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Magnetic field driven topological transitions in the noncentrosymmetric energy spectrum
of the two-dimensional electron gas with Rashba-Dresselhaus spin-orbit interaction
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Two-dimensional (2D) electron systems with a combined Rashba and Dresselhaus spin-orbit interaction (SOI)
having a complicated energy spectrum with a conical point and four critical points are promising candidates to
observe electron topological transitions. In the present paper we have investigated the evolution of the electron
spectrum and isoenergetic contours under the influence of a parallel magnetic field. General formulas for the
energies of critical points for arbitrary values of SOI constants and magnetic field are found. The existence of
critical magnetic fields at which a number of critical points is changed has been predicted. The magnetic field
driving topological Lifshitz transitions in the geometry of isoenergetic contours has been studied. Van Hove’s
singularities in the electron density of states are calculated. The obtained results can be used for theoretical
investigations of the different electron characteristics of such 2D systems.
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I. INTRODUCTION

In a fundamental paper [1], Lifshitz predicted “electron
transitions,” abrupt changes of the Fermi surface topology
under the continuous variation of some parameters, such as
pressure, chemical potential, etc. These transitions result in
anomalies in the different kinetic and thermodynamic char-
acteristics of metals that have stipulated special attention to
their detailed investigations (see Refs. [2–4] for a review). In
recent years the interest in Lifshitz transitions has become
renewed in view of intensive studies of new electron sys-
tems, such as graphene, topological insulators, semimetals,
superconductors, Dirac semimetals, and Weyl semimetals,
in which different types of electron topological transitions
take place [5]. Low-dimensional systems with a spin-orbit
interaction (SOI) [6,7] are possible candidates to observe
topological transitions in the energy spectrum as well. Mani-
festations of topological transitions in a magnetic susceptibil-
ity of three-dimensional (3D) semiconductors with SOI had
been predicted by Boiko and Rashba [8]. Recently, enhanced
orbital paramagnetism related to the topological transition was
observed in a layered semiconductor BiTeI when the Fermi
energy EF is near the crossing point of the Rashba spin-split
conduction bands [9].

Among a variety of spin-orbit materials, two-dimensional
(2D) systems made of zinc-blende III-V, wurtzite, SiGe
semiconductors, semiconductor quantum wells, etc., occupy
a special place possessing a combined Rashba-Dresselhaus
(RD) SOI [10–13] (see Ref. [14] for a review). The inter-
play between two types of SOI results in anisotropic spin-
split Fermi contours which lead to an anisotropic magne-
toresistance [15,16], an enhancement of electron propagation
along a narrow range of real-space angles from an isotropic
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source [17], anisotropic Friedel oscillations [18,19], and
so on.

In the presence of SOI a parallel magnetic field B results
not only in the appearance of a Zeeman energy but is also
affects the dispersion law of charge carriers [20], changing
the geometry and breaking the central symmetry of 2D Fermi
contours [21]. A possible way to manage the anisotropy
of the transport characteristics seems to be promising for
practical applications. The energy spectrum of 2D electrons
with RD SOI in the in-plane magnetic field B can be easily
obtained, but to date the information on the evolution of the
energy branches with the changes of direction and an absolute
value of vector B is incomplete and disconnected [22–24].
In a recent paper [25] an electronic transport in 2D electron
gas subjected to an in-plane magnetic field for the case of
Rashba SOI had been studied theoretically. Singularities of a
conductivity and a spin polarization as functions of the Fermi
level or magnetic field, which occurs when the Fermi level
passes through the Van Hove singularity [26], were analyzed.
It was predicted that the transport anisotropy dramatically
changes near the singularity. Such anisotropy was reported in
an experiment [27].

In this paper we present a consistent consideration of
changes in the energy spectrum of 2D electrons with RD SOI
under the variations of the parallel magnetic field. Special
attention will be paid to magnetic field induced 2D electron
topological transitions. The structure of the paper is as fol-
lows. Section II contains some known information which is
the basis of subsequent investigations. We present the Hamil-
tonian of the system, and its eigenvalues and eigenfunctions.
The energy spectrum in the absence of the magnetic field
is discussed from the point of view of the possibilities of
topological transitions. In Sec. III, the evolution of the energy
spectrum for an arbitrary value and direction of vector B is
studied. We predict the existence of critical fields Bc1 and Bc2
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at which the number of critical points (minima and saddle
points) of the energy surfaces is changed. So, a possibility
appears to create artificial degenerate critical points of the
energy spectrum. Limiting cases of weak and strong magnetic
fields are considered. In Sec. IV, as examples, we present
explicit analytical results for the energies of the critical points,
their position in k space, and critical values Bc1 and Bc2 for the
magnetic field directed along the symmetry axes. Variations
of the topology of isoenergetic contours, which are a 2D
analog of the Fermi surface, under variations of the magnetic
field are analyzed in Sec. V. In Sec. VI, the singular part
of the electron density of states is discussed. The obtained
formulas allow us to determine SOI constants from Van Hove
singularities [26]. We conclude the paper with some final
remarks and a summary of main results in Sec. VII.

II. HAMILTONIAN OF THE SYSTEM: ENERGY
SPECTRUM AT ZERO MAGNETIC FIELD

Our calculations are based on the widely used model
of the 2D single-electron Hamiltonian taking into ac-
count the linear terms of RD SOI (see, for example,
Refs. [15,17,18,22,23,28–31]),

Ĥ0 = P̂2

2m
σ0 + α

m
(σxP̂y − σyP̂x )

+ β

h̄
(σxP̂x − σyP̂y) − g∗

2
μBBσ. (1)

Here, P̂ = p̂ + eA/c is the operator of the generalized mo-
mentum, p̂ = h̄̂k = −ih̄∇ = (̂px, p̂y) is the operator of the
in-plane momentum, A is the vector potential of the in-plane
magnetic field B = (Bx, By, 0), m is an effective electron
mass, σx,y,z are Pauli matrices, σ =(σx, σy, σz ) is the Pauli
vector, σ̂0 is a 2 × 2 unit matrix, α and β are Rashba (α) [32]
and Dresselhaus [33] (β) constants of SOI, μB is the Bohr
magneton, and g∗ is an effective g-factor of the 2D system.
For definiteness we assume α, β to be non-negative values and
α � β.

In the framework of the 2D model the Hamiltonian (1) does
not depend on a component Pz = pz + eAz/c of the general-
ized momentum and in the Coulomb gauge, A = (0, 0, Bxy −
Byx), ∇ · A = 0, can be rewritten as

Ĥ0 = h̄2
(
k̂2

x + k̂2
y

)
2m

σ0 + α(σxk̂y − σyk̂x )

+β(σxk̂x − σyk̂y) − g∗

2
μB(Bxσx + Byσy), (2)

where k̂ is the wave-vector operator. Neglecting by cubic
terms in the Dresselhaus part of Eqs. (1) and (2), we assume
a narrow quantum well and small 2D wave vectors k of
electrons in a conduction band, k � π/w, where w is the well
width.

