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ABSTRACT

A theoretical investigation of the combined resonance of interlayer conductivity and spin magnetization, in conductors with quasi-two-
dimensional electronic energy spectra. Analytical expressions are obtained for the surface impedance, magnetic susceptibility, and the reso-
nance interlayer conductivity component caused by Rashba-Dresselhaus spin-orbit interaction, with allowance for spatial dispersion.
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1. INTRODUCTION

High-frequency resonances are observed in almost all con-
ducting systems that are placed in a strong external magnetic field,
if the mean free path of the charge carriers is significant enough
for their dynamic properties to manifest. If the spin-orbit interac-
tion and the spatial inhomogeneity of the high-frequency electro-
magnetic field are neglected, then the electrons’ orbital and spin
dynamics are independent, and the resonance absorption in non-
magnetic conductors is caused either by transitions between
Landau levels, or by the spin-flip. Spin-orbit interaction forms a
connection between orbital and spin motion, and enables the res-
onance that is caused by transitions that occur simultaneously
with changes in both the Landau level number, and the spin
projection — the combined resonance."”

In common metals, spin-orbit coupling is usually insignifi-
cant. For example, experimental studies concerning the spin-Hall
effect in single aluminum crystals™* at helium temperatures yield a
potential difference due to spin-orbit interaction that is about
equal to 1071°-107° V. In semiconductors, and two-dimensional
electronic systems based on semiconductors, the kinetic and ther-
modynamic characteristics are very sensitive to features of the
charge carrier energy spectrum, and even a small change in the
energy bands due to the spin-orbit interaction can lead to notice-
able effects.”™"' For these reasons, combined resonance occurs pri-
marily in semiconductors, semimetals,”” and two-dimensional
conducting systems.™'* Another type of material in which com-
bined resonance is possible is a layered conducting structure with
a quasi-two-dimensional (Q2D) electronic energy spectrum.

Layered conductors of organic origin are an example of highly aniso-
tropic conductors, in which different types of high-frequency reso-
nances have been experimentally observed."”™” The main structural
elements of these substances are the organic molecules or molecular
complexes that have donor or acceptor properties. The most well-
known examples of such molecules include TTF, BEDT-TTE,
BEDO-TTF, etc. In Q2D conductors, the ion-radicals of these mole-
cules are packed into layers that are separated by layers of counterion
molecules. These organic molecules are in close proximity to each
other, which leads to a significant overlap of the charge carrier wave
functions, and as a result, the carriers can move freely from molecule
to molecule, forming a conducting plane. In a direction perpendicu-
lar to the layers, the organic molecules are separated from each
other, and the probability of charge carrier transfer from one con-
ducting plane to another is small. In a number of compounds, the
electrical conductivity along the layers at helium temperatures can
exceed 10° Q7' x cm™, and decreases with increasing temperature.
In the transverse direction it will be 3-5 orders of magnitude lower.
Organic conductors have complex molecular and crystal struc-
tures, but their electronic band structures are simple. Their Fermi
surface (FS) is strongly anisotropic, and can consist of sheets that
are quasi-one-dimensional and Q2D. Studies on the angular oscil-
lations of magnetoresistance, and quantum magnetic oscillations
effects® at liquid helium temperatures, have shown that the Q2D
elements of the FS of well-known organic compounds usually
appear as a weakly corrugated cylinder. The anisotropy of the elec-
tronic energy spectrum of a Q2D conductor can be characterized
by the small parameter 7, the square of which is equal to the ratio

Low Temp. Phys. 46, 000000 (2020); doi: 10.1063/10.0001914
Published under license by AIP Publishing.

46, 000000-1021


https://doi.org/10.1063/10.0001914
https://doi.org/10.1063/10.0001914
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/10.0001914
http://crossmark.crossref.org/dialog/?doi=10.1063/10.0001914&domain=pdf
mailto:stepaneko@ilt.kharkov.ua
https://doi.org/10.1063/10.0001914
https://aip.scitation.org/journal/ltp

Low Temperature

Physics

of the conductivities along the normal n to the layers and in the
plane of the layers, in the absence of a magnetic field. The FS cross
section area Sp(pp) by the pp=pB/B=const plane has a weak
dependence on the electron momentum projection pg in the direc-
tion of the magnetic field B, and manifests only in the first-order
of the anisotropy parameter 7. The resonance phenomena occur-
ring during the absorption of electromagnetic radiation in Q2D
conductors should demonstrate more clearly than in ordinary
metals with comparable mean free charge carrier paths, since
almost all electrons on the FS surface are involved in their manifes-
tation, and not just the select group at the extreme FS cross section.

