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1. Introduction

One particle Green’s functions (GF) is widely used in quantum
mechanics and solid state physics [1,2]. Although the simple an-
alytical formulas for GFs of the free electron gas can be found in
some textbooks (see, for example, [2]), in the presence of interac-
tions and in external fields in most cases only complicated integral
representations of GF are available. Normally using the GF in the
form of a multiple integral is extremely uncomfortable both for
analytical analysis and for numerical computations. Therefore the
search of exact, simplified and asymptotic results for GFs attracts
the constant attention of theorists and mathematicians (see, for
example, [3-5]).

In last decade the spintronics development has triggered off in-
vestigations of two-dimensional (2D) electron systems with spin-
orbit interaction (SOI) (for review see [6,7]). Particularly the 2D
systems with combined Rashba and Dresselhaus (R-D) SOI pos-
sesses new perspective properties (for review see [8]). The 2D elec-
tron gas with R-D SOI can be formed nearby the heterostructure
interface between two semiconductors one of which possesses the
bulk inversion asymmetry giving rise to the Dresselhaus SOI [9].
The Rashba SOI [10] results from an asymmetry of a confinement
potential in a vicinity of the interface. The electrons occupy only
the first quantum level in the potential well and freely move in
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the interface plane. For example, R-D SOI takes place in 2D elec-
tron systems in the heterostructures made of GaAs/GaAlAs [11,12],
InAs/AlGaSb [11], AlGaN/GaN [13], GaAs/InGaAs [14], InGaAs/InP
[15]. In spite of the fact that SOI is the relativistic effect and its
influence to electron propertied should be small, the real values
of SOI constants allow to observe SOI-related phenomena [8]. So,
in Ref. [13] one can find the typical parameters for GaAs/AlGaAs
2D electron gas: o, 8~ 10 eVA, a/f ~ 1+ 7.6, and the electron
density ns ~10'" cm—2.

The GF for 2D electrons with R-D SOI without magnetic field
and its asymptotic behavior have been discussed in the papers
[16,17]. Explicit GF for each Rashba and Dresselhaus spin-orbit
Hamiltonians with uniform perpendicular magnetic field have been
derived in Ref. [3]. In our paper we obtain some exact and asymp-
totic expressions at zero temperature for the time independent GF
of 2D electron gas with combined Rashba-Dresselhaus SOI for arbi-
trary values of SOI constants and arbitrary uniform magnetic field
strength and direction parallel to the plane of the conductor. The
structure of the paper is as it follows. In Sec. 2 we discuss the
Hamiltonian of the system, its eigenvalues and eigenfunctions. The
GF in coordinate space is presented as the sum of two parts de-
scribing separated contributions of two spin-orbit split branches of
electron energy spectrum. In Sec. 3 we reduce the general expres-
sion for the GF to single integral of well-known special functions.
The obtained formula is valid at arbitrary values of parameters.
In Sec. 4 we derive asymptotic formulas for GF for large value of
coordinate variable. In Sec. 5 we find the exact GF for the spe-
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cial case of equal SOI constants and certain direction of magnetic
field. In Sec. 6 as a demonstration we apply our results for calcula-
tion of electron density of states and density of magnetization. We
conclude the paper with the final remarks and summing up main
results in Sec. 7.

2. Basic formulas

Let us consider the Hamiltonian of a two-dimensional (2D)
noninteracting electron gas with Rashba and Dresselhaus SOI in
the magnetic field B = (By, By, 0). Using the Coulomb gauge A =
(0,0, Bxy — Byx), V- A =0, we write 2D Hamiltonian of the sys-
tem as the sum of four terms

H=Ho+Hg+ Hp + Hp. (1)
N hz(k§+k§) . L
Here Ho = ——;—*0¢ is the Hamiltonian of 2D free elec-
tron gas, I:IR = a(axky — aykx) and I:ID = ,B(oxkx — ayky) are
Hamiltonians of Rashba and Dresselhaus SOI, respectively, Hp =
gz—*ug (BXUX+Byoy) is the Hamiltonian of interaction between

electron spin and magnetic field, IA(X,y = —iVyy is the wave vec-
tor operator, m is effective electron mass, oy, y , are Pauli matrices,
09 is unit matrix 2 x 2, @ and B are Rashba («) and Dresselhaus
(B) constants of SOI, wp is the Bohr magneton, g* is an effective
g-factor of the 2D system. We rewrite the total Hamiltonian (1) in
the following form