The eigenvalues and the eigenfunctions of the Hamilto-
nian (2) are (see, for example, Ref. [22])

ε1,2(k) = h̄2k2

2m
±

√
(hx + αky + βkx )2 + (hy − αkx − βky)2,

(3)

hx,y = −g∗

2
μBBx,y,

ψ1,2(r) = 1

2π
√

2
ek·r

(
1

±eiθ

)
. (4)

The angle θ defines an average spin direction for two
branches of the energy spectrum (3), θ = θ2 = θ1 + π ,

tan θ = hy − αkx − βky

hx + αky + βkx
, (5)

which depends on the wave vector and the magnetic field.
In the absence of magnetic field hx = hy = 0 the energy

spectrum (3) is centrosymmetric ε1,2(k) = ε1,2(−k), and has
two symmetry axes kx = ky and kx = −ky. At α �= β the
energy branches ε = ε1(k) and ε = ε2(k) (energies as the
function of the wave vector are three-dimensional surfaces in
ε, kx, ky space) touch each other at the single point k = 0,
which is a conical (Dirac) point. In this point the energy of the
ε1 branch has the smallest value ε1(0) = 0. The energy branch
ε = ε1(k) � 0 as a function of the wave-vector components
kx, ky is a convex surface for any values of the parameters. The
energy surface corresponding to the second branch ε = ε2(k)
has two degenerate minima εmin 1,2

2 = − m
2h̄2 (α + β )2 in the

points kmin 1,2
x = kmin 1,2

y = ∓ m√
2h̄2 (α + β ), two saddle points

ksad1,2
x = −ksad1,2

y = ± m√
2h̄2 (α − β ) corresponding to the en-

ergy εsad1,2
2 = − m

2h̄2 (α − β )2, and a conical point ε2(0) = 0 at
k = 0.

The isoenergetic contours of constant energy ε1,2(k) = E
(2D contours of a constant energy ε = E in the kx, ky plane)
are a 2D analog of 3D Fermi surface pockets. At positive
energies E > 0 the spectrum has two spin-split contours [see
Fig. 1(b)]. The larger contour [1(ε2), 2(ε2) in Fig. 1(b)] be-
longs to the branch ε = ε2. The smaller contour [1(ε1), 2(ε1)
in Fig. 1(b)] of the branch ε = ε1 is always situated inside
the larger one. For ε2(k) = E < 0 the isoenergetic contour
becomes not simply connected: In the range εsad1,2

2 < E < 0
the contour of the smaller radius is situated inside the larger
isoenergetic contour [contour 4 in the inset in Fig. 1(a)]. The
electron velocity on this contour is directed along an inner
normal, i.e., this contour can be interpreted as a “hole” one.
At E = εsad1,2

2 the contours become self-crossed. In the range
εmin 1,2

2 < E < εsad1,2
2 this contour splits into two parts which

do not span the point k = 0. The contours of the branch
ε = ε2(k) are nonconvex in the energy interval [19]

εsad1,2
2 � E < −m(α + β )2(α2 − 6αβ + β2)

2h̄2(α − β )2
. (6)

In the special case, α = β, two energy spectrum branches con-
tact along the parabola ε1 = ε2 = h̄2k2

2m in the plane crossing
the symmetry axis kx = −ky.

Plotting different dependencies in this paper, we use for
numerical computations the dimensionless values

ᾱ = mα

h̄2k0
, β̄ = mβ

h̄2k0
, h̄ = h

ε0
,

k̄ = k

k0
, ε̄ = ε

ε0
, k0 =

√
2mε0/h̄, (7)
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FIG. 1. Isoenergetic contours for different energies E at h = 0, ε̄min 1,2
2 = −0.72, ε̄sad1,2

2 = −0.02, ᾱ = 0.6, β̄ = 0.4. (a) The contours
belong to the branch ε = ε2 at E � 0: E = 0, black solid contour (1); Ē = ε̄sad1,2

2 = −0.02, red self-crossed contour (2); Ē = −0.1, dashed
contour (3). In the inset: Ē = −0.01, blue short-dashed contour (4). (b) The contours ε1,2 = E at E > 0; Ē = 1, dashed contours (1); Ē = 0.2,
black solid contours (2); E = 0, red solid contour (3).

where ε0 > 0 is a constant of energy dimension, for example,
an absolute value of Fermi energy.

Figure 1 demonstrates the full set of Lifshitz transitions un-
der changes of the energy: the appearance (or disappearance)
of the new detached region at E = 0 [Fig. 1(b)], disruption
(or formation) of the contour “neck” [Fig. 1(a)], and the
appearance of the critical self-crossing contour at εsad1,2

2 = E
[contour 2 in Fig. 1(a)].

The concentration of 2D electron gas created in the het-
erostructures, and hence the Fermi energy, can be controlled
by means of a gate electrode. Why is a magnetic field
needed? In the system with a spin-orbit interaction an electric
field perpendicular to the plane of 2D electrons not only
shifts the Fermi level but also changes the Rashba SOI con-
stant [34–36]. That may make the interpretation of exper-
imental results ambiguous. A parallel magnetic field plays
the role of an independent parameter which can tune the
critical points of the energy spectrum to the Fermi energy. In
the next sections we consider the possibility of driving the
characteristics of the energy spectrum of 2D electron gas with
RD SOI by means of an in-plane magnetic field.

III. ARBITRARY MAGNETIC FIELD DIRECTION:
GENERAL RELATIONS

In a parallel magnetic field and α �= β the point of the
energy branch contact moves from the point k = 0 to the point
k = k0 whose coordinates must be found from the condition√

(hx + αky0 + βkx0)2 + (hy − αkx0 − βky0)2 = 0. (8)

It is easy to see that Eq. (8) is equivalent to a system of linear
inhomogeneous equations

αky0 + βkx0 = −hx, αkx0 + βky0 = hy, (9)

and we have

kx0 = h
α sin ϕh + β cos ϕh

α2 − β2
,

ky0 = −h
α cos ϕh + β sin ϕh

α2 − β2
, (10)

where angle ϕh defines the magnetic field direction h =
h(cos ϕh, sin ϕh, 0). The energy value corresponding to the
point k = k0 = (kx0, ky0) (10) is given by

ε1(k0)=ε2(k0)=E0 =h2h̄2 α2 + β2 + 2αβ sin 2ϕh

2m(α2 − β2)2 . (11)

If the SOI constants are equal, α = β, Eqs. (9) have nonzero
solutions only if hx = −hy. In this case the branches contact
along the parabola

εcont(ky1, h) = h̄2k2
y1

2m
+ h̄2h2

8mα2
,

kx1 = kx + ky√
2

= h

2α
, (12)

ky1 = kx − ky√
2

.

