
 

ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2007, Vol. 105, No. 1, pp. 160–164. © Pleiades Publishing, Inc., 2007.
Original Russian Text © O.V. Kirichenko, V.G. Peschanskii, R.A. Hasan, 2007, published in Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, 2007, Vol. 132, No. 1, pp. 183–187.

 

160

 

A considerable amount of layered conductors have
strongly anisotropic metallic conductivity. The electric
conductivity in the plane of layers is several orders of
magnitude greater than that along the normal 

 

n

 

 to the
layers; this fact is attributed to the quasi-two-dimen-
sional character of the electron energy spectrum. The
energy 

 

ε

 

(

 

p

 

) of conduction electrons weakly depends on
the projection of their momentum 

 

p

 

z

 

 = 

 

n

 

 · 

 

p

 

 onto the
normal 

 

n

 

 to the layers. The Fermi surface (FS) 

 

ε

 

(

 

p

 

) = 

 

ε

 

F

 

of a layered conductor is weakly corrugated along the
axis 

 

p

 

z

 

 and, as a rule, is multisheeted and consists of
topologically different elements [1, 2]. According to the
energy-band calculations, (BEDT–TTF)

 

2

 

Cu(SCN)

 

2

 

and (BEDT–TTF)

 

2

 

M

 

Hg(SCN)

 

4

 

 organic conductors,
where 

 

M

 

 is either a metal from the groups K, Rb, or Tl,
or NH

 

4

 

, have two groups of charge carriers with quasi-
two-dimensional and quasi-one-dimensional energy
spectra [3]. To understand the electron processes in
low-dimensional conductors, one needs detailed infor-
mation on the energy spectrum of conduction electrons.
Electron phenomena in degenerate conductors placed
in a strong magnetic field 

 

B

 

 when the rotation fre-
quency of electrons 

 

ω

 

c

 

 is much greater than their colli-
sion rate 1/

 

τ

 

 are very sensitive to the form of the energy
spectrum of charge carriers. The investigations of gal-
vanomagnetic phenomena in many layered conductors
at low temperatures, when the condition 

 

ω

 

c

 

τ

 

 

 

�

 

 1 is sat-
isfied in practically accessible magnetic fields, have
allowed one to determine the topological structure of
the FS and some details of the electron spectrum in lay-
ered structures [1, 2]. Similar information on charge
carriers can be obtained by investigating the thermo-
electric resistance in a strong magnetic field. The
dependence of the kinetic coefficient that relates the

thermal flux density to the temperature gradient on the
magnitude and orientation of a strong magnetic field
does not contain any new information on the spectrum
compared with that obtainable from the measurement
of electric resistance; however, the investigation of
thermoelectric phenomena in a strong magnetic field
allows one to obtain essentially new important informa-
tion on charge carriers; in particular, it allows one to
determine the velocity distribution of charge carriers on
the FS [4].

Consider a simplest model of a two-band conductor.
We will assume that the FS consists of a corrugated cyl-
inder (a quasi-two-dimensional sheet of FS) and corru-
gated planes oriented so that a plane tangent to a corru-
gated plane sheet of the FS is parallel to the coordinate
plane 

 

p

 

y

 

p

 

z

 

. Let us represent the dependence of energy
on the momentum of conduction electrons on the quasi-
two-dimensional sheet of FS as

(1)

Here, 

 

�

 

 is the Planck constant; 

 

a

 

 is the interlayer dis-
tance; and 

 

ε

 

n

 

 rapidly decays as the number 

 

n

 

 increases,
so that the projection of the velocity of electrons from
this group onto the normal to the layers,

(2)

is much less than the maximal velocity in the plane of
layers, 

 

v

 

F

 

.

The dependence of the kinetic coefficients on the
magnitude of the magnetic field is weakly sensitive to a
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specific form of the first term in formula (1); we have
chosen this form only to facilitate computations. The
electric current induced in the conductor by an external
perturbation in the form of an electric field 

 

E

 

 and a tem-
perature gradient 

 

∇

 

T

 

,

(3)

can be determined, for example, by solving the follow-
ing kinetic equation for the electron distribution func-
tion:

(4)

where 

 

f

 

0

 

(

 

ε

 

) and 

 

µ

 

 are the equilibrium Fermi function
and the chemical potential of electrons, respectively; 

 

T

 

is temperature in energy units; and the functions 

 

ψ

 

1

 

 and

 

ψ

 

2

 

 are the solutions of the equations

(5)

