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Abstract—We have studied the response of a layered conductor with a quasi-two-dimensional electron spec-
trum and a multisheet Fermi surface (FS) formed by two weakly corrugated cylinders and two planar sheets
adjoining these cylinders to nonuniform heating. As a result of action of pressure on the conductor or its dop-
ing with impurity atoms, distance Δp between the FS cylinder and planar sheets can be reduced to such an
extent that conduction electrons begin roaming over these sheets, tunneling from one FS sheet (cavity) to the
other. If a conduction electron can visit several times all FS sheets during its mean free time, its motion in the
plane orthogonal to the magnetic field becomes finite. In this case, Shubnikov–de Haas oscillations are
excited with a period determined by the closed area circumscribed by the electron during its motion in the
magnetic-breakdown trajectory in the momentum space. We have calculated the dependence of the thermo-
electric field on the magnitude and orientation of a quite strong quantizing magnetic field. In a magnetic field
normal to the layers, the cross sections of the cylindrical part of the FS are equidistant from both FS planar
sheets. However, this equidistance is violated even for a small deviation of the field from the normal to the
layers by angle ϑ, and, at a certain value ϑk of this angle, the probability of magnetic breakdown to one of the
FS planar sheets can be so low that the electron cannot close the magnetic-breakdown trajectory, and its
motion over the other planar sheet with a visit to the FS cylindrical part becomes infinite. In this case, the
magnetic-breakdown quantum oscillations of magnetization and all kinetic characteristics of the conductor
disappear, and their disappearance is repeated periodically with a change in the slope of the magnetic field to
the layers as a function of tanϑ.
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1. INTRODUCTION

The electron topological transition in degenerate
conductors predicted by Lifshits [1], during which the
connectivity of the Fermi surface (FS) changes
because of an external action in the form of pressure
on such conductors or their doping with impurity
atoms was soon detected in many metals and their
alloys in the normal and superconducting states [2].
During the last two decades, the interest in the Lifshits
topological transitions was shifted to the region of low-
dimensional conductors. The topological structure of
the FS in such conductors even under a low pressure
can naturally change, which is accompanied by anom-
alies in the kinetic and thermodynamic electron char-
acteristics.

Such anomalies are manifested most clearly in
thermoelectric phenomena and contain important
information on conduction electrons, even in classi-
cally strong magnetic fields B, when frequency ωc of
circumvention of a charge is much larger than fre-
quency 1/τ of electron collisions, and separation ωc
between quantized energy levels is much smaller than
blurring temperature T of their equilibrium Fermi dis-
tribution function. Theoretical analysis of thermo-
electric effects in layered conductors with a multisheet
FS in this range of magnetic fields for different orien-
tations of the temperature gradient and vector B [3, 4]
paves the way to detailed investigation of the electron
energy spectrum for such conductors, in particular,
the determination of fine features of individual FS
cavities (sheets) and their mutual arrangement in the
momentum space; analysis of the temperature depen-
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Fig. 1. (Color online) Electron trajectories on the FS in a
layered conductor, which consists of cylinders in each cell
of the momentum space and two adjoining quasi-planar
sheets weakly corrugated along axis pz = p ⋅ n (n is the nor-
mal to the layers): (a) magnetic-breakdown (red) and con-
ventional (green) electron trajectories in a magnetic field
normal to the layers; (b) magnetic-breakdown trajectories
(red) in a field tilted to the layers.
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dence of the thermoelectric coefficients makes it pos-
sible to study various mechanisms of charge carrier
relaxation.