For any other directions of the vector h the branches do not
have common points for α = β.

For a further analysis of the energy spectrum at α �= β it
is useful to introduce polar coordinates k̃ > 0, and f with the
center in the point k0 (10),

kx = kx0 + k̃ cos f , ky = ky0 + k̃ sin f . (13)

Note that new coordinates only shift the energy spectrum in
k space and they do not change the differential characteristics
of ε = ε1,2(k) surfaces.
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In coordinates k̃, f (13) the energies ε1,2 take the simple
form

ε1,2(k̃, f̃ ) = h̄2k̃2

2m
− h̄2k̃

m
λ1,2( f ) + E0, (14)

where

λ(1,2)( f ) = h
α sin( f − ϕh) − β cos( f + ϕh)

α2 − β2

∓ m

h̄2

√
α2 + β2 + 2αβ sin(2 f ), (15)

λ(2)( f ) = −λ(1)( f + π ). (16)

Substituting Eqs. (13) into formula (5), one finds that spin
directions are antisymmetric, θ ( f + π ) = θ ( f ) + π , with re-
spect to the point k0 = (kx0, ky0).

The sign of the Gaussian curvature K (1,2)(k̃, f ) of energy
surfaces ε = ε1,2(k̃, f̃ ) is defined by the sign of the determi-
nant det (H ) of the Hessian matrix,

H =

⎛⎜⎜⎜⎝
∂2ε1,2

∂k2
x

∂2ε1,2

∂kx∂ky

∂2ε1,2

∂ky∂kx

∂2ε1,2

∂k2
y

⎞⎟⎟⎟⎠. (17)

In coordinates (13) one finds

det(H ) = h̄4

m2k̃
[k̃ − λ̈(1,2)( f ) − λ(1,2)( f )]. (18)

Here and in all formulas below the points above the functions
denote the derivative with respect to the angle f . From
Eq. (15) one can see that the sum of λ(1,2) and its second
derivatives λ̈(1,2) do not depend on magnetic field and have
the definite sign

λ̈(1,2)( f ) + λ(1,2)( f ) = ∓ m

h̄2

(α2 − β2)2

[α2 + 2αβ sin(2 f ) + β2]3/2 .

(19)

From Eqs. (18) and (19) it follows that K (1)(k̃, f ) > 0 for any
values of the parameters, i.e., the surface ε = ε1(k̃, f̃ ) is the
convex one.

Critical points (k̃ν, fν ) of the energy spectrum should be
found from the system of equations

∂ε1,2

∂ k̃
= h̄2

m
[k̃ − λ(1,2)( f )] = 0, k̃ � 0, (20)

∂ε1,2

∂ f
= − h̄2

m
k̃λ̇(1,2)( f ) = 0, (21)

from which we give

k̃(1,2)
ν = λ(1,2)

(
f (1,2)
ν

)
, (22a)

λ̇(1,2)
(

f (1,2)
ν

) = 0, (22b)

where index ν numerates the roots of Eq. (21). According
to the definition, the variable k̃ is an absolute value of the
electron wave vector in coordinates (13). Only the solutions
for which k̃(1,2)

ν = λ(1,2)( f (1,2)
ν ) > 0 have a physical meaning.

The obvious equality (16) gives the relations between
solutions (22),

f (1)
ν = f (2)

ν + π, k̃
(

f (1)
ν

) = −k̃
(

f (2)
ν

)
,

λ̈(1)( f (1)
ν

) = −λ̈(2)( f (2)
ν

)
. (23)

The determinant det (H ) (18) in the critical points reads

det[H (k̃ν, fν )] = − h̄4

m2k̃
λ̈(1,2)( f )

∣∣∣∣
k̃=k̃ν , f = f (1,2)

ν

, k̃ > 0.

(24)

If λ̈(1,2) �= 0, the critical point is nondegenerate.
From Eq. (24) we conclude that the negative second
derivative λ̈(1,2)( f (1,2)

ν ) < 0 corresponds to energy minima
ε1,2(k̃ν, f (1,2)

ν ) = εmin
1,2 and for saddle points of the nonconvex

surface ε2(k̃ν, f (1,2)
ν ) = εsad

2 the second derivative is positive,
λ̈(2)( f (1,2)

ν ) > 0. As it easy to see from Eqs. (14) and (22), the
energies in the critical points are written as

εcrit
1,2 = ε1,2

(
k̃ν, f (1,2)

ν

) = E0 − h̄2

2m

[
λ(1,2)( f (1,2)

ν

)]2
, (25)

i.e., all the critical points are situated below the energy level
E = E0. So, the evolution of either energy branch of 2D elec-
trons with RD SOI under the influence of a parallel magnetic
field is completely described by means of the single function
λ(1,2)( f ) (15).

For an arbitrary magnetic field Eq. (22b) can be trans-
formed to a quartic equation for cos (2 f (1,2)

ν ), the exact so-
lutions of which are well known. Unfortunately they are so
lengthy that they are not suitable for any analytical calcula-
tion. Nevertheless, for numerical computations the solution of
Eq. (22b) presents no problems.

The limiting cases of weak and strong magnetic fields can
be analyzed by means of the expansions of the exact eigenen-
ergies (3). For the weak magnetic field the power expansion
of energy ε2 (3) on h gives energies of the critical points
and their positions. As a result of the direct calculations, one
obtains the following expressions for two minima,

εmin 1,2
2 � − m

2h̄2 (α + β )2 ∓ h sin

(
ϕh − π

4

)
,

h � m

h̄2 (α + β )2, (26)

kmin 1,2
x = kmin 1,2

y � ∓ m

h̄2

α + β√
2

− (α − β )h sin
(
ϕh + π

4

)
√

2(α + β )2
,

(27)

and two saddle points,

εsad1,2
2 � − m

2h̄2 (α − β )2 ± h sin

(
ϕh + π

4

)
,

h � m

h̄2 (α − β )2, (28)

ksad1,2
x = −ksad1,2

y � ±α − β√
2

m

h̄2 − h(α + β ) sin
(
ϕh − π

4

)
√

2(α − β )2
.

(29)
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The branch ε1 in this case does not have an extremum. The
energy ε1 reaches the least value ε1(k0) = E0 (11) in the point
of the branch contact k0 = (kx0, ky0) (10).