A= I:Io +Ro, (2)

where o = (0y, 0y, 07) is the Pauli vector,

Ry=hy+aKy + Ky, Ry=h, —aky—BKy,
* 3)

A g
R;=0; hyy= ?,U«BBx,y'

The eigenvalues and the eigenfunctions of the Hamiltonian (2) are
(see, for example, [18])

€12 (K) =€ £ R (kx. ky): (4)

1 1 1
Iﬂ] 2( ) - I \/— ll(l' <ei9]*2) = 2_ lkr(P (91,2) . (5)

We introduce notations

R R
sin91:?y; cosG1:FX, Oy =01+, (6)

hk?
k= (k. ky,0), €0="7 k=,/k2+Kk3, (7)
R=./R}+R;

= \/(hx +aky + Bky)® + (hy — atky — Bky).

The angles 61 > define the average spin direction for two branches
of energy spectrum (4)

$1,2 (9) = ¢T (912) O'¢ (91,2) = (COSQ]_]z, Sil‘l@]qz, 0) . (9)

The electron GF corresponding Hamiltonian (2) for complex € in
coordinate representation can be written as

00 .
A 1 dkekr
G (6, l') = / =

(€ —€g9)og —Ro
oo

2(27r)2 Z / dk

(00 + 0xcos 0 + oy sinb;)

where € € C. We used Egs. (4), (6) and the identities €1 —
€o = %R,

((€e —€0) oo —Ro) ((€ —€g)op +Ro) =

11

[(€ — €0)? = R] o0 = (€ — 1) (€ — €2) 00; i
((e —€0) 00 +Ro) _

(€ — €0) 00 — Ro) ((€ — €0) 00 + Ro) 12

1 {(61 —€9)oo+Ro

1 _ (€2 —€09) 0o + Ro
2R € —€1 '

€ — €

In the Eq. (10) GF splits up into two independent parts describing
separate contributions of every branch of energy spectrum (4).

3. Exact results for Green’s function

For o # B we introduce new variables of integration k, f as
follows

ke =k +kcos f, ky =k, +ksin f, (13)
ahy + Bh ah + Bh
kxo=§f§2"; kyo = — 2 ’Zzy, (12)

where Ko = (kxo, kyo) is the point of branch touch (see, for exam-
ple Ref. [19]). In coordinates (13) spin angles (6) depend only on
the wave vector direction, the angle f, and SOI constants

. acos f + Bsin f
sinb12(f) =+ =

Va2 + 2+ 2aBsin2f (15)
cost12 (f) = asin f + Bcos f

Vo + B2+ 2aBsin2f

It can be shown that spin direction is symmetric with respect to
the center 61 2(f + m) =612(f) + 7, indicating a convenience of
Eq. (13). The values kyo, kyo have been found out of the system
of equations Ry (kxo, kyo) =0, Ry (kxo,kyo) = 0. In a shifted polar
coordinates k, f (13) the energies €7 take the form

- .\ W%k n%k
€1.2 (k, f>=ﬁ—#l1.z(f)+50- (16)
Here
A2 (f)y = —k,ycos f — kyosin f

. _ (17)
- _2\/0,2 + B2 4 2aBsin(2f);
2 2
_peh (@® + B%) +4aphihy (18)

2m(a? — p2)>

The Eq. (16) make it possible to write the poles €1 » (k(il‘z), f) =€
of the Green function (10) in a simple form

KD =202 1 Jea2), (19)
R (N,z))z N @ (20)

By using the roots (19) in coordinates (13) one can write a simple
expansion of the functions (e — 61,2)_]

1 2m k{2 1
E_Elyz__hzkzk(l 2) (1 2 j_ 1(1,2)'

(21)