The difference between the physical properties of layered
conductors, ordinary metals, and two-dimensional conducting
systems is primarily manifested by the transfer phenomena in the
direction normal to the layers, especially in the appearance of a
series of magnetoresistance maxima as the angle 6 changes
between vectors B and n.”**> A prior work,” based on the
Rashba'"'’~Dresselhaus”’ spin-orbit interaction model, examines
the combined resonance of interlayer conductivity in Q2D conduc-
tors with an inclined magnetic field, while neglecting spatial disper-
sion. It is shown that in the range of € values in which the angular
oscillations tan 6 > 1 appear, the main contribution to the reso-
nance at combined frequencies comes from Dresselhaus interaction.
This article theoretically examines combined resonance of interlayer
conductivity and spin magnetization, and accounts for spatial dis-
persion. A numerical analysis is performed, which provides a quali-
tative idea as to the dependence that the kinetic coefficients have on
the angle between the magnetic field and the normal to the layers,
and their dispersion properties.

2. CURRENT DENSITY EQUATION

According to general current density equations for a system of
electrons in an alternating electromagnetic field,”® the current
density in the one-particle approximation, taking into account the
time and space dispersion, can be written as

a / 3. —ikr %
ji(w’k)=izﬁ)(8") —foley) (Vj (V) [dre <v‘]i(r)v>Ek(w,k),

i1
o E)y— &y Wy — W — 1,

1

Here, E(r,t) =E(0,k) exp (ikr- iot) is the electric field, fy(g,) is the
equilibrium distribution function of conduction electrons with
energy £, in an individual state with quantum numbers v,
ow = (&, — &)/, 7,} = (r;' + 7,")/2, and 7, and 7, are the
phenomenological quasiparticle lifetimes in the v and V' states, 7 is
Planck’s constant, (v|j,(r)]v') are the matrix elements of the

current density operator
jr) = g{@(ﬁ)&(r — 1) +8(r — ¥)V(P)} + c rot figd(r — 1), (2)

which is the sum of the orbital j¥(r) and spin j*)(r) components,
V= a‘g—?, p =- ihd/or-eAy(r)/c is the kinematic momentum
operator, Ay(r) is the vector potential of the constant uniform mag-

netic field B, e is the electron charge, ¢ is the speed of light,

ARTICLE scitation.org/journal/ltp

fiy = (%2)6 is the electron magnetic moment operator, 4, is Bohr’s
magneton, g is the effective g-factor, and ¢ are Pauli matrices. The
two-component spinors |v) are eigenfunctions of the single-particle
Hamiltonian &(p). For the processes considered below, the width
h/t, of the g, level should be significantly less than the distance
Ae = g,~¢,,between adjacent energy levels.

The electron energy in the field of the crystal lattice of layered
conductors is weakly dependent on the momentum projection
p-=pn on the normal to the layers, and can be written as a rapidly
converging series in the tight binding approximation

£(p) = &o(px> py) + an(px, Py» M) cOS % (3)
n=1

Here, the functions &,(p,.p;, 17) decrease significantly as their number
increases, the largest being &(pop)» 1) =nep, where & is the Fermi
energy, po=Hh/a, a is the distance between layers. Formula (3) is
written in the xyz coordinate system, in which the z-axis is parallel to
the direction of the lowest conductivity, and the y axis can be directed
perpendicular to the magnetic field B= (B sin 6, 0, B cos 6). In addi-
tion, let us use another coordinate system &yC, in which the { axis is
parallel to B, and choose the calibration of the vector potential
Ay(r) = (-By,0,0) (Fig. 1). The momentum components in both coor-
dinate systems are related by the rotation transformation with respect
to the angle 6 between the normal to the layers and the magnetic field.