In the strong magnetic field h � m
h̄2 (α2 + β2

− 2αβ sin 2ϕh) the power series of ε1,2 (3) on 1/h gives
the energy minima εmin

1,2 of both branches,

εmin
1,2 � ±h − m

2h̄2 (α2 + β2 − 2αβ sin 2ϕh), (30)

kmin
x1,2 � ± m

h̄2 (α sin ϕh − β cos ϕh),

kmin
y1,2 � ± m

h̄2 (β sin ϕh − α cos ϕh). (31)

So, with increasing magnetic field, the energy spectrum
evolves from the energy branch ε2 having four critical points
and the branch ε1 without critical points to the spectrum
whose every branch has a single critical (minimum) point.
How does such an evolution occur? For an arbitrary magnetic
field direction some general conclusions can be made on
the basis of the properties of functions λ(1,2)( f ) (15) and its
derivatives λ̇(1,2)( f ), λ̈(1,2)( f ).

As it has been concluded above, the branch ε = ε1 is
convex and does not have saddle points. It is clear from
Eq. (15) at a weak magnetic field (h → 0) λ(1)( f ) < 0 for any
angle f , i.e., for the energy branch ε = ε1(k) Eq. (20) does
not have positive solutions k̃ > 0. The critical value h = hc2

can be derived by means of the equation λ(1)(h = hc2; f ) = 0
from which we find

hc2 = m

h̄2

(α2 − β2)2√
α4 + 6α2β2 + β4 + 4αβ(α2 + β2) sin 2ϕh

. (32)

Substituting λ(1)( f ) (15) in Eq. (25) and taking into account
the positiveness of the function λ(1)( f (1)

ν ) > 0 at h > hc2, it
is easy to show that 0 � εmin

1 � E0 for any values of the
parameters. As it follows from Eq. (23), the appearance of
minima of the branch ε1 is accompanied by the disappearance
of the saddle point of the branch ε2.

The energy surface ε = ε2 has regions of negative
Gaussian curvature. The derivative λ̇(2)( f ) is the sum of the
oscillatory functions with periods 2π and π . Depending on
the magnetic field value it has two zeros at h > hc1 and
four zeros at h < hc1 in the range [−π, π ]. The numbers of
zeros λ̇(2)( f ) having a different sign of the second derivative
λ̈(2)( f ) are equal. The critical value hc1 can be found from the
condition of the coalescence of two zeros of λ̇(2)(h, f ) with
different signs of the second derivative λ̈(2)(h; f ) which at this
point vanishes, i.e., one should search two unknown quantities
hc1, fc from the two equations

λ̇(2)(hc1, fc) = 0, λ̈(2)(hc1, fc) = 0. (33)

We could not find the analytical solution of this system for an
arbitrary magnetic field orientation. The critical fields hc1 in
an explicit form for special directions of vector h are found in
the next section. Note that the sign of the difference hc2 − hc1

is not fixed for a given α, β and depends on the magnetic field
direction.

The evolution of the branch ε = ε2(k) can be understood
from Fig. 2. In the magnetic field h < min (hc1, hc2), k̃(2)

ν =
λ(2)( f (2)

ν ) > 0, and there are four critical points λ̇(2)( f (2)
ν ) =

0—two minima εmin 1,2
2 [λ̈(1,2)( fν ) < 0] and two saddle points

εsad1,2
2 [λ̈(1,2)( fν ) > 0] [Fig. 2(a)]. At h = hc2 one of the saddle

points coincides with the point of branch contact, k̃(2)
ν =

λ(2)( f (2)
ν ) = 0, and “disappears” [Fig. 2(b)]. In the magnetic

field h = hc1 the minimum and saddle points of the energy
surface ε = ε2 “annihilate” [Fig. 2(c)] and in larger fields
h > max (hc1, hc2) the branch ε = ε2(k) has one absolute
minimum [Fig. 2(d)].

Below, we consider some cases when the exact formulas
become elementary and give clear illustrations of the general
conclusion of this section.

IV. MAGNETIC FIELD ALONG THE SYMMETRY AXIS

For the direction of the magnetic field along one of the
symmetry axes the energy spectrum preserves the symmetry
with respect to the other axis. This circumstance essentially
simplifies the solution of the equations obtained above.

A. Magnetic field directed along the kx = −ky axis

Let us consider the magnetic field direction ϕh = 3π/4. In
this case, Eq. (21), from which the angles fν (ν = 1, 2, 3, 4)
corresponding to zeros of derivative λ1,2, can be found.
Equation (22b) has four solutions in the interval [−π, π ].
Two solutions do not depend on the magnetic field and SOI
constants,

f (1,2)
1 = −3π

4
, f (1,2)

2 = π

4
, (34)

and two solutions exist in the finite interval of value h ∈
[0, hc1],

f (1,2)
3 (h) = −π

4
∓ arcsin(η),

f (1,2)
4 (h) = 3π

4
± arcsin(η), (35)

where

η(α, β, h) = h(α − β )

2
√

αβ(hc1hc2 − h2)
,

η � 1 ⇔ h � hc1. (36)

The functions λ(2)( f (1,2)
ν ) and λ̈(2)( f (1,2)

ν ) which define the
energy of the critical points and their character are presented
in the Appendix. The critical magnetic fields in the case under
consideration are

hc1 = 4m

h̄2 αβ, hc2 = m

h̄2 (α + β )2. (37)

In accordance with Eqs. (25) and (A1) for any value of
magnetic field the energy of the branch ε = ε2 has a minimum
εmin 1

2 ,

εmin 1
2 (h) = εcrit1(h), f (2)

1 = −3π

4
,

k̃(2)
1 (h) = m

h̄2 (α + β ) + h

α + β
. (38)
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FIG. 2. The dependencies of the function λ2( f ) (15) (short dashed lines), its first λ̇2( f ) (solid lines) and second λ̈2( f ) (long dashed lines)
derivatives on the angle f ∈ [−π, π ] for different values of magnetic field h: (a) h̄ = 0.05 < h̄c2 = 0.1655; (b) h = hc2; (c) h̄ = h̄c1 = 0.7867;
(d) h̄ = 1 > h̄c1. Vertical dashed lines show angles f = f (2)

ν corresponding to λ̇2( f (2)
ν ) = 0. For SOI constants and magnetic field direction we

used the values ᾱ = 0.8, β̄ = 0.4, ϕh = π/3.