By means of identity (21) the GF (10) is written as the double sum
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G(e,r)=— —— exp [i(kxo cos ¢r + kyo sin gor)r] X

%df + oxcos6;j + oy sinb;)
1.2

j= (22)

o0

PAe)) P - .
Z .k:I: ‘ / dk i eikrcos(f—(p)
R

At r # 0 the integral over k in Eq. (22) can be expressed by means
of trigonometric integral functions (see, for example [20]),

eeC.

o0

dk
F (kO’ r) / k lkr
o Kho (23)
ikor . fCs in
e'"o [—Cl (—ko|r|) +iSi (kor) + ngnr] , TER,
where Si(z) and Ci(z) are sine and cosine integrals,
x o
. cosz . sinz w
Cig=-[ —; Si@=—[| —/—+=;
g V4 4 z 2 (24)

lim Ci(x+i8)=Ci(|x]) £in® (—x),
§—~>+40
where z € C; |argz| < m; x € R. The Eq. (23) is valid for any kg € C
excepting semiaxis Imkg =0, 0 < Rekg < oo, for which usually one
introduces the retarded and advanced Green functions GR4) (E, r)
as the limit

GR(A)(E,r):(SlimOG(Ej:iS,r), EeR. (25)
—+

Using Eqgs. (21), (23) one can rewrite the Green function (10) as

G(e,r) = _—ﬁ)2 exp [i(kxo cos @y + kyo singy)r] x
T
d l—i—a cosfj + oy sinf
]X]:Zf f X J y J) (26)

kY )
ZW (k rcos(f—gor)), €eC,
+ KE

where angle ¢, defines a direction of coordinate r = r(cos¢r,
singr, 0). The formula (26) turns to the result of the Ref. [16] for
the zero magnetic field. The obtained GF (26) is suitable for nu-
merical calculation under arbitrary values of all parameters. It also
gives analytical formulas in the quasiclassical case r — co.

For equal SOI constants, @ = 8, one cannot use coordinates (13)
and we introduce usual polar coordinates
kx =k cos gi;

ky = ksingy. (27)

After transformations similar to those performed above we find

G(e,1) = 2h42fd(pk|:<

knF (kn, rcos(gx — ¢r))
0Q /0|y,

where k;,, are the roots of quartic polynomial equation without cu-
bic term

2<2
)UO + Lx (kn) 0x

(28)

)

+ Ly (k) O'y:|

Q (kn. 1) =0 (29)

4m 2moe? .
Q (k, ) = k4 — kzh—2 |:€ + ﬁ_Z (14 sin 2(/),{)} —

8m2ach |
k———— [sin (gx — ¢n) + cos (pk + ¢n)] (30)
am? 5,
+ ﬁ—4 <€ —h ) s
Ly= (h cos gp + v2ak sin (q)k + %)) ,
(31)

Ly= (h singp — V2aksin ((pk + %)) )

the function F (k,r) is given by Eq. (23), ¢, defines the magnetic
field direction, h = h (cos ¢y, sin ¢y, 0). Though the Eq. (29) has ex-
act analytical solutions (see, for example, [21]) they are very com-
plicated and not suitable for analytical calculation. Nevertheless
the Eq. (28) may be practically convenient in numerical analysis. As
for the particular case of magnetic field direction along the sym-
metry axis ky = —ky, we consider it in Sec. 5. and the GF has been
expressed by means of Bessel functions.

4. Quasiclassical Green’s function

Quasiclassical approximation can be applied in physical inves-
tigations, if characteristic length scales of the problem are much
larger than Fermi wavelength Ar which has of the order of inverse
wave vector k~! at Fermi level. Since the GF oscillates as a function
of the coordinate r on a scale r ~ k=1 in framework of quasiclassi-
cal approximation in most cases the asymptotic formulas for large
kr the GF could be used. Below we find the asymptotic expressions
for GF (26) at r — oo. For real € = E the equality