(6)

Here, 

 

e

 

 is the electron charge; the operators  and

 describe the momentum and energy relaxation of
electrons, respectively; and 

 

t

 

 is the motion time of a
charge carrier in the magnetic field 
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 = (
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ϕ
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sin
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).
In the case of a small-angle scattering of electrons,

the momentum relaxation rate of electrons is lower than
the energy relaxation rate, and the eigenvalues of the

operators  and  (1/

 

τ

 

p

 

 and 1/

 

τ

 

ε

 

, respectively) are
essentially different, especially when the charge carri-
ers are scattered mainly by the vibrations of the crystal-
line lattice. The lower the temperature, the more impor-
tant is the scattering of electrons by impurity centers in
the crystal. As a rule, the effective radius 

 

d

 

 of the impu-
rity potential forces is on the order of several inter-
atomic distances; i.e., it is less than or on the order of
the de Broglie wavelength of electron, 1/

 

k

 

F

 

. If the main
dissipation mechanism in the system of conduction
electrons is the scattering of these electrons by impurity
centers, then the times 

 

τ

 

p

 

 and 

 

τ

 

ε

 

 are of the same order of
magnitude, because each collision substantially
changes the momentum of an electron. If the potential
slowly decays away from the impurity center, i.e.,

 

k

 

F

 

d

 

 

 

�

 

 1, the electrons are scattered at small angles [5],
and, just as in the electron–phonon interaction, a single
collision is sufficient for the energy relaxation, while
the momentum relaxation occurs after a large number
of collisions.

We will assume that the magnetic field is sufficiently
strong so that the condition 

 

τ

 

p

 

 

 

�

 

 

 

τε holds together with
the condition ωcτp � 1 even for ωcτε � 1.
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The solution of the kinetic equations (5) and (6) for
the collision integrals in the τ-approximation allows
one to easily determine the kinetic coefficients that
relate the electron flows to the electric field and the tem-
perature gradient.

The components of the tensor αij are related to the
components of the electric conductivity tensor σij by
the simple formula

(7)

In the absence of current (j = 0), the thermoelectric field
has the form

(8)

where ρij is the electric resistivity tensor, which is the
inverse of the electric conductivity tensor σij, and the
components of  coincide with those of σij provided
that τp is replaced by τε in these components.

When there are several groups of charge carriers,
one should take into account the contribution of each
group to the kinetic coefficients:

(9)

Here,  and  are contributions of the charge car-

riers whose states lie on the plane sheet of FS, and 

and  take into account the contributions of the
remaining electrons with the Fermi energy.

The charge carriers whose states belong to the cor-
rugated plane sheet of the FS mainly drift along the x
axis and make a significant contribution only to the
electric conductivity component σxx.

The asymptotic value of the component (B) in a
strong magnetic field for γ = 1/ωcτ � 1 is of the same

order of magnitude as the value of  in the absence
of the magnetic field:

(10)

where b is the period of the crystalline lattice along the
y axis and v1 is the modulus of the mean drift velocity
of electrons in the x axis. We will assume that v1 and vF
are of the same order of magnitude.

At sufficiently low temperatures, it is essential that
one should take into account the quantization of the
energy of charge carriers that perform finite motion in
a plane orthogonal to the magnetic field. These are
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mainly the charge carriers whose states belong to the
quasi-two-dimensional sheet of the FS. If the tempera-
ture-induced smearing of the Fermi distribution func-
tion is less than the distance between quantized Landau
levels, namely, 2π2T < �ωc, then the contribution of
these electrons to the current density

(11)

must be determined either by solving the kinetic equa-

tion for the statistic operator  [6] or by the Green’s
function method [7] (see also [8]). In the quasiclassical
approximation, when �ωc � ηµ, the quantum oscilla-
tions of electron flows are largely determined by the
oscillation dependence of the scattering amplitude of
conduction electrons by impurity centers, i.e., by the
quantum oscillations of the mean free path time of the
charge carriers [9, 10].

Most conduction electrons whose states belong to
the plane sheet of the FS move in a magnetic field along
open trajectories; the energy spectrum of these elec-
trons is not discrete–continuous, and their contribution
to the kinetic coefficients does not contain quantum
corrections.