In stronger magnetic fields (for ωc ≥ 2π2T), it is
necessary to consider the energy quantization for
charge carriers performing finite motion in the plane
orthogonal to the magnetic field, which leads to an
oscillatory dependence of the thermoelectric field on
the reciprocal magnetic field. The oscillatory depen-
dence of the magnetic susceptibility of metals in a
quantizing magnetic field on the reciprocal value of
the quantizing magnetic field was predicted by Landau
[5] and was detected in the same year of 1930 at the
Leiden laboratory in quite perfect bismuth single crys-
tals at the liquid helium temperature [6]; later, this
dependence was observed for the magnetoresistance
of the same bismuth samples [7]. Theoretical calcula-
tion of magnetic susceptibility of metals in a quantiz-
ing magnetic field in the case of an isotropic depen-
dence of energy ε(p) of charge carriers on their
momentum p was reported by Landau later in Appen-
dix to the Schoenberg paper [8]. The magnetization of
metals under the most general assumptions concern-
ing the form of their electron energy spectrum was
analyzed theoretically by Lifshits and Kosevich [9] and
served as the beginning of a new trend of the electron
physics of metals, which was later called fermiology,
involving the solution of the inverse problem of recon-
structing the FS shape from the measured oscillatory
dependence of magnetization and kinetic coefficients
on the reciprocal value of a strong magnetic field.

In this paper, we consider the response of the elec-
tron system of layered conductors with a quasi-two-
dimensional electron energy spectrum of an arbitrary
form to nonuniform heating near the Lifshits topolog-
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ical transition and analyze the dependence of thermo-
electric field

(1)

generated by temperature gradient ∂T/∂r on the mag-
nitude and orientation of the quantizing magnetic
field. Here, ρik is the resistivity tensor, which is recip-
rocal of conductivity tensor σij(μ), and (μ) coin-
cides with tensor σij(μ) if we replace relaxation time τ
of charge carriers in the direction of their momentum
by their energy relaxation time τε, and e and μ are the
charge and chemical potential of a conduction elec-
trons.

2. THERMOELECTRIC EFFECTS
IN A MAGNETIC FIELD ORTHOGONAL

TO THE LAYERS

The FS of most layered conductors has many
sheets and consists of topologically different elements
in the form of cylinders and planes weakly corrugated
along axis pz = p ⋅ n, where n is the normal to the layers.
As in [3], we assume that the FS in each unit cell of the
momentum space consists of a cylinder and two quasi-
planar surfaces adjoining it; the normal to the quasi-
planar FS sheets will be referred to as the px axis
(Fig. 1). Such a topological structure is typical of a
large family of organic conductors based on tetrathi-
afulvalene. The weakly corrugated cylinder is equidis-
tant from the quasi-planar FS sheets, and its sections
by plane pB = p ⋅ B/B = const are symmetric in a mag-
netic field orthogonal to the layers.

In the immediate vicinity to the Lifshits topological
transition, under the action of an external perturba-
tion, minimal distance Δp between individual FS
sheets (cavities) turns out to be so small that a conduc-
tion electron can pass from one FS sheet to the other
because of magnetic breakdown with probability

(2)

where Sp ≈  is the over-barrier area which the elec-
tron must cross during tunneling from one FS sheet to
the other [10].

Among chaotic walks of the electron over different
FS cavities, the strictly periodic motion of the charge
turns out to be most probable, when, during each
probable magnetic breakdown, the electron necessar-
ily passes to the adjacent FS cavity if during its mean
free time it manages to visit all segments of its mag-
netic-breakdown trajectory many times. The mathe-
matical expectation of such a finite motion of the elec-
tron is close to unity if the following condition is satis-
fied [11, 12]:

(3)
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The quantized electron energy levels can easily be
determined using the Bohr–Sommerfeld rule of
quantization of area S(ε, pB) in the momentum space,
which is circumvented by the electron during its
motion in a closed orbit with conservation of its energy
ε(p) and projection pB of the momentum onto the
magnetic field direction,

(4)

where c is the velocity of light.
In a quantizing magnetic field, peculiarities appear

in the density of states of charge carriers,

(5)

for magnetic field values Bn for which ∂S(ε, pB)/∂pB
vanishes. This can easily be verified by expanding the
left-hand side of Eq. (4) into a power series in δpB =

pB –  near the electron orbit with extremal area

Sext = S(ε, ):

(6)

It can easily be noted that the root singularities of
function ν(ε), which are associated with the extremum
Sext of the area of the closed orbit in the momentum
space, are formed by a small number of conduction
electrons, δpB ≤ , or by their relative frac-
tion

(7)

where a is the distance between the layers and η =
∂2S(ε, )/(∂ )2 is the quasi-two-dimensionality
parameter of the electron energy spectrum, which
coincides (to within a numerical factor of the order of
unity) with the ratio of maximal velocity  of the
charge carrier drift along normal n to the layers to
characteristic Fermi velocity  of electrons moving
over the layers. These singularities are repeated peri-
odically upon a change in the reciprocal magnetic
field in accordance with relation (4) with period

(8)

which just leads to a periodic variation of thermody-
namic and kinetic characteristics of degenerate con-
ductors as a function of 1/B.