€1.2 (k(i]’z), f) =

gives two branches of the electron energy spectrum. The positive
roots of Eq. (32) describe the isoenergetic contours k = k(ij) (E, f)
corresponding physical electron states in k-space for given en-
ergy E. If E > Eg, the roots kﬂ:’z) > 0 for any values of f, while
12 _ 0. For E < Eo reals roots of equation (32) exist, if
inequality W < (k(f))2 is hold. Both roots kY take posi-
tive values for the angles f in which A; > 0. Below we will not
consider values of energies E for Wthh the GF exponentially de-
creases with coordinate r assuming k ,E € R. At first we substi-
tute asymptotic expansions for Si (z) and Ci(2) at the large z (see,
for example [20]) to the function F (kg, 1) (23). At large r — oo and
real ko the main term of expansion reads as

(32)

roots k.

F (kg £i0,7) ~ %”e"kof [(1 + sgn(ko)) (sgn (r) &+ 1)]

1
of—); IkorI>>1.
[kor|

As the second step one derive the asymptotic formula for (23) by
the stationary phase method [22]. Stationary phase points f = fst
must be found from equation

(33)

4 (D) cos ‘
(f—or) o=
df( ) f=f (34)

kD cos(f — gr) =k sin(f — 0|0 =0,

(J)

which leads to the condition r || n,, where n, is the unit vector
along the electron velocity v{) = Vkej/h (see also [23,24])
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o v The spin angles (6), that correspond with parts of the sum with €4,
myl._.;p="r Ny H= - 37 o
f=fi | (])| keep the constant directions 6 = 2T and 6_ = —Z. The Eq. (41)
» ) (35) can be rewritten as
K9 sin f + kY cos f kY cos f — kY sin f 1
i G207 k97 497 Gen=2500(Cs (€0 +G(e,1)
+ k + k (43)
Oy —
Here and in all formulas below the point above functions denotes + 2\/5 “(Cr(en-GC-(em). €eC.

the derivative on angle f.
As the result of standard calculations we find the asymptotic of
the GF (26)

G(e,r) >~ —

2.2

j=12 s

i
exp |i(kxo cos ¢y + kyo sing;)r| x
> Tom p [i(kxo cos @y + kyo singp)r]

(14 oxcosb; + oy sinb;)

hv) /K| T (36)

1
+0 (—) T — 00,
=1 r

Si(H)=kY (f)cos(f — o),
§ (1) =7k (£ (k“)( S(t”) 1 (F9 )

We assume S;(f) € R, r > 0, S]( m) #0, Sj< (“) #0. All
functlons in Eq. (36) are calculated in stationary phase points
f= fst for which rv > 0. Summation over s takes into account
the existence of few solutions of Eq. (34) (few stationary phase
points fs(tz) (s) for given direction of vector r (see Ref. [17])). It is
possible in the cases when isoenergetic contour k = kf) (E, f) is
nonconvex. In Eq. (36), K12 (f) # 0 is the curvature of the isoen-
ergetic curve €12 (f) =

exp [IS]r:F sgnK}}
(37)

(38)

(J) L) e\2 (J) S(J)
+ 2Kk k
k()= LUV 2D~ (f)2< 28

( Al (f)+k(’)(f) )

2 2
1 0€; 1 0€ de€j
Vi<h ol BT
ok k3
is an absolute value of electron velocity. The Eq. (36) coincides
with the results of Ref. [17] in the case of B =0. We do not adduce
the GF for single inflection points, which can exist on the isoener-

getic contour €; (f) = E for certain values of SOI constants. It can
be simply derived in the same way.

(39)

(40)

5. Exact results for special case of equal SOI constants

Let us consider the special case: o« = 8 and the magnetic field
is directed along the y = —x axis, B= % (—1,1,0). Under these
conditions the Eq. (10) can be presented in the form

o0 3
R 1 oy — crx> / elkr
Ge,r)=—— o == dk , 41
(€,1) 2(2m2§<o 5 - (41)
where we introduce new functions of energy dimension
h? V2ma 2 V2ma 1 oma?
er=—||kxt——) +|kyx—— -
2m ”2 2 12
(42)

where for the function G (¢) one obtains

T dkdh
kxdky
Gule) = / Pty

J en

il(r

(6 4 2mg? ih) R [(kx n fma) (ky " @mﬂ (44)

o 2ma?
=exp|+i—5— (xX+y) |Gap | €+ 2 Fh).