With an increase in magnetic field the minimum εmin 1
2 moves

down. The second minimum of this branch εmin 2
2 ,

εmin 2
2 (h) = εcrit2(h), f (2)

2 = π

4
,

k̃(2)
2 (h) = m

h̄2 (α + β ) − h

α + β
, (39)

exists in the field interval 0 � h < hc1. In this interval the
branch ε2 has two saddle points with equal energies,

εsad3,4
2 (h) = εcrit3,4(h), f = f (2)

3,4 ,

k̃(2)
3,4(h) = m

h2
(α − β )

√
1 − h2

hc1hc2
. (40)

In the field h → hc1 the minimum εmin 2
2 transforms to

the saddle point εmin 2
2 → εsad

2 = εcrit2 [the second derivative
λ̈(2) (A4) changes sign at h = hc1] which blends with two
saddle points εsad3,4

2 (40), i.e., the critical point becomes
degenerate,

εmin 2(hc1) = εsad
2 (hc1) = εsad3,4

2 (hc1)

= − m

2h̄2 (α2 − 6αβ + β2),

k̃(2)
2 (hc1) = k̃(2)

3,4(hc1) = m(α − β )2

h̄2(α + β )
,

f (2)
2 (hc1) = f (2)

3,4 (hc1) = π

4
. (41)

In larger fields hc1 < h < hc2 the saddle point εsad
2 exists. At

h → hc2 its energy εsad
2 → E0 and this saddle point disappears

in the field h = hc2 [λ(2) (A1) becomes negative at h > hc2],

εcrit2(hc2) = εsad
2 (hc2) = E0(hc2)

= m

2h̄2 (α + β )2,

k̃(2)
2 (hc2) = 0, f (2)

2 = π

4
. (42)

In the magnetic fields h > hc2 the function λ(1)(π/4) (A1)
becomes positive and the first energy branch ε1 acquires the
critical point (minimum) εmin

1 = εcrit2,

εmin
1 (h) = εcrit2, f (1)

2 = π

4
,

k̃(1)
2 = − m

h̄2 (α + β ) + h

α + β
. (43)
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FIG. 3. Energy spectrum (3) for the magnetic field directed (a), (b) along the kx = −ky axis, ϕh = 3π/4, and (c), (d) along the kx = ky axis.
(a), (c) h̄ = 0.5 < h̄c1 = 1.28, h̄c2 = 1.44; (b), (d) h̄ = 1.5 > h̄c1, h̄c2. For SOI constants we used the values ᾱ = 0.8, β̄ = 0.4.

The minimum εmin
1 moves up with an increase in the magnetic

field. The discussed evolution of the energy spectrum is
illustrated in Fig. 3.

B. Magnetic field directed along the kx = ky axis

In this case the solutions of Eq. (22b) take the form (we
choose ϕh = π/4)

f (1,2)
1 = 3π

4
, f (1,2)

2 = −π

4
,

f (1,2)
3 (h) = π

4
∓ arcsin(η), (44)

f (1,2)
4 (h) = 5π

4
± arcsin(η),

where

η(α, β, h) = h(α + β )

2
√

αβ(hc1hc2 + h2)
,

η � 1 ⇔ h � hc1. (45)

The critical magnetic fields are

hc1 = 4m

h̄2 αβ, hc2 = m

h̄2 (α − β )2. (46)

As it follows from formulas (A9)–(A14) in the Appendix,
at h < hc2 the branch ε = ε2 has two minima εmin 1,2

2 with
equal energies,

εmin 1,2
2 (h) = − m

2h̄2 (α + β )2 − h2h̄2

8mαβ
, h � hc1,

k(2)
3,4 = m

h̄2 (α + β )

√
1 + h2

hc1hc2
, f = f (2)

3,4 , (47)

and two saddle points εsad1,2
2 [see Fig. 3(a)],

εsad1,2
2 (h) = − m

2h̄2 (α − β )2 ∓ h,

k̃(2)
1,2

(
f (2)
1,2

) = m

h̄2 (α − β ) ∓ h

α − β
, (48)

f (2)
1 = −π

4
, f (2)

2 = 3π

4
.

In the magnetic field h = hc1 both minima εmin 1,2
2 and the

saddle point εsad1
2 transform into one degenerate critical point,

εmin 1,2
2 (hc1) = εsad2

2 (hc1) = − m

2h̄2 (α2 + 6αβ + β2), (49)

f (4)
3 (hc1) = f (2)

4 (hc1) = f (2)
2 = 3π

4
, (50)

k̃(2)
2 (hc1) = k̃(2)

3,4(hc1) = m

h̄2

(α + β )2

α − β
,

λ̈(2)

(
hc1,

3π

4

)
= λ̈(2)

(
hc1, f (2)

3,4

) = 0, (51)

and for larger fields h > hc1 one minimum,

εmin
2 (h) = − m

2h̄2 (α − β )2 − h,

k̃(2)
1

(
f (2)
1

) = m

h̄2 (α − β ) − h

α − β
, f (2)

1 = −π

4
, (52)

and one saddle point remains,

εsad
2 (h) = − m

2h̄2 (α − β )2 + h,

k̃(2)
2

(
f (2)
2

) = m

h̄2 (α − β ) + h

α − β
, f (2)

2 = 3π

4
, (53)

which exists until h < hc2.
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The first branch ε = ε1 reaches the smallest value,

E0 = h2h̄2

2m(α − β )2 , (54)

at the weak magnetic field h < hc2. If h > hc2, this branch has
the minimum [see Fig. 3(b)]

εmin
1 (h) = − m

2h̄2 (α − β )2 + h, (55)

k̃(1)
1 = − m

h̄2 (α − β ) + h

α − β
, f (1)

1 = 3π

4
. (56)

The results of this section and Fig. 3 illustrate a quite different
evolution of the energy spectrum for the same values of SOI
constants but different magnetic field directions.

V. ISOENERGETIC CONTOURS

The dispersion relation of 2D electron gas can be charac-
terized by isoenergetic contours ε1,2 = E = const. According
to the theory of electron topological transitions [2,3], when
the energy level E crosses the energy of the critical point εcrit

1,2 ,
the isoenergetic contours change their topology. By analogy
with the 3D case we name the 2D contours at E = εcrit

1,2 as
critical contours. The critical contours always have the point
(k̃ν, fν ) (22b) in which the electron velocity v = ∂ε1,2

h̄∂k = 0,

|v| =
√(

∂ε1,2

h̄∂kx

)2

+
(

∂ε1,2

h̄∂ky

)2

= h̄

m

√
[[k̃ − λ(1,2)( f )]

2 + [λ̇(1,2)( f )]
2
]. (57)

In this regard a self-crossing contour is not a critical one
because v �= 0 at the cross point. However, one should re-
member that the cross point is a particular point in a vicinity
of which the electron dispersion is linear in the wave-vector
components. For the minimum point εcrit

1,2 = εmin
1,2 the contour is

absent for energy E < εmin
1,2 , while for saddle points εcrit

2 = εsad
2

the contours exist both at E < εsad
2 and E > εsad

2 .
The positive roots of the equation [see Eq. (14)]

ε1,2(k̃, f ) = h̄2k̃2

2m
− h̄2k̃

m
λ1,2( f ) + E0 = E (58)

describe the isoenergetic contours k = k( j)
± (E , f ) correspond-

ing to physical electron states in k space for a given
energy E ,

k(1,2)
± = λ(1,2) ±

√
ξ (1,2), (59)

ξ (1,2) = (λ(1,2))
2 + 2m(E − E0)

h̄2 � 0. (60)

If E > E0, the roots k(1,2)
+ > 0 for any values of f , while roots

k(1,2)
− < 0, i.e., there are two contours belonging to different

energy branches. For E < E0 the real roots of Eq. (58) exist, if
the inequality 2m(E0 − E )/h̄2 � (λ(1,2))2 holds. Roots k(1,2)

±
take positive values for the angles f at which λ(1,2) > 0. This
means that the wave vector crosses the isoenergetic contour
twice.