If not only the magnetic field, but also the tem-
perature gradient is orthogonal to the layers, electric
field Ez in the main approximation in the small quasi-
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two-dimensionality parameter of the conductor
(η ≪ 1),

(9)

is an asymptotic function of only the conductivity ten-
sor component

(10)

Here, f0 = {1 + exp(ε – μ)/T}–1 is the equilibrium
Fermi distribution function for conduction electrons.
Using the Poisson relation [13]

we have replaced summation over n by integration with
respect to n in summing over all electron states defined
by variables pB and n and then, using relation

(11)

by integration with respect to ε. Electron mean free
time τB = τ(1 + νosc) contains the following correction
oscillating with the magnetic field:

(12)

which is connected with quantum oscillations of the
electron scattering amplitude [14]. Numerical factors
ξq of the order of unity in formula (12) depend on the
specific form of the scattering amplitude of charge
carriers and their dispersion relation. In the case of an
isotropic electron energy spectrum, these factors were
calculated by many authors using various methods
[15–18]. However, the knowledge of these factors is
immaterial for solving the inverse problem of recon-
structing the energy spectrum of conduction electrons
from the results of experimental investigation of elec-
tron phenomena in a quantizing magnetic field. It is
sufficient to know only extremal closed planar sections
of the FS.

The oscillatory dependence of the conductivity
tensor components for quasi-two-dimensional con-
ductors on the inverse quantizing magnetic field is
much smaller than the smoothly varying part of these
components for ωc/μ ≪ η ≪ 1 (approximately by a
factor of ). Differentiation of the rapidly
oscillating exponential function exp[ikcS(μ, pB)/ eB]
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in expression (10) with respect to μ leads to multipli-
cation of this exponential by quantity

and the term with k = 0 acquires a much smaller factor
on the order of 1/μ. As a result, quantum oscillations
of the thermoelectric field are giant by nature, and
oscillating part Eosc(B) of thermoelectric field is much
larger than the nonoscillating part Emon(B) that coin-
cides with the thermoelectric field for ωc ≪ T.

The presence of two sharp functions in formulas (10)
and (12) makes it possible to easily integrate them with
respect to ε, , and pB and obtain (for 2π2T ≪ ωc

and ωc/μ ≪ η ≪ 1) the following compact asymp-
totic expression for the thermoelectric field:

(13)

where s = sgn[∂2S(ε, pB)/∂ ] and ξ is a dimensionless
factor on the order of unity, which depends on the dis-
persion relation for charge carriers; the smoothly vary-
ing part of the thermoelectric field in layered conduc-
tors has form

(14)

and has the same order of magnitude as T/eμ. Here,
we have written only the first harmonics of oscillating
functions with s = ±1 (i.e., the main contributions to
quantum oscillations of electrons in neighborhoods
with maximal and minimal sections of FS by plane
pB = const).

We assume that the maximal section of the FS
cylindrical part is much closer to FS quasi-planar
sheets (as shown in Fig. 1a) than the minimal section.
In this case, electrons near minimal section  do
not leave the FS cylindrical part and form conven-
tional Shubnikov–de Haas oscillations with frequency
ν = c /e  proportional to  (green region in
Fig. 1), while electrons on the FS cylindrical part near
maximal area  of its section participate together
with charge carriers on the FS quasi-planar sheets in
the formation of magnetic-breakdown thermoelectric
field oscillations. The area of the magnetic-breakdown
electron trajectory (red region in Fig. 1) consists of
four pieces between magnetic-breakdown contacts
(±D/2, 0, 0) and (±D/2, P2, 0), where D is the diame-
ter of the maximal section of the FS cylindrical part
along the px axis, P2 = 2π /a2 is the period of the unit
cell in the momentum space along the py axis, and a2 is
the period of the crystal in the conventional space
along the y axis.