We point out that Gyp (€, r) is well-known GF of free 2D electrons.
Particularly the retarded GF reads as

R (e r)——i iH((Jl) («/2me|r|/h); €>0 (45)
2 2n* | Zko (v2mlellri/h); € <0

where Hé”) (x) is the Hankel function and Ky (x) is the McDonald
function.

6. Densities of electron states and magnetization

As an example of our results applications we calculate the elec-
tron density of states p (E) and the density of vector magneti-
zation m (E) at o # B, which are important characteristics of 2D
conducting system (compare with results of Ref. [18]).

Density of states can be found from the relation

1 N
0 (E) = —— ImTr [GR (E,r)” (46)
T r=0
Substituting the retarded GF (25) at r =0 from Egs. (22), (25) one
can derive electron density of states,
m
p(E)=—=; E=Ey, (47)
mh
p(E)y= )" pj(E)=
j=1.2
m Z fdfo (Am) © (gu')) 3 +kY
S22 c © 0 L0 48
a2t & ~ kP — kY (48)
DY (D).
2n2h227§f (:)e(e9): E<Eo,
where A() and £U) are defined by Egs. (17) and (20). Note the

importance of the relation between electron energy E and the en-
ergy Eo (18) of branch touch point. The Eq. (47) shows that the
density of states is the same as for free 2D electron gas for en-
ergies E > Ey. In opposite case E < Eg the density of states p (E)
depends on the magnetic field and constants of SOI. The features
of p (E) related to minima (steps) and saddle points (peaks) on the
energy contours (32). These points (l;,,, fv) should be found out of
the system of equations
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dera _ M i a2 12F
2= 2 (k=202 () =0; (49) ;
ok m ,
de h? Lo
S22 =o, (50) [
of m o 08
Q [ =
from which ~ [ §
g 0 pp
ko =202 (f), A2 (fy) =0 (51) , ‘
N 04f
It is clear that the Eq. (49) can be satisfied, if £0) =0 (see S 1
Eq. (20)). Therefore E 02f
T hz (] 2) 2 0 05 _______________ I Il" B
ez (ko fo) =Eo— o (02 () (52) o X
2m : \s
.. ~ min . _0.27\”"\HH\‘HE\HH\HH\HHV
The energy minima € <ku, fv> = ET)' correspond to negative 0 1 2 3 4 5 6
second derivative A(12 (f,) <0 and saddle points €1 » (fcv, fv) = B/ By

E3% meet the case 112 (f,) > 0.
The electron density should be found by integration over all
available energies below Fermi level Ef

Ef
- (=™ M (2 g2
Ne = _Z / dEp; (B) = — [Ep o (a +B )] (53)
=12 min
E"
J
for EF > Ej.

We find density of magnetization using its relations with re-
tarded GF

1 )
Myy (E) = ——Im Tr [ox,yGR (E, r)]

(54)

r=0

Substituting the GF (22) into Eq. (54) after calculations similar to
carried out above one obtain for E > Eg

my.y (E) =0, (55)
that follows from symmetry relations

WD (f =)= =2V (f);

2 2.1 (56)
K2 (f =)= k& (f).
At E < Ep the density of magnetization becomes
m cos 6;
myy(E)= —— %d X
Y 2m2h? Z ! sin;
j=1,2
:I:k(j)
= (57)

o) <k(j>) o) <§<j>) ; k‘if) - kg)

__m costi| A9 i) o (£0)
_ZJTthj;jdf:Smei}mo(x )o(s?).

The figure illustrates dependencies of densities of states (49) and
magnetization (57) on the magnetic field B. In Fig. 1 the mag-
netic field is directed along the symmetry axis kx = —ky of the
energy spectrum at B = 0. In this case the vector of magnetiza-
tion is directed along the magnetic field m|B. The dependencies
have the logarithmic singularity at B = B; which results from the
saddle points of the energy surface € = e (ky, ky), (van Hove sin-
gularity [25]). Another critical value of the magnetic field B = B,
corresponds to an equality Eq(B:) = Er (18) at which the smaller
isoenergetic contour, €; = Ef (4), disappears. In the field B, first
derivatives 22, My haye 3 jump and at smaller magnetic fields

9B’ 9B
B < B¢ one has p = pg, m=0.