In accordance with Formula (3), the electron Hamiltonian is
determined by expression

&) = €0(by D) — B+ > €x(hp Py 1) cos”p—*’(’f + Vi (@)

n=1

Let us write the spin-orbit interaction operator as the sum

Vio = Ve + Vb = v26(p x ) + 1p6lexp, —e,p) (5

of the Rashba Vy and Dresselhaus Vp interaction operators. Here, n
is the direction of the crystal’s high symmetry axis, which is assumed
to coincide with the normal to the layers, y and yp, are the interac-
tion constants, e,.e, are the unit vectors along the axes x,y, :

Py

FIG. 1. The Fermi surface and coordinate systems.
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For the considered conducting systems, the operators of the electron
motion energy along the normal to the layers, and spin-orbit interac-
tion, should be considered as perturbations. The full set of quantum
numbers v=n, p, p;,0 consists of the Landau level number #, the
projections of the momentum p, p, and spin s;=oc¢/2 = c/2. The
spin component |6) of the zeroth-approximation wave function is an
eigenfunction of the operator 6.

Let us perform the canonical transformation of the operators
€andj:

N PN A 1 - - . N ~
F/:e’sFeS:é-f—[F,S]+5[(F,S),S]+,..,F:é,j, @)

which reduce the Hamiltonian (4) to a spin-diagonal form. In the
zeroth approximation, the transformed Hamiltonian coincides with
the unperturbed operator (4) £®, and the matrix elements of the S
operator in the first order of Vy, are equal to

. (V| VNV
(v[S]') = R fgi(,)), (8)

where VNis the spin-off diagonal part of operator V. This formula
assumes that the spin resonance frequency ;= gugB/ h is not equal to
the cyclotron frequency wg and its harmonics lwg, i.e., the lines of the
combined and cyclotron resonances should not coincide; otherwise, at
some values of n and n’ the denominator in Eq. (8) can vanish.

Using Eqgs. (1) and (7), the current density can be written as a
series in powers of spin-orbit interaction constants, in which the
matrix elements (v|7/(r)|') are calculated based on the eigenfunc-
tions of the unperturbed Hamiltonian.

3. COMBINED RESONANCE OF INTERLAYER
CONDUCTIVITY

The spin-diagonal matrix elements of the operator j of the
orbital current density component (2) do not contribute to the
current that is caused by transitions at the combined frequencies,
and therefore the combined resonance of the interlayer conductiv-
ity is determined by the product

3
O )V re 5 @ly)
in Eq. (1), where &' (r) = [j? (x), 8.

In order to find matrix elements (v|}'§1)l(r)|v/), let us use the
model conduction electron dispersion law. We restrict ourselves to the
zeroth and first Fourier harmonics of the momentum projection onto
the normal to the layers in Eq. (3), neglect the anisotropy in the plane
of the layers, and set &1(p,p,» 1) = —€;,= —1vPo. As a result, we arrive at

pitp p:
:Ty—gnCOS%, (9)

£(p)
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here m is the effective mass, vg=1/2€p/m. When the inequality
Ntan 6 < 1 (10)

is satisfied, the Schrédinger equation for the unperturbed Hamiltonian
2 s reduced to the harmonic oscillator equation having the fre-
quency g = |e|B cos 6/(mc).

Let us write the resonance width as 7} = 73! = 77! + 77!
where T is the spin-flip time, and 7! is the resonance width at the
transition of an electron from the Landau level n' =n +1 to the
level n with conservation of the spin projection. Assuming that
E(r) ~exp (iky), after simple calculations, we find a correction to
the interlayer conductivity, which describes the resonance at com-
bined frequencies

2

[0J:10)
ol (@, k) = in” —" w(6)

<3 [ ap{ B =R, o

+ Z.o: <f0(8n+l,l) _ﬂ)(gn,fl) h§+)(w)
=1

wgl + w;

+ ,ﬁ)(£n+l,—1) - fO(Sn,l)

wgl —

h}*’(w})\an,m(k)P}, (11)

where @, = v/47npe?/m is the plasma frequency, ng is the electron
density, and B = pp/(po cos@). The subscript of the conserved
quantity pp is omitted from the electron energy €,6,, = £n0. The
frequency functions

o +it!
h =27
0(@) (0 +it ') — @?
12
(+) a)—Q—i‘c,;l ( )
h = (@) =

(@ + it — (0] + @)

at 7;;' — 0 have abrupt maxima at frequencies ®, equal to the com-

bined resonance frequencies ®,= |Q§i)|, where Q}J—r) = log + w;,
and the function of angle 6