The origin in the pypz plane coincides with one of
the magnetic-breakdown contacts. The energy levels
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of conduction electrons moving in closed magnetic-
breakdown orbits can be determined using Eq. (4),
substituting the total area circumvented by an electron
moving over two adjacent cylinders and over both FS
quasi-planar sheets:

(15)

where

(16)

is the area between the two FS quasi-planar sheets per
unit cell in the momentum space.

In the case of nonuniform heating of the sample
along the layers, nonoscillating part (B) of the
thermoelectric field increases linearly with the mag-
netic field when the temperature gradient is directed
along the x axis (see formula (55) in [4]). In all remain-
ing cases, the Nernst–Ettingshausen field, as well as
the thermoelectric field along the temperature gradi-
ent, oscillates against the background of a weak con-
stant field on the order of T/eμ.

3. THERMOELECTRIC EFFECTS
IN A MAGNETIC FIELD TILTED

TO THE LAYERS
In magnetic field B = (Bsinϑcosϕ, Bsinϑsinϕ,

Bcosϑ) tilted from the normal to the layers, section
Sc(ε, pB) of the FS cylindrical cavity is extended along
the pz axis. The electron time of f light T1(ϑ) =
T1(0)/cos ϑ between the FS quasi-planar sheets
increases with the tilt angle of the magnetic field to the
layers, and the electron turning points on the closed
orbit along the px axis are at different distances from
the FS planar sheets. For small angles ϑ, this differ-
ence increases and may become equal to corrugation
η /a of the FS cylindrical part. If exp(–c η2/a2eB) in
this case is smaller than γ, an electron moving in the
magnetic field lying in the xz plane is unable to close
the magnetic-breakdown orbit, and its motion over FS
planar sheets is infinite. In this case, the electron
mainly moves in an open trajectory, sometimes com-
pleting a turn on the closed section of the FS cylindri-
cal part, and there are no quantum magnetic-break-
down oscillations of kinetic coefficients.

In this case, quantum oscillations of kinetic coeffi-
cients are formed only by electrons on the FS cylindri-
cal part. For tanϑ ≫ 1, classical angular oscillations
also come into play; however, their amplitude is much
smaller than the amplitudes of quantum oscillations
that suppress classical thermoelectric field oscilla-
tions. However, there exists a countable set of mag-
netic field orientations, for which magnetic-break-
down quantum oscillations of the same intensity as in
the magnetic field orthogonal to the layers appear

= +max ,mb c plS S S
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again. This is possible when the four magnetic-break-
down contacts lie in the same plane.

This can occur when an electron moving from the
FS cylindrical part to a quasi-planar FS sheet and
continuing its motion encounters a magnetic-break-
down contact the same as for ϑ = 0 on the adjacent FS
cylinder or at least at the next cylinder. Passing to this
neighboring cylinder, the electron must complete an
integer number of periods P3 along the pz axis during
its motion and must then return to the previous FS
cylinder and close the magnetic-breakdown trajectory.
In view of the periodic dependence of the energy of the
electron on its quasi-momentum, the magnetic break-
down probability turns out to be the same and com-
pletely identical to that in the magnetic field orthogo-
nal to the layers.

A conduction electron that has begun its motion,
say, at contact p1 = (Dp/2, 0, 0) moves in an open orbit
to contact p2 = (Dp/2, mP2, nP3) after shifting by an
integer number of unit cell periods P2 and P3 and then
rises over the FS cylindrical part along the pz axis by an
integer number N of periods P3 and shifts to the FS
opposite sheet to contacts p3 = (–Dp/2, mP2, (n +
N)P3). Having shifted down in an open trajectory by n
periods P3, the electron approaches contact p4 =
(‒Dp/2, 0, NP3) and then closes the orbit at contact
p1 = (Dp/2, 0, 0).