In accordance with Vieta’s formulas, the roots of Eq. (58)
obey the relations

k(1,2)
+ k(1,2)

− = 2m(E0 − E )

h̄2 ,

k(1,2)
+ + k(1,2)

− = 2λ(1,2), (61)

from which an interesting observation follows: At E = E0

the extremal radii of the contours k(1,2)
+ = 2λ(1,2), for which

λ̇(1,2) = 0, give energies (25) and positions (22) of the critical
points on the total surfaces ε = ε1,2.

From the properties of the energy spectrum which have
been discussed in Sec. III, some general conclusions related
to the isoenergetic contours follow: (1) There are one or two
separate contours for a given energy E . (2) The contours
belonging to the branch ε = ε1 exist for the energies E > E0

at h < hc2 and E > εmin
1 at h > hc2. Contours k = k(1)

± ( f ) are
convex by virtue of the equality (19). (3) In magnetic fields
h > hc1 the contour on the surface ε = ε2 splits into two
separated contours for E < min (εsad1,2

2 ).
At fixed energy E the magnetic field moves the energy

of the branch contact E0 (11) and the energies of the critical
points (25), resulting in a Lifshitz electron transition of both
types—the appearance of a new contour under crossing the
energy E by minimum εmin

1,2 and disruption of the “neck” at
E = εsad

2 .
At equal SOI constants α = β and the magnetic field direc-

tion along the axis kx = −ky for energies E > h̄2h2/8mα2, the
isoenergetic contours have two common contact points. Either
contour consists of two arcs of the radius (see Fig. 7),

k(±) =
√

2m

h̄2

(
E + 2mα2

h̄2 ∓ h

)
. (62)

The spin directions on each arc composing a united contour
are opposite, θ+ = 3π/4 or θ− = −π/4, and the arcs, which
have the same spin direction θ±, form the total circumference.

Figures 4 and 5 illustrate some of the explicit results
obtained in Sec. IV A for the magnetic field directed along the
axis kx = −ky. Figure 4(a) shows the changes in the fine struc-
ture of the isoenergetic contours of the branch ε = ε2 for the
energy close to the energy of the saddle point εsad3,4

2 (h) (40) at
magnetic fields far from the critical values h < hc1, hc2 (37).
In this case we observe a specific topological transition of
the contour splitting in the transverse to the “neck” direction.
With the increase in the magnetic field the electron and
“hole” contours (curves 1) form a unified critical contour with
two crossing points (curve 2). The critical contour breaks at
the crossing points in the transverse direction forming two
electron contours (curves 3). Figure 4(b) shows the disruption
of the neck in the case when the energy E < E0(hc1) equals
the energy of the saddle point E = εsad3,4

2 (hc1) (40) at the
critical field hc1 (37). Two separate contours (curves 1) touch
at h = hc1 and in a higher field form a single nonconvex
contour (curves 3 and 4).

Figure 5 illustrates another type of topological transition
in the magnetic field: the disappearance (or appearance) of a
new detached region. Isoenergetic contours for both branches
at the magnetic fields h � hc2 are shown. With an increase
in the magnetic field the minimum εmin

1 (h) of the branch ε =
ε1 moves up (curves 1 and 2) and at E = εmin

1 (h) crosses the
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FIG. 4. Fine structure of isoenergetic contours of the branch
ε = ε2 for different magnetic fields h̄ � h̄c1 = 0.96 < h̄c2 = 1. (a)
The energy E � E0 is equal to the energy of the saddle point Ē =
ε̄sad3,4

2 (h̄ = 0.3) = 0.026 875 (40): h̄ = 0.29, black solid line (1);
h̄ = 0.3, red short-dashed line (2); h̄ = 0.31, blue long-dashed line
(3). (b) The energy Ē < E0(hc1) = 0.4608 is equal to the energy of
the saddle point Ē = ε̄sad3,4

2 (h̄c1) = 0.4600 (40) at the critical field
h̄c1 = 0.96: h̄ = 0.9599, orange dotted-dashed line (1); h̄ = h̄c1 =
0.96, black solid line (2); h̄ = 0.960 01, red long-dashed line (3); h̄ =
0.9602, blue short-dashed line (4). For SOI constants and magnetic
field direction we used the values ᾱ = 0.8, β̄ = 0.4, ϕh = 3π/4.

energy level. At this field the contour related to the branch
ε = ε1 disappears (curve 3). In Fig. 6(b) we show a similar
topological transition at h < hc2 when E0 is the smallest value
of the branch ε = ε1. If E0 < E , the energy spectrum consists
of two electron contours (curves 1), one of which disappears
at E0 = E (curve 2). In larger fields the second contour splits
into two contours (curves 3), as it was shown in Fig. 5(a).

Figure 6 demonstrates the evolution of the isoenergetic
contour for the magnetic field directed along the axis kx = ky

� � �

�

�

�k y

� �

�

�

kx

k y

(a)

(b)

( ) ( )

( )

( )
( )

3( 2)

1( 2)

2( 2)

1( 1)
3( 2)

FIG. 5. (a) Isoenergetic contours for both branches (labeled in
brackets) at the magnetic fields h̄ � h̄c2 = 1 and Ē = 1: h̄ = h̄c2,
Ē0 = 0.5, Ē > ε̄min

1 = 0.5, red short-dashed contours (1); h̄ = 1.45,
Ē0 = 1.05, Ē > ε̄min

1 = 0.95, solid contours (2); h̄ = 1.8, Ē0 = 1.62,
Ē < ε̄min

1 = 1.3, blue long-dashed contours (3). (b) Isoenergetic con-
tours for ε̄1,2 = Ē = Ē0(h̄ = 0.5) = 0.125, h̄ < h̄c1 = 0.96, h̄c2 = 1:
h̄ = 0.3, Ē0 = 0.045 < Ē , red short-dashed contours (1); h̄ = 0.5,
Ē0 = 0.125 = Ē , solid contour (2); h̄ = 0.6, Ē0 = 0.18 > Ē , blue
long-dashed contours (3). For SOI constants and magnetic field
direction we used the values ᾱ = 0.8, β̄ = 0.4, ϕh = 3π/4.