_ y3(wp + 0,08 0)* + v} (@, — wpcos H)°

w(0) (13)

2
ag(p — )

determines the contributions from Rashba and Dresselhaus interac-
tions to 6% to ag = \/Al(mwg).
The coefficients

n+1

an (k) = T<n’ + 1]e*sin(g + au)|n)

- \/§<n'|ei“3k”sin(ﬂ +au)|n — 1)
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with the help of the formula (see Ref. 29)

1
izu | n! . 1 Z2\? 2 z?
<n\e |1’l + 1> m(lsgnz) (5) € Ln <E

and recurrence relations for the generalized Laguerre polynomials
Lln(z), can be written as

n!
k _
ann+l( ) = 2\/— (}’l+l)'
ol - ) I
X {e’ﬂzlZ e’TlLL(zl) — e”ﬁsgnl“(q — o)z, e’Tlen(zz)}A

(14)

Here, |n) are the normalized Hermite functions of the dimension-
less coordinate u, z;=(q+ )2, z,= (q—a)2/2, q=agk, a=(ag/r,)
tan 6, ro=po/mwg. At large values of n >> 1, the asymptotic repre-
sentation of the Laguerre polynomials™’ makes it possible to express
Eq. (14) using the Bessel functions J;:

b
= (g + )| V2nig + o)
e”ﬂsgnl“(q—a)|q—a|]1(\/§;|q—a|)}. (15)

an,n+l(k)

Equation (15) describes the oscillatory dependence of 6¢? on the
angle 6.
In the expression describing the electron energy spectrum

1 ha
87,,0-:7’—1(03(71 +§) + @50 +é£5, (16)

where

2
2 24 .
g, =—gpe 7L, (z)cosﬁ;f —&njo(V2na) cos B,

we neglect the second-order terms of Vi, i.e., those proportional to
y}zz and yZD, since they lead energy level corrections, but do not
affect the resonance intensity and the angular dependence of the
kinetic coefficients.

Each term in the sum over [ in Eq. (11) determines the asymp-

totic behavior of the conductivity 6&” near the +Ith resonance

ooz|Q§ )|. The first term with /=0 in Eq. (11) corresponds to pure
spin transition, and the resonance width is determined by the
inverse spin-flip time 7!

According to Eq. (15), the conductivity (11) vanishes in a
magnetic field perpendicular to the layers, i.e., at 6=0, if the spatial
dispersion is neglected in the chosen models of the electron energy
in the field of the crystal lattice (4), and spin-orbit coupling (5).
The spatial dispersion of the kinetic coefficients in the presence of
a high-frequency electromagnetic field 0t >~ wpT;>1 can be char-
acterized by the parameter KZ(U(DPVF/(DBC)Z. If the electric field is
polarized in the plane of the layers, then n=1. In the case of a
normal skin effect, the depth of the skin layer § >~ k™! =~ rp/\/x >

ARTICLE scitation.org/journal/ltp

rg is much greater than the cyclotron radius rg = vp/wp, and in
order to implement the conditions of the extremely anomalous
skin effect, the inequality & =~ rp/ k% <« rg must be satisfied.
Although for the considered geometry of the problem, when the
electric current flows perpendicular to the layers, usually, because
of the smallness of the anisotropy parameter 1, § > rg, the spatial
dispersion effect can be significant in structures with high enough
conductivity, such as in the organic metal (BEDT-TTF),IBr, with a
charge carrier density of ny~ 10*' cm™."!

If the number of Landau levels below €. is large, then the con-
ductivity (11) undergoes de Haas-van Alphen oscillations. Using
the Poisson formula, we can write Eq. (11) as the sum

S, k) = 6. (0, k) + 6.0, k), (17)

of the smooth

2 ©
Goolw, k) = inf Z)—;W(e){ho(w)Uo + 3 1P + h ()] Ul}

=1

(18)
and oscillatory with respect to B~' components

2

6.0, k) = inzﬁw(e)
PR O RO }
| Q. (19
{ Z: Q(+) Q; )
Here
o o, 2
Z (0ot + ViR GAPE) sin D% cos 2 (20)
= @B ;]

