manner from the heat flux re-
moves the discrepancy between the computational results
and Onsager’s principle, which follows from the condition
that the entropy attains its maximum value in the equilibrium
state. The effects associated with the magnetism of the con-
duction electrons must be taken into account when calculat-
ing the off-diagonal components of the kinetic coefficients in
a quantizing magnetic field.11

For elastic scattering, the diagonal components of the
thermomagnetic coefficients in the single-electron approxi-
mation are related with the diagonal components of the con-
ductivity tensor. The components �ii can be calculated using
Kubo’s relation12
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�ii�T,�� =� �−
�f0�E�

�E
�Fii�E�dE , �8�

where

Fii�E� = ��e2Sp���E − Ĥ�v̂i��E − Ĥ�v̂i� . �9�

Here f0�E� is the Fermi distribution function and the angular
brackets denote averaging over the configurations of ran-
domly arranged impurity centers. The components �ii, �ii,
and �ii satisfy13

�ii�T,�� = T�ii�T,�� =� �−
�f0�E�

�E
�E − �

e
Fii�E�dE ,

�10�

�ii�T,�� =� �−
�f0�E�

�E
� �E − ��2

e2T
Fii�E�dE . �11�

Thus, all diagonal components of the electronic kinetic coef-
ficients can be expressed in terms of the function Fii�E�.

III. THERMOELECTRIC EFFECT IN A LAYERED
CONDUCTOR

We shall now examine the thermoelectric effect in a lay-
ered conductor when the temperature gradient and the mag-
netic field B= �0,0 ,B� are directed along the normal to the
layers. It is easy to show that in this case the thermoelectric
field is also directed transverse to the layers

Ez =
�zz

�zz

�T

�z
+

1

e

��

�z
�12�

and is determined only by the diagonal matrix elements of
the kinetic coefficients in the asymptotic approximation with
respect to the small parameter characterizing the quasi-two-
dimensionality of the energy spectrum of the conduction
electrons. Many works use a quite simple model of the quasi-
two-dimensional dispersion law for charge carriers to inter-
pret the experimentally studied phenomena in organic
conductors:14,15

��p� =
px

2 + py
2

2m
− 2t cos

apz

�
, �13�

where m=const, a is the distance between the layers, and t is
determined by the overlap integral of the wave functions of
electrons from neighboring layers and is much less than the
Fermi energy but greater than the splitting �	c between the
quantized energy levels in currently attainable magnetic
fields. As will be shown below, at temperatures much higher
than the splitting between the quantized energy levels of the
electrons, in the case of the dispersion law �13� the thermo-
electric effect transverse to the layers, when the temperature
gradient and the magnetic field are parallel to the normal to
the layers, is negligibly small, and even vanishes in the ab-
sence of a magnetic field.

For elastic scattering by randomly distributed impurity
centers we shall write the Hamiltonian of an electron in the
form
Ĥ = �̂ + �
i

V̂i, �14�

where V̂i= V̂�r̂−Ri� is the potential of an impurity center
located at the point Ri. We assume that the scattering poten-
tial is weak and that its range is the smallest parameter with
the dimension of length in the problem.

The function Fii must be determined in order to use Eqs.
�3�–�5� to determine the thermomagnetic coefficients. The

operator ��E−Ĥ� in the expression �9� for Fii can be repre-
sented in the form

��E − Ĥ� =
i

2�
�Ĝ+�E� − Ĝ−�E�� , �15�

where Ĝ��E�= �E−Ĥ� i��−1—the single-electron Green’s
function.

In the self-consistent Born approximation, the Green’s
function can be “de-coupled” when averaging over the
impurities16

�Ĝ�v̂iĜ�v̂ j� = �Ĝ��v̂i�Ĝ��v̂ j . �16�

Then the Green’s Ĝ��E� assumes the form

�Ĝ��E�� =
1

E − �̂ − �̂��E�
, �17�

where �̂��E�= ��̂i
��E�� is the self-energy part averaged over

all impurity centers �see Refs. 16 and 17�,

�̂i
��E� = V̂i + V̂i�Ĝ��E��V̂i + . . . . �18�

As a result of averaging, the operator �̂��E� becomes diag-

onal and can be represented in the form �̂��E�= �̂��E�Î,
where Î Is the unit operator.