(Sec. IV B). The disruption of the neck of the contour for
the energy close to the saddle point εsad

2 (h) (53) is shown in
Fig. 6(a): Contour 1 corresponds to εsad

2 (h) < E . The critical
(self-crossing) contour 2 is in keeping with εsad

2 (h) = E .
In higher fields the critical contour splits up into two
disconnected parts (contours 3). Figure 6(b) demonstrates the
appearance of a self-crossing contour in the magnetic field at
which E0(h) = E .
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FIG. 6. (a) Isoenergetic contours for the energy
Ē = ε̄sad

2 (h̄ = 0.3) = 0.28 (53) and h̄c2 = 0.04 < h̄ < h̄c1 = 0.96:
h̄ = 0.4, red short-dashed contour(1); h̄ = 0.3, black solid contour
(2); h̄ = 0.2, blue long-dashed contours (3). (b) Isoenergetic
contours for both branches (labeled in brackets) at the energy
Ē = Ē0(h̄ = 0.5) = 3.125: h̄ = 0.1, red short-dashed contours (1);
h̄ = 0.5, black solid contour; h̄ = 2, blue long-dashed contours (3).
For SOI constants and magnetic field direction we used the values
ᾱ = 0.8, β̄ = 0.4, ϕh = π/4.

In Fig. 7(a), we have shown the possibility for specific
changes in the topology by means of an in-plane rotation
of the magnetic field in the case of equal SOI constants:
The self-crossing contour (2) splits into two split-off contours
(1 and 3) under a deflection of the magnetic field direction
from the symmetry axis kx = −ky. Figure 7(b) shows the
splitting of the self-crossing contour by the magnetic field for
the energy close to the minimal energy of the branch contact
points εmin

cont(0, h) = h̄2h2/8mα2 (12).

�3 �2 �1 0 1 2
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k y
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(b)

FIG. 7. (a) Isoenergetic contours at α = β, h = 0.5, E = 0.5
for different magnetic field directions: ϕh = 3π/4, solid contour
(1); ϕh = π , blue dashed contours (2). (b) Isoenergetic contours at
ϕh = 3π/4 and for the energy corresponding to the minimum of the
parabola (11) εmin

cont = E = 0.0868: h = 0.3, red short-dashed contour
(1); h = 0.5, solid contour (2); h = 0.7, blue long-dashed contours
(3). For SOI constants we used the value α = β = 0.6.

VI. SINGULARITIES IN THE ELECTRON
DENSITY OF STATES

Density of state (DOS) singularities are related to the
critical points of the energy spectrum. At the weak magnetic
fields (h < hc1, hc2) the results (26) and (28) obtained for 2D
electrons with RD SOI show that the energies of both minima
and saddle points move in opposite directions on the energy
scale with an increase in the value h. So, the number of Van
Hove’s singularities is doubled by the magnetic field. Exclu-
sions are the directions of vector h along the symmetry axes
when two minima (47) (ϕh = π/4,−3π/4) or two saddle
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points (28) (ϕh = 3π/4,−π/4) “synchronously” move with a
change in the magnetic field. In these cases the DOS has three
singular points. At h > hc1 the DOS contains two singularities
which are associated with two minimum points at h > hc2 or
a minimum and saddle points at h < hc2.

By using the coordinates (13) the DOS can be found from
the relations [37]

ρ(E ) = m

π h̄2 , E � E0, (63)

ρ(E ) = m

2π2h̄2

∑
j=1,2

∮
df

λ( j)√
ξ ( j)

�(λ( j) )�(ξ ( j) ), E � E0,

(64)

where λ( j) and ξ ( j) are defined by Eqs. (15) and (60), and
�(x) is the Heaviside step function. Equation (63) shows that
the DOS is the same as for free 2D electron gas for energies
E � E0. When the opposite inequality E < E0, the DOS ρ(E )
depends on the magnetic field and constants of SOI.

One finds the electron density by integration of Eq. (64)
over energies below the Fermi level EF [37],

ne = m

π h̄2

[
EF + m

2h̄2 (α2 + β2)

]
, (65)

for EF � E0.
The Van Hove singularities of ρ(E ) are related to the

minima and saddle points on the energy surfaces (58) and
correspond to singularities in the integral (64) ξ ( j)( f ( j)

ν ) =
0. In order to separate the singular part of DOS near the
critical point E → εcrit

i , f → f (i)
ν , we use a standard way.

Equation (64) can be written as a sum of a convergent and
divergent parts,

ρ(E ) = ρ0(E ) + δρ(E ), (66)

ρ0(E ) = m

2π2h̄2

∑
j=1,2

∮
df

λ( j)( f ) − δi jλ
( j)

(
f ( j)
ν

)√
ξ ( j)( f )

×�(λ( j) )�(ξ ( j) ), (67)

δρ(E ) = m

2π2h̄2 λ(i)
(

f (i)
ν

) ∮
df√

ξ (i)( f )
�(λ(i) )�(ξ (i) ). (68)

The continuous function ξ (i)( f ) can be expanded as a Taylor
series in a vicinity of the point f = f (i)

ν ,

ξ (1,2)( f ) = (λ(1,2))
2 + 2m(E − E0)

h̄2 � 2m
(
E − εcrit

1,2

)
h̄2

+ λ(1,2)
(

f (1,2)
ν )λ̈(1,2)

(
f (1,2)
ν

)(
f − f (1,2)

ν

)2

+ 1

6
λ(1,2)

(
f (1,2)
ν

)
(1,2)

(
f (1,2)
ν

)(
f − f (1,2)

ν

)3 + · · · .