= A/shA, A= 22T/ (hws),

(1)
A = 2zey]o(en)/ (hog),

(@—a)TH g1 —a)},

Vi =sgn'(q — a)|g* — & |Ti(q1 + a)]i(|q1 — ),
q1 = v/ 2u/(hag)g = krg,
ar = a\/2u/(hwg) =

T is the temperature, u is the chemical potential. The amplitudes
of the oscillating harmonics in the sum Q; are modulated by the
quasiperiodic functions Jo(jA), J»(jA), the argument of which
depends not only on B™", but also on tan 6. If spatial dispersion
is neglected, the conductivity afj’(w, 0) is determined by
Egs. (17)-(19), in which the coefficients U; and V; are equal

U= E{(Q+“)2]12(LZ1 +a1) +

(mvg/po)tan 6,

U =), Vi= (D" ().

Under the condition &, >~ ner > hwp, Eq. (19) describes the
oscillations of interlayer conductivity with changes in the inverse
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magnetic field. If nep >~ hiwp and T< hwp/(27%), it is necessary to
account for the oscillatory dependence of the chemical potential u
on B, and near the resonance ow|Q§i)|, and the relaxation time
1, as a function of B™'. In the region of sufficiently low tempera-
tures T< Fwp/(27?), at ner > hiwg and at arbitrary values of 6, the
amplitude of the conductivity component that oscillates with the
inverse of the magnetic field &,, is VA ~ \/nepl(hwg) times
smaller than the smooth component 6. However, the oscilla-
tory component for the values 6= 6;, at which o, ~tan ; is a root
of the Bessel function Jy(0,;) = 0, increases to about 6'2").

The resonance conductivity given by Egs. (11) and (13) can
be represented as the sum O'SZ") = og +op of the Rashba and
Dresselhaus interactions. Having written the cyclotron frequency
as wp= g cos B, where wy=|e|B/(mc) in Eq. (13), it is easy to see
that or = op at 61, but in the range of 6 values in which the
angular oscillations tan 1 appear, the asymptotic behavior of
689 is determined by the Dresselhaus spin-orbit interaction
or = 0p c08’0 < op. The angular dependence of the smooth
and oscillating components of the interlayer conductivity at charac-
teristic parameter values, is shown in Figs. 2 and 3, respectively.

Let us assume that the conductor occupies the half space
>0, and that the condition nw,> is fulfilled, at which the dis-
placement current can be neglected in Maxwell’s equations. An
important characteristic of the conducting medium is the surface
impedance tensor

Zix =

8w
—ic—2 (21

Jdk[D’l(a), ik ik =1{x, 2},
0

which binds the tangential components of the electric field on the

surface to the total current, where Dy={k*6y — (4miwc2)

(o — @)}. In layered conductors the inequalities |oy,04|
»w

|0y:02| K 02,0, |0:.0,,| are fulfilled,”” and therefore, the
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conductivity tensor in the xz,yz planes can be considered diagonal.
Let us expand the integrand for the impedance component Z,, into
a series in powers of &%, and keep the first two terms:

)

8w

dk
Zy; = Zig) + AZSJ) = 717[’{

2 — 4rinc 20, (w, k)

2
0
dk O'E;Z”) (w, k)

327nw? J
¢ )k - arioc 2o (0, K
0

(22)

Here, the first term is the impedance at ¢” =0, and the
second is the correction due to spin-orbit interaction. The inter-
layer conductivity in the main approximation o, (@, k) can be
easily found with the help of Eq. (1):

_ '7]26012) T o(ens) ‘An,n(4)|2
owtonb) =it 3 [ | -2

2 - fO(gn,a) 7f0(8n+l,o)

= (@ + it )’ — (wpl)

@ i) Aa) }
(23)

where

-1

. i
Apnii(q) = <n|e’q“sin(ﬁ + au)|n + l>7 E)

n!

in L 2] . 1 z;
X {e’ﬁzie’%Lln(zl) - e”ﬁsgnl(q — a)zie’%Li(zz)},

and the value 1 determines the width 7/t of the n-th energy level of
the electron. In the case of &r > hwp the summation over n can

2.5F 2.5F

- (a) - (b)
o' 2.0F 6'2.0F
I & f
g 15t 2 1
) C o. [
\“ 10__ \::1.0_—
L) - o -
[ N ] C
& 0.5F I & 0.5F

0E 2 1 1 ()E 2 1 1 ]
0.4 06 0.8 1.0 1.2 1.4 0.4 0.6 0.8 1.0 1.2 1.4

FIG. 2. The dependences of ReGr/c+ (curve 1) and ReGplo, (curve 2) on 6, where ¢15 = n?(

0

2l4man)(y g plve), at parameters mvelpo=2.5, @ = 1.8wp, 5= 14wy,

w7=20, o75=200, k=0 (a) and kvglwy= 0.2 (b). The abrupt maximum at 6~ 1.16 corresponds to resonance at the frequency @ = ws+ wg, here and in other figures.