It is easy to see that the quantity �̂��E� is related with
the scattering tensor

T̂i
��E� = V̂i + V̂iĜ0

��E�V̂i + . . . �19�

by the relation

�̂��E� = �T̂��E − ���E��� . �20�

The scattering tensor for a conductor with the dispersion
law �13� is calculated in Ref. 9, where the method developed
in Refs. 5 and 18 is used. Following these works, we shall
represent the Green’s function neglecting impurity scattering

Ĝ0�E�= �E− �̂� i��−1 in the coordinate representation in the
form of two terms:

G0
��r,r�;E� = ��r,r���Gcl�r − r�;E� + Gq

��E�� , �21�

where the factor ��r ,r�� depends on the gauge of the vector
potential A. In the Landau gauge A= �0,Bx ,0�

��r,r�� = exp� i�c

2eB
�x + x���y − y��
 .

Here Gcl is the real part of the Green’s function G0
� in the

absence of a magnetic field, and the coordinate dependence
of Gq

� can be neglected for a short-range impurity, which is
the case being considered here. The function Gcl�r ,r� ;E�
appears only in the expression for the total scattering ampli-
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tude, which is related with the impurity potential by the re-
lation

f imp =
m

2��2 � V�r��0�r�d3r ,

�0�r� = 1 +� Gcl�r,r�;E�V�r���0�r��d3r�, �22�

where, since Gcl is a weak function of E, we can set E��.
The result for the scattering tensor is the expression

�T��E�� =

2��2

m
f impnimp

1 −
2��2

m
f impGq

��E�
, �23�

where nimp is the impurity concentration,

Gq
��E� = �

im

2�2a�1 + 2�
k=1

�

�− 1�k

�exp��
2�ikE

��
�J0�4�kt

��
�
 , �24�

and Jn is a Bessel function. We note that when Eq. �20� is
solved in the leading approximation in the small parameter
�	c / t�1 the oscillating part ���E� in the argument of the
scattering tensor can be neglected, and since the total ampli-
tude of scattering by an impurity is small, only the contribu-
tion linear in Gq

� need be retained in the expression for the
scattering tensor �23�.

The expressions �23� and �24�, together with the relation

�20�, make it possible to find the Green’s function �Ĝ�� from
the relation �17�. Substituting into Eq. �9�, it is easy to see
that ���E� enters into the expression �9� in the form of the
combination �i /h���+�E�−�−�E��=1 /��E�, which is the re-
ciprocal of the relaxation time. As a result, we obtain the
following expression for the function Fzz:

Fzz�E� = A��E� � �1 + �
k=1

� ��	c

�k

+
�

��E�
� �− 1�k

t
Dk sin�2�kẼ

�	c
�J1�4�kt

�	c
�
 .

�25�

Here

1

��E�
=

1

�0
�1 + 2�

k=1

�

�− 1�kDk cos�2�kẼ

�	c
�J0�4�kt

�	c
�
 ,

�26�

Ẽ = E − Re �cl���, A =
nee

2�2t�2a2

2��2 ,

1

�0
=

4�2�nimp

ma
f imp

2 , Dk = exp�−
�k

	c�0
� ,

and ne is the density of the charge carriers. The conductivity
component � calculated using the relation for F and the
zz zz
relation �8� is identical to the expression obtained for �zz and
analyzed in detail by Grigor’ev.19 The asymptotic behavior
of �zz for ��	c / t��1 is given by the expression

�zz = �0�1 + 2D1R1� �	c

2�2t
cos�2��

�	c
�cos� 4�t

�	c
−

�

4
�

+ D1
2 �	c

2�2t
cos�2� 4�t

�	c
−

�

4
�
� . �27�

Here we have retained only the first term of the series with
respect to k, �0=A�0, Rk=ku /sinh�ku�. At low temperatures
�u�1� the smooth part of �zz is at least �t /�	c�1/2 times
greater than the oscillating correction. The third term in
braces, which describes slow oscillations, can dominate at
higher temperatures, since it does not contain the tempera-
ture factor R1.

Substituting Fzz into the expression �10� gives the fol-
lowing expression for �zz:

�zz =
�0

e

4�3

3

T

�	c
�
k=1

�

�− 1�kkDk sin�2�k�

�	c
�Pk�u�

� �J0�4�kt

�	c
� − � 1

�k
+

1

	c�0
��	c

2t
J1�4�kt

�	c
�� .