(69)

Substituting the expansion (69) into Eq. (68) we integrate us-
ing the cutoff of the integral by the � functions. At E → εcrit

i
the singular term δρ(E ) (68) does not depend on the interval
of integration. As shown in Sec. III, for the energy minima
εmin

1,2 , the second derivatives are negative, λ̈(2)( f (1,2)
ν ) < 0, and

for the saddle points εsad
2 , the second derivatives are positive,

λ̈(2)( f (1,2)
ν ) > 0. As a result, we have in a vicinity of the

minimum points

δρ(E ) = m

2π h̄2

√
λ(1,2)

|λ̈(1,2)|

∣∣∣∣∣
f = f (1,2)

ν

�
(
E − εmin

1,2

)
. (70)

For saddle point one finds

δρ(E ) = − m

2π2h̄2

√
λ(2)

λ̈(2)

× ln

[
2m

∣∣E − εsad
2

∣∣
h̄2λ(2)λ̈(2)

]
f = f (2)

ν

. (71)

At the critical magnetic field h = hc1 the first and second
derivatives of λ(2)( f ) are equal to zero, and the third term in
the expansion (69) must be taken into account. The singular
part of the DOS in the case of the degenerate critical point
reads (

...
λ

(2) �= 0)

δρ(E ) = m
√

6

2π3/2h̄2

�(7/6 )

�(2/3 )

×
√

λ(2)

|...λ (2)|

(
12m

∣∣E − εcrit
2

∣∣
h̄2λ(2)|...λ (2)|

)−1/6

f = f (2)
ν

. (72)

The results (70) and (71) agree with the classical results for
the two-dimensional case obtained in Van Hove’s paper [26].
The simple relations between the energies of the critical points
and SOI constants for directions of the magnetic field along
the symmetry axes (see Sec. IV) is the way to find α and β

from the position of DOS singularities on the magnetic field
scale.

VII. CONCLUSIONS

The evolution of the energy spectrum of 2D electron gas
with combined Rashba and Dresselhaus SOI (3) under the
influence of in-plane magnetic field B has been analyzed for
arbitrary SOI constants. It has been shown that the geometry
of the energy surfaces (14) and isoenergetic contours (58)
can be described by means of a single function (15), which
depends on the magnetic field and SOI constants. We have
found the relations which describe the dependencies of the
critical point energies (25) and their positions (22) in the
wave-vector space on the vector B. There are two critical
values of the magnetic field at which the essential transforma-
tion of the energy spectrum occurs: At the field B = B1 (33)
the minimum point and saddle point of the energy branch
ε = ε2 “annihilate” and at B = B2 (32) the conical point of
the branch ε = ε1 transforms into the critical (minimum)
point. Finally, the spectrum having four critical points (two
minima and two saddle points) and a conical point at B = 0
evolves into a spectrum with two minima at B > B1, B2. The
general conclusions are illustrated for the directions of vector
B along the symmetry axes. On the basis of an analysis of the
dependence of the spectrum’s critical points on the magnetic
field, Lifshitz topological transitions in the geometry of isoen-
ergetic contours have been studied (Figs. 4–7). Along with
critical contours related to the spectrum’s critical points, the
appearance (or disappearance) of self-crossing contours with a
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magnetic field variation is found as well. Singular additions to
the electron density of states have been derived in (70)–(72).
The positions of these singularities on the magnetic field scale
make it possible to find both the SOI constants. We have found
a (−1/6)-root singularity for the degenerate critical points at
B = Bc1 (72). The obtained results can be used for theoretical
investigations of any kinetic and thermodynamic characteris-
tics of 2D electrons with RD SOI in the in-plane magnetic
field as well as for interpretations of experimental data.

Magnetic field driven topological transitions can be ob-
served in the 2D electron gas with a low electron density n �
109–1010 cm−2 (see, for example, Ref. [38]). In heterostruc-
tures with a higher density it could be essentially reduced by
a negative gate voltage [39]. For the typical values of RD SOI
constants and an effective mass for an AlxGa1−xN/GaN het-
erostructure, α � 10−10 eV cm, α/β � 10, m=0.2m0, g∗ =2
[40,41], and n � 1010 cm−2, we estimate a Fermi energy,
EF � 0.1 meV, by using Eq. (65). In this case the Van Hove
singularities appear in a magnetic field 0 < B � 2 T. Another
possibility to observe the predicted topological transitions
is with the in-plane tunneling spectroscopy [42–44]. While
a tunneling conductance is proportional to the density of
states at a shifted energy ρ(ε = EF − eU ), where eU is a
bias energy, the electron states below the Fermi level can be
investigated.
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APPENDIX: FUNCTIONS λ(1,2) AND λ̈(1,2) IN THE
CRITICAL POINTS OF ENERGY SPECTRUM

λ̇(1,2) = 0 FOR THE MAGNETIC FIELD DIRECTED
ALONG THE SYMMETRY AXIS

1. Magnetic field directed along the kx = −ky axis

Substituting the angles (34) and (35) corresponding to the
zeros of λ̇(1,2), we find the functions λ(1,2) (15),

λ(1,2)

(
−3π

4

)
= ∓ m

h̄2 (α + β ) ∓ h

α + β
, (A1)

λ(1,2)
(π

4

)
= ∓ m

h̄2 (α + β ) ± h

α + β
, (A2)

λ(1,2)( f3,4) = ∓ m

h̄2 (α − β )

√
1 − h2

hc1hc2
, h � hc1, (A3)

and second derivatives λ̈(1,2)( f ),

λ̈(1,2)

(
−3π

4

)
= ±h + hc1

α + β
, (A4)

λ̈(1,2)
(π

4

)
= ∓h − hc1

α + β
, (A5)

λ̈(1,2)( f3,4) = ∓ hc1

α − β

[
1 −

(
h

hc1

)2
]

×
√

1 − h2

hc1hc2
, h � hc1. (A6)

Equations (25) and (A1)–(A3) give the formulas for en-
ergies which can be possible critical points εcrit ν (h) =
ε1,2( f (1,2)

ν ) (25) of the energy spectrum,

εcrit1(h) = − m

2h̄2 (α + β )2 − h,

εcrit2(h) = − m

2h̄2 (α + β )2 + h, (A7)

εcrit3,4(h) = − m

2h̄2 (α − β )2 + h2h̄2

8mαβ
. (A8)

2. Magnetic field directed along the kx = ky axis

The functions λ(1,2) in the points (44) of the first derivatives
λ̇(1,2) zeros are given by

λ(1,2)

(
3π

4

)
= ∓ m

h̄2 (α − β ) + h

α − β
, (A9)

λ(1,2)
(
−π

4

)
= ∓ m

h̄2 (α − β ) − h

α − β
, (A10)

λ(1,2)( f3,4) = ∓ m

h̄2 (α + β )

√
1 + h2

hc1hc2
, h � hc1, (A11)

and their second derivatives λ̈(1,2) read

λ̈(1,2)

(
3π

4

)
= −h − hc1

α − β
, (A12)

λ̈(1,2)
(
−π

4

)
= h + hc1

α − β
, (A13)

λ̈(1,2)( f3,4) = ± hc1

α + β

[
1 −

(
h

hc1

)2
]

×
√

1 + h2

hc1hc2
, h � hc1. (A14)

As the last step one must separate the physical solutions: Only
the positive values of λ(1,2)( f (1,2)

ν ) satisfy Eq. (20). From the
simple analysis of Eqs. (A1)–(A14) we obtain conditions of
the existence of extrema in different ranges of the magnetic
field.
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