Fig. 1. Dependence of densities of states p (solid line) and magnetization my

(dashed line) on the magnetic field B, normalized by constants po = # and
By = % % In the plot we used dimensionless values of parameters % =1.2,
F

% =6 (kr = +/2mefg /h), o = —%. The position of van Hove’s singularities on the
magnetic field scale are Bs/By =2.96, B./Bo =2.8.

If Fermi energy Er > Eg the magnetic moment corresponds to
Pauli’s paramagnetism of the free electron gas without SOI

*
My, = g é/LB Z

j=12 min
Ej

Er * 2
m(g*ug)
47 h?

dme,y;j (E) = By.y, (58)

and it does not depend on SOI constants. Here my ,.; (E) are the
two items in the sum over j in Eq. (57).

7. Summary

To sum up, the exact and asymptotical expressions for the
Green’s function (GF) of 2D noninteracting electron gas with com-
bined Rashba-Dresselhaus spin-orbit interaction in parallel mag-
netic field at zero temperature are derived. We split the GF into
two parts either of which depends only on characteristics of the
one branch of spin-orbit split energy spectrum, Eq. (10). The GF
in the form of double integral is reduced to the single integral
of trigonometric integral functions, Eq. (26). This result should be
helpful in numerical computations and in evaluating asymptotic
expressions. We present the asymptotic of GF for large coordinate
values which can be used in quantum mechanical quasiclassical
calculations, Eq. (36). It is shown that asymptotic formula depends
only on two local characteristics of energy spectrum (32): the cur-
vature of isoenergetic curves and the electron velocity. For the
equal SOI constants and magnetic field direction along one of the
symmetry axis we express the GF by means of Bessel functions,
Eq. (43). Although this exact result describes the special case, it
may be used for qualitative analysis of different problems for other
(but close) values of parameters. In the conclusion we demonstrate
a usefulness of our results for calculation of physical quantities. We
find the electron density of states, Eq. (48), and density of magne-
tization, Eq. (57). These results allow to obtain the clear interpre-
tation of peculiarities of the dependencies of mentioned quantities
on the energy and of their appearance conditions. We believe the
results for the electron density (53) and the magnetization (58)
for the combined Rashba-Dresselhaus spin-orbit interaction have
been obtained for the first time.

In the present paper we have solved the 2D problem. In a
framework of 2D model the Hamiltonian (1) does not depend on
component of generalized momentum P, = p,+eA_,/c and for the

Please cite this article in press as: L.V. Kozlov, Yu.A. Kolesnichenko, Exact and quasiclassical Green'’s functions of two-dimensional electron gas with Rashba-Dresselhaus
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Coulomb gauge eigenvalues (3) and the eigenfunctions (4) are ex-
act [18]. In this regard we claimed that obtained results are valid
for an arbitrary value of the magnetic field. A real electron system
in semiconductor heterostructures is quasi-two-dimensional one. It
is characterized by a finite thickness in the perpendicular to the in-
terface direction, which is of the order of the potential well width
d ~ 10 nm [11,26]. In the in-plane magnetic field the variables a
3D Schrodinger equation cannot be separated and a coordinate de-
pendence of the generalized momentum P should be taken into
account. However, as it had been shown in Ref. [19], the Hamil-
tonian (1) can be used, if (d/Ig)*> « 1 (Iz =+/ch/eB is a magnetic
length). The last inequality gives a restriction on the magnetic field
value B<1T.
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Highlights

The GF of 2D electron gas with Rashba-Dresselhaus SOI is reduced to a single integral
Quasiclassical GF depends on local characteristics of energy spectrum

Effect of magnetic field appears in GF by changes of geometry of isoenergetic contours
The exact GF is found for equal SOI constants and magnetic field along symmetry axis
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