The magnetic field orientation orthogonal to such
a closed orbit is determined by the conditions of
orthogonality of magnetic field vector B to vectors
connecting contact p1 = (Dp/2, 0, 0) with the remain-
ing aforementioned magnetic-breakdown contacts.
This orthogonality conditions implies that

(17)

It is convenient to transform these relations to

(18)

For the magnetic field orientation satisfying this con-
dition, the amplitude of magnetic-breakdown oscilla-
tions of kinetic coefficients is of the same order of
magnitude as in the magnetic field normal to the lay-
ers because the probability that the electrons passes to
the other FS sheet as a result of magnetic breakdown
in both directions of the magnetic field (normal and
tilted to the layers) is determined only by width Δp of
the gap between the FS sheets. In the case of slight vio-
lation of condition (18), the magnetic-breakdown
oscillation amplitude begins to decay and assumes the
minimal value in the collisionless limit (τ = ∞) for
magnetic field tilt angle ϑc to the layers that satisfy
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condition (18) if we substitute half-integer number
N + 1/2 for N or n + 1/2 for n.

Magnetic-breakdown quantum oscillations of
resistivity of organic conductors was detected for the
first time in organic complex κ ((BEDT—
TTF)2Cu(NCS)2) then in other layers of tetrathioful-
vene also at different laboratories [19, 20]. The resis-
tivities of this family of organic conductors across and
along the layers differ by three orders of magnitude. In
such complexes of organic conductors, giant oscilla-
tions of the thermoelectric field with a change in the
reciprocal value of the quantizing magnetic field by
about 20–30 T and their periodic disappearance as a
function of tanϑ can easily be detected.

The strong magnetic field condition is determined
by the number of turns of an electron in a closed orbit
during its mean free time, which is inversely propor-
tional to the area of the electron orbit. More reliable
information is contained in the results of measure-
ment in the case of large orbits with small values of N
and n, including N = 0 or n = 0. For n = 0 (i.e., for
magnetic field rotation in the xz plane), sharp thermo-
electric field magnetic-breakdown peaks appear with
frequency

for the magnetic field tilt angle satisfying condition

(19)

and with frequency

for N = 0, n = 1, when the magnetic field lies in the yz
plane, and its tilt angle to the layers satisfies condition

(20)

Experimental investigation of these oscillatory
effects will make it possible to determine the area of
the maximal section of the FS cylindrical part and its
diameter D along the px axis. Comparing oscillation
frequency ν2 for N = 0, n = 1, m = 2 with the magnetic-
breakdown orbit depicted in Fig. 1b with the frequency
of magnetic-breakdown oscillations in a magnetic
field orthogonal to the layers,

i.e., for N = 0, n = 0, we can determine area Spl
between quasi-planar FS sheets per unit cell of the
momentum space,

(21)
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In the case of nonuniform heating of the conductor
along the layers, Shubnikov–de Haas magnetic-
breakdown oscillations of thermoelectric field,

(22)

occur against the background that increases mono-
tonically with the magnetic field like in the case of the
magnetic field normal to the layers. However, for solv-
ing the inverse problem of reconstruction of the FS, it
is sufficient to know only the periods of quantum and
angular oscillations of the thermoelectric field.

4. CONCLUSIONS
The giant nature of thermoelectric field quantum

oscillations makes it possible to determine specific
characteristics of the electron energy spectrum of lay-
ered conductors with a high degree of accuracy (in
particular, to measure the areas and diameters of elec-
tron orbits on the FS for various orientations of the
strong magnetic field during a slow approach to a
topological transition using continuous and quite con-
trollable variation of pressure). With increasing tem-
perature, at transition to the temperature range of liq-
uid hydrogen, quantum oscillations of kinetic coeffi-
cients begin to decay exponentially and cannot prevent
the observation of classical angular oscillations, which
also contain important information about the energy
spectrum of charge carriers.

As a result of complex investigation of thermoelec-
tric phenomena at various temperatures that are much
lower than the Debye temperature, it is quite possible
to solve the inverse problem of reconstruction (from
experimental data) of the FS, which is the basic char-
acteristic of the electron energy spectrum of layered
conductors, and to get information on relaxation
properties of conduction electrons.
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