The components of the tensors  and 
decrease as the magnetic field increases if the value of
at least one velocity component vi or vj, averaged over
the period 2π/ωc vanishes. The charge carriers whose
states belong to the quasi-two-dimensional sheet of the
FS drift only along the magnetic field provided that the
latter significantly deviates from the plane of layers.
Thus, when γ1 = 1/ωcτε � 1, it suffices to retain only the
diagonal matrix elements of the statistical operator
fnn(pB) in the asymptotic expression, say, for αzz; these
diagonal elements coincide with the quasiclassical dis-
tribution function,

(12)

Applying the Poisson formula

(13)

and the equation for quasiclassical energy levels

(14)

we obtain the following expressions for αzz =  + :
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(16)

where S is the area of the cross section of the isoener-
getic surface by the plane pz = const and m* is the
cyclotron effective mass. Only the charge carriers on
the corrugated cylinder take part in the formation of
quantum oscillations, but both groups of carriers con-

tribute to the slowly varying functions  and 
of the magnetic field.

When �ωc � ηµ, we should apply the stationary
phase method to carry out integration with respect to pB

in formula (16), as well as in the formula for the oscil-
lating part of the component of the electric conductivity
tensor,

(17)

Then, asymptotically extending the integrand in for-
mula (16) to the domain of complex values of energy
and applying the residue theorem, we obtain the final
expression
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The asymptotic expression for  has the form
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Here, Se is the extremal section of the FS,

and the Dingle factor  = exp(–k/ωcτ) is close to
unity and is therefore omitted.

The maxima of the kth harmonics of (k) are

shifted by π/2 relative to the maxima of (k), and the
ratio of the amplitudes of these harmonics is

(20)

The oscillation amplitude of the electric conductivity is
(ηµ/�ωc)1/2 times smaller than its slowly varying part,

whereas  is (µ/η�ωc)1/2 times greater than . A

similar relation holds for all the components of 

and  except for the Hall components, which, just
as the Hall components of the electric conductivity, do
not contain quantum corrections in the collisionless
limit ωcτp = ∞ [11]. As a result, the thermoelectric emf
turns out to be an alternating function. This fact allows
us to significantly increase the accuracy of determining
the extremal sections of the FS by measuring the dis-
tance between the maxima (or minima) on the graph of
the thermoelectric emf versus 1/B. The comparison of

 and  allows us to determine the cyclotron
effective mass m* = (1/2π)(∂Se/∂µ) of charge carriers
that are responsible for the quantum oscillation effect.

Usually, m* is determined by measuring the temper-
ature dependence of the amplitude of Shubnikov–de
Haas oscillations. To this end, it is necessary that the
damping interval of quantum oscillations be neither too
small nor large so that the electron–phonon dissipation
mechanism of the electron system could not affect the
Dingle factor. The determination of the cyclotron effec-
tive mass by the joint investigation of magnetoresis-
tance and thermoelectric emf is convenient because
there is no need to carry out measurements at different
temperatures and it suffices to compare the quantum
oscillations of thermoelectric emf with the Shubnikov–
de Haas oscillations at constant temperature.

In the case of heating of charge carries along the
normal to the layers of a conductor with two-zone spec-
trum, just as in the case when there is only one group of
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charge carriers, the thermoelectric field is directed
mainly along the temperature gradient,

(21)

The most convenient way to carry out the experimental
investigation of thermoelectric phenomena is a config-
uration when the temperature gradient lies in the plane
of layers. In this case, the presence of the FS sheet in
the form of a corrugated plane essentially affects the
magnitude and orientation of the thermoelectric field.
In the main approximation in the small quasi-two-
dimensionality parameter η, the thermoelectric field

(22)

is directed along the y axis and linearly increases with
the magnetic field when the temperature gradient is
directed along the x axis.

In this case, ρyy ≈ /(  + σyy) quadratically
increases with the magnetic field, whereas α is propor-
tional to 1/B.

If the temperature gradient is directed along the y
axis, then the components Ey and Ez of the thermoelec-
tric field reach saturation in a strong magnetic field,
while Ex decreases proportionally to γ:

(23)

(24)

(25)

Here, σ0 = Ne2τ/m, N is the density of charge carriers on
the quasi-two-dimensional sheet of the FS, and ρ0 =
1/(σ0 + σ1).

In the absence of a plane sheet of the FS, when γ �
1, the thermoelectric field is orthogonal to ∇T and is
directed along the normal to the layers, and the compo-
nents Ex and Ey decrease as the magnetic field increases.

For any orientation of the temperature gradient, the
oscillation amplitude of the thermoelectric field is
always greater than the part of the thermoelectric emf
that slowly varies with the field.
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