Low Temp. Phys. 46, 000000 (2020); doi: 10.1063/10.0001914
Published under license by AIP Publishing.

46, 000000-1025


https://aip.scitation.org/journal/ltp

Low Temperature

Physi cs ARTICLE scitation.org/journal/ltp

0.2f @ | o02f ®)
_ 0.1 LO1F

b i % i A

A rF L

|8 0_ N\ [\ {\ {\v nﬂ Rv, > lg 0_ nnn,\\lﬂM MA

[~ : VIV VV N e VTV
-0.1F -0.1F

020 ) T U S R S R

0 02 04 06 08 1.0 1.2 1.4 0 20 02 04 06 08 1.0 1.2 1.4

0

0

FIG. 3. Qualitative dependences of Re &rloy ( ) and Re 6ploy (b) on 6, where o1y = (@ 2/4ﬂw0)(yR olVe)?, at parameters mvgpo=2.5, o = 1.8mq, ws=1.4mg,

27°T(hwo) =1, 7= 10, wzs = 100, ned(fiwg) =

be replaced by integration, and Eq. (23) can be transformed into

Jalqr + 1) + Ja(q — 1)
o+ it!

)
n*w

o (0, k) =i L {
87

+o) +
+2 Z]l(ql a) IZ_((a)Bl) )( o + it )} (24)

= (o+ir;

By changing the integration variable k = /I(K(x)/w” 2/rg, we write the
resonance correction to the impedance as follows:

_8ur /ﬂ]o s o, (kolop)"A] (25)
2 Vx| {22 — is,, [0, (kolog) A}
0

where s,, is the conductivity attributed to 7]20);/(471.’0)3), ie,
ng). Ifx < 1, then AZL”

can be expanded into a series in powers of 1/, and the first term
of the series is

AZE)
22 = 41050, (P0?), s = 4mwpo’s?/(n

(s0)
AZ;S") 59w, 0)

2rvE 7} P (0N
=— /. 26
‘ ¢ K@p [—is (0, 0)]3/2 20

In the vicinity of ® = w,+Aw = |lop + @ |+Aw, the asymptotic behav-
ior of Eq. (26) looks like

o, T —I—zAa)

AZY) ~
c2 Kwp Aw?* + T

1]1( 1)

wpcosh)*
32

 Vr(os + wscosﬁ)2 + 7505 —

3@} — 02) [~iszz(@r, 0)]

@7)

In the region of 0 < x <1 the integral in Eq. (25) as a function
of k does not undergo significant changes, therefore, with an

, =1/30, and kvelw, = 0.2. Slow angular 050|I|at|ons are caused by the functions Jo(jA), Jo(jA) in Eq. (20).

increase in x from x < 1 to ¥ = 1, the correction to the impedance
due to spin-orbit interaction decreases according to 1/y/x.

Equations (11), (13), and (26) can be used to experimentally
find the absolute values of the constants yz and yp.”® Pure spin
transitions with /=0 at the frequency w, are of particular interest,
since 1,> ;. Additionally, wpt; decreases with increasing 6, as does
the intensity of the /-th resonance.

4. COMBINED RESONANCE OF SPIN MAGNETIZATION

Together with spin transitions, non-uniform high-frequency
magnetic field B™(r,f) can also excite transitions at combined fre-
quencies, even without taking spin-orbit coupling into account.
The current density given by Eq. (1) is proportional to the eddy
electric field and, correspondingly, includes terms that are propor-
tional to the magnetic field. The orbital component of operator (2)
in Eq. (1) determines the conductivity, and the spin component
j¥=c rot fi,d(r—r') determines the high-frequency magnetization
and paramagnetic susceptibility.”