�28�

Using the asymptotic expansion for Bessel functions, we ob-
tain for the first harmonic

�zz = −
2�2T

3e
�0D1P1�u�� 2

�	ct
sin�2��

�	c
�

�cos� 4�t

�	c
−

�

4
� . �29�

The coefficient �zz does not have a component that varies
smoothly as a function of B because the “classical” part of
the density of states of the electrons in the case of the dis-
persion law �13� does not depend on the energy.

Therefore the thermoelectric field E*
z

can be written in
the form

E
z
* =

�zz

�0

�T

�z
. �30�

In the expression �30� we have neglected the terms which
arise as a result of the interference of quantum oscillations of
�zz and �zz, whose amplitude is small in the parameter
�� /��1 as compared with the leading oscillatory contribu-
tion.

In the model considered here for the dispersion law for
charge carriers, it is easy to find the gradient of the chemical
potential as

��

�z
=

4�3

3

T

�	c

��
k=1

�

�− 1�kkDkPk�u�sin�2�k�

��
�J0�4�kt

�	c
� �T

�z

�31�

and to show that the leading approximation in the small pa-
rameter �	 / t the quantity �� /�z equals eE* .
c z
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When the magnetic field is tilted with respect to the nor-
mal to the layers by the angle � the drift velocity of the
charge carriers along the magnetic field

v̄z =
at

�
J0�ap�

�
tan ��sin� apB

� tan �
� �32�

depends on p�= �2m��1/2 and the part Ez
�mon� of the thermo-

electric field that varies monotonically as a function of B
vanishes in the leading approximation in the small parameter
�= t /� characterizing the quasi-two-dimensionality of the
energy spectrum only for distinguished values of the angle �
corresponding to the zeros of the vessel function
Jn�ap� tan � /�� with n=0, 1. In all other cases the mono-
tonic part of the coefficient �zz is different from zero and the
amplitude of the oscillations of the thermoelectric field is
�� /��	c�1/2 times greater than its monotonic part.

For a model more complicated than the model �13� for
the quasi-two-dimensional energy spectrum of charge carri-
ers, the monotonic part of the thermoelectric field is different
from zero even in a magnetic field directed along the normal
to the layers. Then the amplitude of the oscillations is, once
again, at least �� /��	c�1/2 times greater than Ez

�mon�, where
the quasi-two-dimensionality parameter � determines the
magnitude of the fluting of the FS. In organic layered con-
ductors, � is ordinarily of the order of 0.1 eV, while the
splitting �	c between the Landau levels in real magnetic
fields does not exceed 1 meV.6 Since the parameter � is
small, �� /��	c�1/2 can be expected to be of the order of 102.

IV. CONCLUSIONS

In layered conductors with a quasi-two-dimensional dis-
persion law for charge carriers, the dependence of the ther-
moelectric field on the reciprocal of the magnetic field ex-
hibits gigantic oscillations and contains rich information
about the charge carriers. In contrast to galvanomagnetic
phenomena, thermoelectric effects are much more sensitive
to the choice of model for the electronic energy spectrum.
The simple FS model �13� widely used for a quasi-two-
dimensional conductor to analyze experimental results is
“exotic,” since in this model the monotonic part of Ez van-
ishes at �=0 and the thermoelectric effect is absent irrespec-
tive of the quantization conditions for the orbital motion of
conduction electrons. However, if the FS is a weakly fluted
cylinder of arbitrary form, then the dependence of the ther-
moelectric field Ez on the reciprocal of the magnetic field,
once again, exhibits oscillations whose amplitude is much
greater than the monotonic part of E .
z
Experimental investigations of the ratios of the phases of
the oscillations of the thermoelectric coefficients make it
possible to determine how closely the model �13� corre-
sponds to the real dispersion law for charge carriers in a
conductor. The large amplitude of the oscillations makes it
possible to determine the extremal sections of the FS of lay-
ered conductors more accurately. The results of experimental
studies of the thermoelectric effect together with data from
galvanomagnetic measurements make it possible to deter-
mine the effective masses of the charge carriers drawn into
the oscillations as well as the parameter characterizing the
quasi-two-dimensionality of the electronic spectrum.
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