Setting k = (0,k,0) from Maxwell’s equations

10B
s(m)
= tM, rotE=—— 28
j cro ro v (28)

we obtain the following expression for the magnetization due to
the spin component of the current density operator (2).

hwwg T
Mo =" 3 | as
| Jo(ene) — folewe) | (169 1) *(0]6k]0") (0" |61]0)
Eno — En o’ (871,0' - Sn’,o’)/h — 0 — iT\;z—n’\,s
x By (@, k). (29)
Here, j™™ is determined by Eq. (1), in which j=j®
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Xo= ,u%mpo/ (zh®) is the static paramagnetic susceptibility, B~ (,k) of the smooth

=(c/0)[kxE(w,k)], i,k={€, C} the matrix elements (o’|Gk|o) are
expressed in terms of Kronecker symbols ©

P Y &Aum=wm{m%mmw+§:ﬁwnhwm»+%>wﬂ}(n>
=1

16 = 651051+ 651651, (0|6 =00
<0 |O-5|O-> o100’ ~1 + 00,-100'1 <G |G§|O-> o7 and quantum oscillatory components

The magnetization component, which is perpendicular to the Zez(, k) = —200py,
magnetic field, is caused by transitions with a change in the spin L (a)) h( n @ h(f) ©)
projection, and describes the paramagnetic and combined reso- 2(q,) = _|_ ] )
o\ R N NS
nances, is equal to Q Q
~ X Z Sl Jo(GA)P(jA) sin 7jos coszL'uj. (33)
Me(o, k) = xz:(0, k)B; (0, k) = wp hwg

_ _% 7 Z J dﬂ{ Jo(€n1) fo €n-1) b (q)‘ ho (@) N Equations‘ (30)—(33.) are the sum of the magnetic suscept(ilji)l-
ity’s asymptotic behavior near the+I-th resonance w = |Q;™|.

Upon neglecting the spatial dispersion, ie., when ¢;=0, only one

folensin) — folen—1), (1 term at /=0 remains in Eqgs. (32) and (33), which describes the elec-
< b (@) tron paramagnetic resonance. The magnetic susceptibility corre-
sponding to the combined resonance is maximized at q; = krg ~ 1,
O y and at large values g; > 1 it decreases as 1/krp. The angular
b (w)) bnns1(@)]” B (o, k)}’ dependences of the smooth and oscillatory magnetic susceptibility
components are shown in Fig. 4. The angular dependence of mag-

netic susceptibility component %, that oscillates with changes in
B! is similar to the dependences of the oscillating component of
the resonance conductivity considered above and the static mag-
netic susceptibility in a strong magnetic field.”” In the region of
n! P\ 2, (q sufficiently low temperatures, at nep > hwp and at arbitrary

bun+1(q) = n+1! (?) esL, (E) 1 J l( v an). values of 0, the oscillation amplitude 5(55 ~ ]o(A);Z& ~ ;z&/\/x is
VA ~ \/ner/(fwg) times less than that of the smooth component
Xeer However, the oscillatory component for 6= 6, at which o, ~tan 6;
is a root of the Bessel function Jo(c;) =0, it is equal to ¥ by order of
magnitude. For these directions of the magnetic field, the dependence
of the cross section area Sg(pp) on the momentum projection pg

<>

I=1

f0(8n+1 1) — fo&‘nl

a)Bl

wgl +

(30)

where

At &p > hog, after standard transformations, the paramagnetic
susceptibility can be written as the sum

K@, k) = X, k) + (@, k) @1 appears in the second-order terms of 7.
4 (a) 03F
- 02F
|§ L 1%: 02 A /\ AA/\ nf\ﬂl\ Vﬂvﬂulv
g % E it
r 0.1}
1F —02F
: —03F
0 ——. e by b b e b by Wy ]
0.6 0.8 1.0 1.2 1.4 0 02 04 06 08 10 12 14
0 0

FIG. 4. (a) The dependence of Im y/y, on 6 at kvel wo=1 (1), 0.3 (2), 10 (3). (b) The qualitative dependence of Im y/y, on 6 ka/ wo=1. The slow angular oscillations
are caused by the function Jo(jA) in Eq. (33). The parameter values are: mvelpo = 2.5, w = 1.8aq, ws = 1.4wo, 07 =10, w7, = 100, 22T/ (Awo) = 1, ned(hag) =1, 7= 1/30.
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The correction to the impedance AZY, under the resonance
conditions of spin magnetization, can be found using Eq. (22) for
AZg"), into which, instead of O'SZ”)((», k), one should substitute the
correction to conductivity due to the spin current j™:

2.2

k
O'SZ)(&), k) = —i%;(&(w, k)COSZG- (G4

After simple transformations, we get

32zv 0]
AZE? = —i—ZF —cos* @
2\ xwp

it dllzzég [CU) (K) w/wB)l/zl]

JW—%mmmJ%f

(35)

If the incident wave is polarized along the normal to the
layers, and normal skin effect conditions are possible, then the

ARTICLE scitation.org/journal/ltp

principal term of the expansion AZY in a series of /% powers

87*vy [w

, 0
AZY = —i 2@ 0)

2 Y c
c Kwp _lszz(w: 0)

describes the electron paramagnetic resonance.
By analogy with Eq. (22), the impedance component Z,, can
be written as:

0s? 0 (36)

8o [ dk
Zew =728 + AZE) = —‘—J
o T A ! ¢ ) k? — Arioc 26 (0, k)
0
32 dk K2y (s k
i Zwsinzej 2geh (37)
c ) [ — dAmioc26 (o, k)]

where Gy = Oxx — Oxy0y/0yy. In the £p > hwp approximation,
the components Cij 1, j = {x, } look like:**

ar o+ ir~!

oo, K) = ’wﬁ{ 2J1(q1) n i J7 . (q1) + ]12+1(¢J1) —2]1-1(q)])i1(q1)
=1

<]

@+ it ) — (@)’ }

oy (o, k) =

2 oo

@ZL@HmW4Mwmm
4r (@ + it; 1)’ — (wpl)?

@y 1271(‘11) - ]12+1(611)

(o + it h), (38)

o B

O-xy(w) k) =

The impedance correction AZY is maximized at
Klz(mva/ch)zzl, and in the limiting case ;> 1 it decreases
as ;2.

In order for combined and cyclotron resonance to manifest, it
is necessary for the electron to make several revolutions around its
orbit in a magnetic field, over the course of its mean free path. In
ordinary metals, achieving this type of mean free path length for
charge carriers corresponds to the conditions of the extremely
anomalous skin effect, and therefore the magnetic susceptibility
(31) is small with respect to the parameter 6/rg < 1. In organic
conductors, the fulfillment of the wz; >~ wpr; > 1 ratio, under the
condition that §/rg >~ 1, is much more favorable. This is one more
reason why it is possible to experimentally observe the combined
resonance of magnetization in layered conductors, in addition to
the fact that almost all FS electrons participate in resonance forma-
tion, as mentioned in the Introduction.

5. CONCLUSION

The experimentally observed resonance absorption of micro-
wave radiation in organic compounds is a superposition of peaks
that correspond to different types of resonances. For example, at

i (+in ) — ()’

helium temperatures, organic metals (BEDT-TTF),MHg(SCN),
(M =K,Tl) with antiferromagnetic ordering, in a magnetic field
perpendicular to the conducting plane, display narrower lines
against the background of peaks that correspond to cyclotron res-
onance. The amplitudes of these lines are 5-10 times smaller, and
are presumably caused by the electron paramagnetic and antifer-
romagnetic resonances.” The experimental data in layered con-
ductors can be identified and assigned by analyzing the absorbed
power and other conductor characteristics as a function of the
direction and magnitude of the magnetic field, as well as the FS
parameters. Under normal skin effect conditions, resonance cor-
rections to impedance are proportional to o%* and Xz In con-
trast to o9, the magnetic susceptibility does not contain any

oscillating factors in the form of ]lz[(%) tan 0}. The angular

dependence of the smooth component % is determined by the
dependence of the resonance functions (12) hgi) on wg~cos 0,
and the angular dependence of the quantum J;;. component that
oscillates with changes in B, as follows from (33), also includes
the factors Jo(jA), which describe the slow oscillatory dependence
on tan 6, and the absolute value of the magnetic field. The
obtained results can be used to detect the combined resonance of
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interlayer conductivity and spin magnetization not only in
organic conductors, but also in other low-dimensional layered
structures of inorganic origin.
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